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Abstract

In this work, we present our approach and
findings for SemEval-2021 Task 5 - Toxic
Spans Detection. The task’s main aim was
to identify spans to which a given text’s tox-
icity could be attributed. The task is chal-
lenging mainly due to two constraints: the
small training dataset and imbalanced class
distribution. Our paper investigates two tech-
niques, semi-supervised learning and learn-
ing with Self-Adjusting Dice Loss, for tack-
ling these challenges. Our submitted system
(ranked ninth on the leader board) consisted
of an ensemble of various pre-trained Trans-
former Language Models trained using either
of the above-proposed techniques.

1 Introduction

Content moderation has become the topic of most
conversations regarding social media platforms.
However, with over 4 billion active internet users,
it is impossible to moderate each piece of message
generated online manually. Therefore, the focus
is now shifting towards tackling the issue using
machine learning methods.

Various toxicity detection datasets (Wulczyn
et al., 2017; Borkan et al., 2019) and models
(Pavlopoulos et al., 2017; Liu et al., 2019; Seganti
et al., 2019) have been successfully developed over
the years to tackle the issue of moderation. How-
ever, these have mostly focused on identifying
whole comments or documents as either toxic or
not. In semi-automated settings, a model merely
generating a toxicity score for each comment, some
of which can be very lengthy, is not of much help
to human moderators. To tackle this issue, the Se-
mEval 2021 Task 5 : Toxic Spans Detection is intro-
duced (Pavlopoulos et al., 2021). The task involves
identifying text spans in a given toxic post that con-
tributes towards the toxicity of that post. The task
aims to promote the development of a system that

would augment human moderators by giving them
more insights into what actually contributes to the
text’s toxicity.

The task is challenging mainly due to the follow-
ing reasons: a) small size of the dataset b) character-
istics of text samples extracted from social media
leading to difficulties such as out-of-vocabulary
words and ungrammatical sentences c) class im-
balance in the dataset d) inconsistencies in data
annotations. We approached this task as a sub-
token level sequence labeling task. Fine-tuned pre-
trained transformer language models (Qiu et al.,
2020) are the backbone of all our approaches. We
investigated two main techniques to enhance the re-
sults of the fine-tuned transformer models, namely
Semi-Supervised Learning (Yarowsky, 1995; Liu
et al., 2011) and fine-tuning with Self-Adjusting
Dice Loss (Li et al., 2020). This paper reports the
results of our experiments with these different tech-
niques and pre-trained transformer models. Our
submitted system consisted of an ensemble of dif-
ferent pre-trained transformer models and achieved
an F1 score of 0.6895 on the test set and secured
9th position on the task leaderboard. All of our
code is made publicly available on Github1.

The rest of this paper is organized as follows.
Section 2 discusses the previous works in the fields
of offensive language detection and span identifi-
cation. Section 3 describes the dataset. Section 4
explains the proposed approaches. Section 5 re-
ports the results of various experiments with the
proposed approaches, and section 6 analyzes the
proposed approaches via ablation studies. We con-
clude with an error analysis of our model perfor-
mance in section 7 and concluding remarks in sec-
tion 8.

1https://github.com/architb1703/Toxic_
Span

https://github.com/architb1703/Toxic_Span
https://github.com/architb1703/Toxic_Span
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2 Related Work

As the task involves detecting toxic spans in a text,
we present the related work in two parts: (i) Offen-
sive Language Detection and (ii) Span Identifica-
tion.

Offensive Language Detection: Research
work has been done on different abusive and of-
fensive language identification problems, rang-
ing from aggression (Kumar et al., 2018) to hate
speech (Davidson et al., 2017), toxic comments
(Saif et al., 2018), and offensive language (Laud
et al., 2020; Pitsilis et al., 2018). Recent contribu-
tions to offensive language detection came from the
SemEval-2019 Task 6 OffensEval (Zampieri et al.,
2019). The task organizers concluded that most
top-performing teams either used BERT (Liu et al.,
2019) or an ensemble model to achieve SOTA re-
sults. Interestingly, the task of locating toxic spans
is relatively novel, and its successful completion
can be groundbreaking. A recent approach with a
narrower scope is by Mathew et al. (2020), who
focused on the rationality of decision in the task of
hate speech detection.

