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Abstract
This paper describes our system ECNU ICA 1
for SemEval-2021 Task 4: Reading Compre-
hension of Abstract Meaning. For this task,
we utilize knowledge-enhanced Graph Atten-
tion Networks with a novel semantic space
transformation strategy. It leverages heteroge-
neous knowledge to learn adequate evidences,
and seeks for an effective semantic space of
abstract concepts to better improve the ability
of a machine in understanding abstract mean-
ings of natural language. Experimental results
show that our system achieves strong perfor-
mance on this task in terms of both impercep-
tibility and nonspecificity.

1 Introduction

Recent years have witnessed the remarkable suc-
cess of pre-trained language models in machine
reading comprehension (MRC). Nevertheless, new
research points out that these dominant approaches
rely heavily on superficial text pattern-matching
heuristics to achieve shallow comprehension on
natural language (Zhang et al., 2020). For humans,
the basic ability to represent abstract concepts guar-
antees an in-depth understanding of natural lan-
guage. Consequently, teaching machines to better
comprehend abstract meaning is a significant and
urgent step to push the frontier technique of MRC
forward.

If computers can understand passages as human
do, we expect them to accurately predict abstract
words that people can use in summaries of the given
passages. Thus, researchers have recently proposed
a reading comprehension of abstract meaning (Re-
CAM) task in SemEval 2021. Unlike some previ-
ous datasets such as CNN/Daily Mail (Hermann
et al., 2015) that request computers to predict con-
crete concepts, e.g., named entities, ReCAM re-
quires machines to fill out abstract words removed

*Equal corresponding authors.

from human written summaries. In ReCAM, sub-
task 1 and subtask 2 respectively evaluate the per-
formance of machines towards imperceptibility and
nonspecificity, two formal definitions of abstract-
ness in natural language understanding(Spreen and
Schulz, 1966; Changizi, 2008). Specifically, con-
crete words refer to things, events, and proper-
ties that we can perceive directly with our senses
(Spreen and Schulz, 1966; Coltheart, 1981; Turney
et al., 2011), e.g., donut, trees, and red. In contrast,
abstract words refer to the ideas and concepts that
are distant from immediate perception. Examples
for abstract words include objective, culture, and
economy. Subtask 1 requires machines to perform
reading comprehension of abstract meaning for im-
perceptible concepts, while subtask 2 concentrates
on hypernyms, which is more abstract and different
from the concrete concepts (Changizi, 2008).

To better understand the abstract meaning, we
utilize the Knowledge-Enhanced Graph Attention
Network (KEGAT) architecture with a novel se-
mantic space transformation strategy for ReCAM.
It well incorporates structured knowledge base such
as ConceptNet (Speer et al., 2017) and exploits
a novel representation transformation strategy to
improve the ability of machines in natural language
understanding. The main contributions of our sys-
tem are as follows:

• We utilize the KEGAT architecture to accom-
plish two subtasks in Reading Comprehen-
sion of Abstract Meaning, leveraging hetero-
geneous knowledge resources to provide ade-
quate evidences and relying on Graph Atten-
tion Networks for the better reasoning.

• The proposed semantic space transformation
strategy seeks for an effective representation
mapping from concrete objects to abstract con-
cepts, enabling machines to better understand
the abstract meanings of natural language.
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• Extensive experiments show that our system
achieves strong performance on this task in
terms of both imperceptibility and nonspeci-
ficity.

2 Methodology

In this section, we describe the framework of our
system and propose some strategies to enhance the
reasoning ability of the model. An overview of the
architecture is depicted in Figure 1.