Span Identification: Span detec-
tion/identification tasks include numerous
tasks like named entity recognition (NER) (Nadeau
and Sekine, 2007), chunking (Sang and Buchholz,
2000) and keyphrase detection (Augenstein et al.,
2017). (Papay et al., 2020) analyzed the span
identification tasks via performance prediction
over various neural architectures and showed that
the presence of BERT component in the model
is the highest positive predictor for these tasks.
Inspired by this observation, we have built our
model based on the transformer architecture,
further exploiting the benefits of semi-supervised
learning and modified Dice Loss.

3 Dataset

3.1 Data Description

The competition dataset comprises around 10K
comments extracted from the Civil Comments
Dataset and annotated using crowd-raters. The or-
ganizers released the dataset in 3 phases: trial, train,
and test. The trial dataset consisted of 690 texts,
whereas the training dataset consisted of 7939 texts.
Moreover, the test set on which our system was fi-
nally evaluated consisted of 2000 text samples.

In the initial stages of the competition, we de-
cided to use only the training dataset to build upon

our approaches. We further split the training set
into train, dev, and test sets for evaluation purposes
using an 80:10:10 split (Div A). Once we tested and
finalized our approaches, we combined the train
and test set of Div A with the trial set as our final
training set (Div B). Due to the small size of the
dataset, these additions to the training set of Div
A will positively impact the model performance.
However, to ensure that we could compare our final
models with our previous results, we transfer the
dev set directly to Div B. Further details regarding
the constitution of these splits is provided in the
Appendix A.

3.2 Pre-processing

Tokenization: For the sake of preserving the to-
ken spans, we first tokenized our data and then per-
formed data cleaning. For tokenizing, we used the
NLTK TreebankWord Tokenizer2, which is a rule-
based tokenizer that tokenizes text on spaces and
punctuation, hence preserving the original form of
the words.

Data Cleaning: We then cleaned each token
using different operations such as expanding con-
tractions and removing digits and full stops.

4 Proposed Approach

4.1 Methodology

Pre-trained transformer models built using the
transformer architecture (Vaswani et al., 2017) have
been able to achieve, via transfer learning tech-
niques, SOTA performance for most NLP tasks in
recent times. We fine-tuned pre-trained transformer
models with linear classifier head for performing
sequence labeling for this task, which meant per-
forming subtoken-level classification (Fig.1a). Our
baseline model used the pre-trained BERT-Base-
Cased model, fine-tuned with cross-entropy loss
and AdamW optimizer. The different hyperparam-
eter values used for training the baseline and all
subsequent models are reported in the Appendix B
to facilitate replication of results. Subsequently, we
improved upon this baseline using two techniques,
semi-supervised learning and Self Adjusting Dice
Loss. Along with this, we fine-tuned multiple
different transformer models like BERT(Devlin
et al., 2019), Electra(Clark et al., 2020), Distil-
BERT(Sanh et al., 2020), and XLNet(Yang et al.,

2https://www.nltk.org/_modules/nltk/
tokenize/treebank.html

https://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://www.nltk.org/_modules/nltk/tokenize/treebank.html
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Figure 1: Model architectures

2020) for our Dice-Loss Approach and found differ-
ences in the predictions of the different transformer
models to be beneficial for the final ensemble.

Self Adjusting Dice Loss One of the main is-
sues with our dataset was that of class imbalance.
For the sub-tokens derived from the BERT-Base-
Cased tokenizer, the ratio of toxic to non-toxic sub-
tokens was 1:10.16. However, we could not tackle
this issue with over/under-sampling due to the na-
ture of our problem, and training with a weighted
cross-entropy loss function did not improve results.
Therefore, we experimented with training with the
Self-Adjusting Dice Loss (Li et al., 2020) which
was proposed as an objective function for dealing
with imbalanced datasets in NLP. The original dice
coefficient is an F1-oriented statistic used to gauge
the similarity of two sets. The paper proposed a
loss function based on a modified dice coefficient,
which they reported to achieve a better F1 score
than models trained with cross-entropy loss.

DL = 1− 2(1− pi1)α(pi1).yi1 + γ

(1− pi1)α(pi1) + yi1 + γ

Here, for the ith training instance, pi1 is the pre-
dicted probability of positive class and yi1 is the
ground truth label. The loss function also has
two hyperparameters, alpha and gamma, which
we tuned for our models.