2.1 Input Module

We cast the ReCAM task as a classification prob-
lem. For each instance, we assume that P is the
passage, Q is the question, A is the number of can-
didate options, andOi stands for the options, where
i ∈ {1, 2, . . . , A}. For a specific training instance,
we first replace the “@placeholder” in Q with Oi,
and thus the resulting question-answer pair can be
denoted as QOi. Then we concatenate the passage
and question-answer pairs as [CLS] P [SEP] QOi

[SEP], and denote this converted input as Ui for
convenience. Although various approaches can be
exploited to encode this Ui, we primarily adopt the
basic way, in which tokens are represented with
the one-hot vectors and the positional encoding is
added, providing the model with a new embedding
as EUi for every Ui.

2.2 Reasoning Module

Since pre-trained language models have achieved
state-of-the-art performance in various NLP
tasks (Devlin et al., 2019; Yang et al., 2019; Lan
et al., 2020), we adopt the pre-trained architec-
ture to process the embedding EUi that is obtained
from the previous step to get the high-level rep-
resentation as Êbase

Ui
. Specifically, we use Elec-

tra (Clark et al., 2020), a word-sensitive pre-trained
language model which is composed of N -layer
transformer encoders (Vaswani et al., 2017) de-
picted in the middle of Figure 1. Then, we utilize
a Knowledge-Enhanced Graph Attention Network
(KEGAT) component to accomplish the reasoning
process based on all relevant entities and the high-
level representation of the entire question-answer
pair from the pre-trained model. The working prin-
ciple of our KEGAT model is introduced later.

As shown in Figure 1, our KEGAT model mainly
consists of a Graph Attention Network, a self-
attention submodule and a multi-layer perceptron
(MLP). It enables a multi-level reasoning process

from entities to sentences. For the entity level,
we utilize some structured knowledge from Con-
ceptNet with a different integration approach to
achieve the goal of conducting inferences over new
constructed subgraphs. Here, we adopt the N-gram
method to extract all entities from the converted in-
put Ui, and use edge weight as the probability to se-
lect a maximum of k adjacent nodes from Concept-
Net for subgraph construction. Suppose the number
of entities is n, we construct n subgraphs in total,
and the subgraphs may be connected with edges.
Next, we utilize the conceptnet-numberbatch* to
obtain the i-th entity embedding as the initial rep-
resentation h(0)i , which is subsequently refined by
the L-layer Graph Attention Network (GAT). In the
refinement process, the GAT module automatically
learns an optimal edge weight between two entities
in these subgraphs based on the ReCAM task, in-
dicating the relevance of adjacent entities to every
central entity. In other word, for a central entity, the
GAT tries to only assign higher weight values to
those edges connected with several most reasonable
adjacent entities from the constructed subgraph,
and discards some irreverent edges. Thus, the ab-
stract semantic inference ability of our model is
highly improved with the knowledge incorporated
by the refined subgraphs. The working principle of
our GAT is in Eq. 1–3.
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We update each entity node based on Eq. 1, where
σ(·) represents a ELU function (Clevert et al.,
2016), W is the network parameter, h(l)i is the repre-
sentation from the l-th layer of GAT, andNi stands
for all adjacent nodes to the i-th entity. M is the
number of independent attention mechanisms in
Eq. 2, and a(l)ij is the relevance degree of the j-
th adjacent entity with respect to the i-th entity.
Besides, f(·) represents a projection function con-
verting the vector to a real number, and [; ] stands
for the concatenation operation. Finally, we define

Êgnn
Ui

=
1

n

n∑
i=1

h
(L)
i (3)

to be the final representation for entity subgraphs
that are obtained from the GAT.

*ConceptNet-Numberbatch:
https://github.com/commonsense/conceptnet-numberbatch
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Figure 1: The overview of our system for ReCAM.

From the sentence level, we adopt a self-
attention submodule and several MLPs to promote
the model to reason over both entities and input
sentences. We first utilize a MLP to fuse the sym-
bolic and semantic representations and then take a
self-attention operation for refinement. Thus, the
entity-level representation can be further refined
by taking the question-answer pair as a reference.
To sum up, some valuable dimensions can be high-
lighted to retain the most reasonable information
from the fused representations Êall

Ui
to improve the

reasoning ability. We formulate these steps as Eq.
4 and Eq. 5.