Semi-Supervised Learning The Civil Com-
ments Dataset from which our training data was
extracted consists of over 1 million comments; how-
ever, due to annotation constraints, the training
set only had 7000 data samples. (Shams, 2014)

have shown that for text classification tasks, unla-
belled data from a suitable data source could be
used to train semi-supervised models that achieve
better results than a model trained using supervised
learning. Also, (Jurkiewicz et al., 2020) showed
that the semi-supervised learning technique of self-
training could improve performance on span iden-
tification tasks. Hence, we extracted 40000 toxic
samples from the Civil Comments Dataset, which
were labeled with a toxicity score of 0.7 or higher,
and used these to perform four iterations of semi-
supervised model training (Fig. 1b). We exhaus-
tively divided the unlabelled samples into four
batches of 10000 each and used each batch for
exactly one iteration. As shown in Fig. 1b, for
each iteration, pseudo labels were predicted for
the complete batch using the model trained in the
previous iteration, then these pseudo-labels along
with the ground truth training labels were used to
train the next model. For this approach, we only
fine-tuned one transformer model, namely the pre-
trained BERT-Base-Cased model.

4.2 Post-preprocessing

After obtaining the sub-token level labels from our
model, we post-processed the results to convert
them into an array of toxic character offsets. To
perform this, we had mapped each sub-token to
its offset span during tokenization and used that to
retrieve the offsets of all the characters in the toxic
sub-tokens. We also include all characters lying
between two consecutive sub-tokens if both the
sub-tokens are marked toxic. This was necessary
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as spaces and punctuation were included in the
toxic spans given by the annotators, as shown by
the results in section 6.

5 Experiments and Results

The competition used the span level F1 score, cal-
culated individually for each text sample from its
character offsets and averaged over all the text sam-
ples, as the metric to evaluate system performance.
We decided to use this metric for hyperparameter
tuning and reporting the final results. However, dur-
ing the training process, the models were checked
for overfitting using the token level F1 score, which
was also a good indicator of model performance
as our training approach was that of a sequence
labeling task.

The first set of experiments we performed were
on the Div-A dataset. Our baseline model achieved
an F1 score of 0.669 on the dev split on this set.
The organizers also released a baseline model, con-
sisting of a Spacy statistical model trained on the
competition training dataset and evaluated on the
competition trial dataset. The organizer’s baseline
achieved an F1 score of 0.600 on the trial dataset.
This score was significantly lower than that of our
baseline model, and therefore we use our baseline
model only to compare the performance of our sub-
sequent models.

We then fine-tuned a BERT-Base-Cased model
with the Self-Adjusting Dice Loss and AdamW
optimizer and tuned the loss function’s two hy-
perparameters. The scores we obtained for the
different hyperparameter values are reported in Ta-
ble 9 in Appendix C. We got our best performing
model with the hyperparameter values alpha-0.7
and gamma-0.25, achieving an F1 score of 0.6725
on the dev split.

Model Dev F1 Score
BERT-Base-Cased 0.669

SSL Iteration-1 0.6837
SSL Iteration-2 0.6842
SSL Iteration-3 0.6882
SSl Iteration-4 0.6893

Table 1: Results for Semi-Supervised learning model

Next, we trained the BERT-Base-Cased model
on the semi-supervised learning paradigm with
cross-entropy loss and AdamW optimizer. For
the first iteration, we used our baseline model to
compute the pseudo labels. The model achieved

improved results with each iteration (Table 1), and
our final model was scoring 0.6893 on the dev split.

To end this stage of experimentation, we com-
puted the results on the test split of the Div-A
dataset. We were able to make two inferences.
Firstly the semi-supervised learning model had the
best performance with an F1 score of 0.6774 on the
test set but had a significantly worse score than it
had on the dev set. Secondly, the dice loss trained
model performed significantly better than the cross-
entropy trained baseline with an F1 score of 0.662
compared to 0.648.

After this, we changed to the Div-B dataset and
trained multiple different transformer models with
the Self Adjusting Dice Loss. We found that the
BERT-Base-Cased, Electra-Small, Electra-Base,
and DistilBert-Base-Uncased models had peak per-
formance for the hyperparameter values alpha-0.7
and gamma-0.25. However, for the XLNet-Base
model, peak performance was achieved for alpha-
0.4 and gamma-0.25. On further experimentation
with these models, we also found that adding a
full stop to the text samples during evaluation pro-
vided consistently better results on the dev set. The
results obtained have been reported in Table 2.

Model WFS FS
BERT-Base-Cased 0.6754 0.6827

Electra-Small 0.6813 0.6861
Electra-Base 0.6776 0.6846

DistilBERT-Base-Unc. 0.6749 0.6773
XLNet-Base 0.6798 0.6852

SSl Iteration-4 0.6893 0.6932

Table 2: Effect of full stop on dev set during evaluation.
Here WFS and FS represent without full stop and with
full stop resp.