Êall
Ui

= MLP([Êbase
Ui

; Êgnn
Ui

]) (4)

GUi = σ(SelfAttn(Êall
Ui
)) (5)

where GUi is the refined representation, SelfAttn(·)
represents a self-attention operation, and σ(·) is the
activation function. Finally, we concatenate GUi

and Êbase
Ui

to obtain the entire reasoning represen-
tation as

ÊUi = [GUi ; Ê
base
Ui

] (6)

2.3 Prediction Module
With the previous multi-level reasoning process,
we obtain the representation of converted inputs
as {ÊUi}Ai=1 for each instance. In the prediction
module, we use a multi-layer perceptron to solve

the downstream tasks of ReCAM based on Eq. 7–
9.

Pi = MLP(ÊUi), P
′ = softmax(P ) (7)

y = argmax(P ′) (8)

L = −
A∑
i=1

y∗i logP
′
i (9)

where y represents the prediction result, and P ′i
stands for the probability of selecting the i-th op-
tion label. P is the output of the MLP, where
P ∈ RA×1. L is the training objective to mini-
mize negative log-likelihood and y∗ here stands for
one-hot vector of the optimal label.

2.4 Adaptive Strategies

Noise Reduction Strategy Previous methods of
knowledge integration often lead to inevitable noise
(Zhong et al., 2019; Wang et al., 2019), and it is
still an open research problem to balance the im-
pact between noise and the amount of incorporated
knowledge. (Weissenborn et al., 2018; Khashabi
et al., 2017). Our KEGAT can alleviate the noise
that is caused by incorporated structured knowl-
edge to a certain extent. This module accomplishes
the goal of identifying the most reasonable exter-
nal entities and discarding the irreverent ones. For
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example, we rely on both entity-level and sentence-
level inference thoroughly that is discussed in the
previous Reasoning Module part to achieve this
goal. Furthermore, we remove several unimportant
types of edges to avoid unnecessary noises, such as
”/r/DistinctFrom”, ”/r/ExternalURL”, etc.

Semantic Space Transformation Strategy Un-
like some previous MRC tasks that request com-
puters to predict concrete concepts, ReCAM task
here asks models to fill out abstract words removed
from human written summaries. Thus, we utilize a
semantic space transformation strategy to convert
ordinary semantic representation into abstract rep-
resentation for classification. Specifically, for the fi-
nal answer prediction, this approach deals with the
hidden vector representation V which is obtained
ahead of the prediction module. One method is to
extend the dimension (ED) of V . For instance, we
use a MLP to expand V by 500 dimensions and
then perform the downstream classification predic-
tion. The second attempt is to transform V directly
with a nonlinear activation function, such as RELU.
And another method is to transform V through a
simple deep neural network (DNN), which is de-
picted in the right of Figure 1.

3 Experiments

3.1 Datasets and Metric

In the ReCAM task, it requires the model to fill
out abstract words removed from human written
summaries. The total number of abstract words
that can be selected is five. We utilize Accuracy as
a metric to evaluate model performance.

3.2 Experimental Settings

In our experiment, we set the maximum sentence
length as 210 and the batch size as 16. During train-
ing, we freeze all layers and learn 2 epochs with
a learning rate of 0.001 except for the last classifi-
cation layer, In the fine-tuning phase, we unfreeze
all layers and learn 10 epochs with a learning rate
of 0.000005. Like the training phase, it is benefi-
cial to use the weights of the pre-trained language
model to correct the randomly initialized classifi-
cation layer. All layers of the entire model in the
fine-tuning phase are suitable for classifying down-
stream tasks with the low learning rate. For each
phase, we save model parameters when it reaches
the highest accuracy on the dev set, and load it at
the beginning of the next phase. In addition, we

adopt the Adam optimizer (Kingma and Ba, 2015)
and set epsilon to be 0.000001 for the gradient
descent. We train our model with Titan XP GPUs.