The final results of models trained either on mod-
ified Dice Loss or using Semi-Supervised learning,
with full stop added during evaluation, are reported
on the Div-B dev split and the competition test set
in Table 3.

6 Ablation Study

After the competition, we wanted to study the effect
of our different preprocessing and postprocessing
techniques. We employ three main data cleaning
techniques during our preprocessing, expanding
contractions, removing numbers, and removing full
stops. To study each particular technique’s impact,
we created three new Div-B datasets, each having
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Model Dev Test
1 BERT-Base-Cased* 0.6827 0.668
2 Electra-Small* 0.6861 0.6771
3 Electra-Base* 0.6846 0.6720
4 DistilBERT-Base-Unc.* 0.6773 0.6822
5 XLNet-Base* 0.6852 0.6757
6 SSl Iteration-4 0.6932 0.672

Ensemble (1,2,3,4,5,6) 0.6927 0.6895

Table 3: F1 Score on dev and competition test set
* - Models trained with modified Dice Loss

one of the preprocessing techniques missing. We
then trained BERT-Base-Cased and Electra-Small
models with Self Adjusting Dice Loss on each of
these sets and evaluated the performance on their
respective dev sets. The results are reported in
Table 4 with the following acronyms:

• TD - All preprocessing steps used
• WNUM - Without removing numbers
• WFS - Without removing fullstops
• WCON - Without expanding contractions

Dataset BERT-Base-Cased Electra-Small
TD 0.6754 0.6813

WNUM 0.6781 0.6809
WFS 0.6713 0.6743

WCON 0.671 0.6829

Table 4: F1 Score for different preprocessing tech-
niques on dev set

The results show that removing numbers and ex-
panding contractions both had contrasting effects
on the two models. This shows that we could have
yielded better results by trying different preprocess-
ing techniques for the different transformer models.
Apart from that, we see that the most positive effect
on model performance came from removing full
stops from the training data in both cases.

We also wanted to see the effect of our post-
processing step. For that, we compared the per-
formance of the BERT-Base-Cased model on the
Div-B dev split. As expected, the results showed
minor improvement due to our postprocessing as
the score increased from 0.6748 to 0.6754.

7 Error Analysis

The results we have obtained have brought to light
some problems that need to be resolved. First of
all, the data annotations have many issues, lead-
ing to a lower F1 score even though the predicted

Example Set Val Test
E.S

Val:41 Test:394
0.0731 0.0380

N.E.S
Val:753 Test:1606)

0.7265 0.8493

All
Val:794 Test :2000

0.6927 0.6895

Table 5: System performance over empty span (E.S)
and non-empty span(N.E.S) examples over Div-B split

toxic spans are more appropriate in many cases.
We have included some examples in Appendix D.
In some cases, the annotations are not uniform in
what toxicity label they assign to the same word
over different text samples. We have also observed
that complete sentences were marked as toxic just
because of the presence of a few toxic words in
them. These irregularities in the annotations make
it difficult for the model to generalize on the data.

Besides the incorrect annotations, we further
try to analyze the type of mistakes our system is
making. The dataset contains numerous examples
where no toxic spans are annotated. Such a case
arose when the annotators had difficulty in attribut-
ing toxicity to a particular span. Investigating our
model performance shows that our model highly
under-performs on such examples. Table 5 depicts
the drastic difference in the performance of the
system over empty span examples (E.S) and non-
empty span examples (N.E.S). Upon closely follow-
ing E.S examples, we discovered that annotations
of such examples carry more subjectivity than the
others. In such cases, our model usually labels the
word with the most negative sentiment as toxic and
thus performs poorly.

In addition to the empty span examples, we also
discover that our model fails to capture the full
context in some cases. For e.g., in the phrase “no
more Chinese,” our model only predicts the word
Chinese as toxic, whereas the complete phrase at-
tributes to the toxicity of the sentence. Another
problem is our model’s inconsistency in labeling
the corresponding noun and adjective pairs in a sen-
tence. However, similar types of inconsistencies
were also found in the annotations and are therefore
difficult to avoid [Appendix D].

8 Conclusion

The task of detecting toxic spans in the text is a
novel one, and there is no doubt about how impor-
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tant a model trained successfully for this task can
turn out to be for online content moderation. How-
ever, the data gathered from online platforms tend
to be noisy and corrupted. Coupled with the limita-
tions of generating large-scale annotated datasets in
real life, they pose two daunting challenges. In con-
clusion, our final submission shows that transfer
learning through pre-trained transformer models
can achieve competitive results for this task. Us-
ing modified loss functions and semi-supervised
learning, even more can be extracted from limited
annotated data. Moreover, considering the subjec-
tivity involved in span detection, the task can also
be expanded to report severity scores of spans and
classify the type of toxicity. This will further help
simplify and rationalize online content moderation.
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2020. Dissecting span identification tasks
with performance prediction. arXiv preprint
arXiv:2010.02587.
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Appendix

A Dataset

We worked on two different splits of the data
across different stages of competition. Table 6
represent the no. of examples in train, val and test
across Div-A and Div-B split.

Div-A Div-B
Train 6351 7835
Dev 794 794
Test 794 2000
Total 7939 10629

Table 6: Distribution of examples across Div-A and
Div-B split

Div-A is basically a 80:10:10 split of the training
data released by the organisers whereas Div-B split
uses the train and test set of Div-A along with
competition trial data as its training set. Div-B
uses the official test set as its test set while keeping
the dev set same as that of Div-A.

B Model Training

In this section, we provide the hyperparameter
values we used while training our final models to
facilitate the replication of our results at a later time.
The acronyms correspond to:

• LR : Learning Rate
• ML : Max Len
• LC : Data Lowercase
• DL : Dice Loss (Alpha, Gamma)

Hyperpara. BERT-Base-Cased Electra
LR 1E-5 3E-5
ML 500 500
LC False True
DL 0.7,0.25 0.7,0.25

Table 7: Hyperparameter Values for BERT-Base-Cased
and Electra (Small and Base)

For baseline model and semi-supervised learning
model, the cross-entropy loss function provided in
PyTorch was used with default hyperparameters.
For AdamW optimizer, we used weight decay rate
of 0.01 for all model parameters apart from the
bias, gamma and beta terms, for which we used 0
weight decay.

Hyperpara. Distil-Base-Unc. XLNet-Base
LR 1E-5 3E-5
ML 500 400
LC True False
DL 0.7,0.25 0.4,0.25

Table 8: Hyperparameter Values for Distil-Base-Unc.
and XLNet-Base

C Results

C.1 Dice Loss Results
In this section, we report the results of our hyper-

parameter tuning for training with Self Adjusting
Dice Loss. The result reported are for BERT-Base-
Cased model on the Div-A dataset.

Parameter Values Dev F1 Score
Alpha-0, Gamma-1 0.665
Alpha-0, Gamma-2 0.657

Alpha-0.5 Gamma-1 0.652
Alpha-0.7, Gamma-1 0.671
Alpha-0.8, Gamma-1 0.668

Alpha-0.7, Gamma-0.5 0.6723
Alpha-0.7, Gamma-0.25 0.6725

Table 9: BERT-Base-Cased trained with Self Adjusting
Dice Loss on Div-A train split

D Error Analysis

We manually crawled through a part of dataset
and found several inadequate annotations as de-
scribed through table 11. Apart from erroneous
annotations, we also found some examples of in-
consistency in the structure of annotations. Table
10 outlines a few such pairs where different strate-
gies are used for annotating similar texts. These
examples highlight the inconsistencies in labelling
of corresponding noun-adjective pairs.

Text Ground Truth
You are an idiot [’idiot’]

You are truly witless All tokens
F***ing moron .... [’F***ing’]

Fucking moron needs... [’Fucking’,’moron’]
Hilary is a liar... All tokens

Trump is an idiot. [’idiot’]

Table 10: Irregularity in annotation for similar text-
samples.
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Text Ground Truth Suggested
I have no doubt it was Photoshopped(by an idiot, for an idiot) [’idiot’] [’idiot’,’idiot’]

She’s a Marxist twit. [’Marxist’] [’Marxist’, ’twit’ ]
Move to Russia and be a fascist pig all you want. All tokens [’fascist’, ’pig’]

lame. really really lame and cheap shot. pathetic actually.
[’lame’, ’lame’,

’actually’]
[’lame’, ’lame’,

’pathetic’]
So ”f*** you all”, ”kiss my a–” and ... [’f***’] [’f***’,’a–’]

You are just a stick buthole! [] [’stick’,’buthole’]

Table 11: Shows the words labelled toxic as ground truth(from annotators) and suggested accurate annotations