3.3 Results
Table 1 shows the results of the top five teams from
the leaderboard for ReCAM task (by February 10).
Our system achieves the 3rd place in Subtask 1 in
terms of Accuracy. And it can be concluded from
Table 2 that our system has the ability to solve the
ReCAM task.

Besides, we test the performance of our system
with the strategies mentioned in Section 2.4. Here,
“+KEGAT” represents our proposed model with
Knowledge-Enhanced Graph Attention Networks,
“+ED ”, “+RELU”, “+DNN” refer to our system
with different semantic space transformation strate-
gies. In addition, Dev Acc. and Test Acc. stand
for the accuracy on the dev set and test set respec-
tively. Table 2 shows the experimental results of
our system on the ReCAM task. In this table, the
baseline model GA Reader provided by the com-
petition organizer is not ideal, and its performance
is slightly higher than 20% with our actual testing.
We conclude that on the dev set, our system respec-
tively achieves the relative improvement of 6.69%
and 4.24% on subtask 1 and subtask 2 when adding
KEGAT submodule compared with the fine-tuned
Roberta large. Moreover, we test the performance
of three ensemble models shown in the bottom of 2,
and the “Electra-large ED + Electra-large KEGAT-
RELU ” ensemble obtains the best performance
on the dev set, which respectively outperforms the
fine-tuned Roberta large model with the relative im-
provement of 7.41% and 5.29% on subtask 1 and
subtask 2. Here, this ensemble framework refers
to the combination of two models. Therefore, it
can be concluded that the ensemble models with
the semantic space transformation strategy greatly
improve the reasoning ability of our system, and
the single system with multiple strategies performs
well in most cases.

3.4 Further Discussion
To further investigate this task, we have addition-
ally assessed the impact of data bias on the model
performance. By statistics, the average length of
passages in the dev sets of subtask 1 and subtask
2 are 268.8 and 434.6, respectively. In general,
longer passages often consist of more noise that
greatly influences answer reasoning process of the
model. We only select a portion of contents from
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Subtask 1 Subtask 2
Rank Team Name Accuracy Rank Team Name Accuracy

1 Silvilla 95.11 1 PINGAN Omini-Sinitic 95.29
2 PINGAN Omini-Sinitic 93.04 2 Silvilla 94.89
3 ECNU ICA 1 (ours) 90.47 3 tt123 93.41
4 tt123 89.98 4 ECNU ICA 1 (ours) 93.01
5 cxn 88.69 5 cxn 92.91

Table 1: Top 5 results for ReCAM task.

Subtask 1 Subtask 2
Model Dev Acc.(%) Test Acc.(%) Dev Acc.(%) Test Acc.(%)

GA Reader 24.61 - 22.79 -

Our Architectures
-w fine-tuned Roberta-large 85.18 - 87.30 -
-w Electra-large 90.80 89.28 91.07 90.48
-w Electra-large + KEGAT 91.87 89.37 91.54 92.01
-w Electra-large + KEGAT-RELU 92.35 90.37 91.89 92.11
-w Electra-large + ED 91.51 90.12 91.65 90.95
-w Electra-large + DNN 91.40 - 91.77 -

Ensemble Models -w Electra-large
+ KEGAT 91.99 - 92.36 -

ED + KEGAT 92.47 - 92.48 -
ED + KEGAT-RELU 92.59 90.47 92.59 93.01

Table 2: Experimental results of ReCAM task.

Subtask1 Subtask2

AVG length 268.8 434.6

Position Dev Acc.(%) Dev Acc.(%)
0-210 90.80 91.07

211-420 89.31 89.65

Table 3: Performance on different contents of passage.

the given passage for this assessment instead of the
whole passage. Specially, in the given dataset, we
take a fixed length of 210 as the content interval
by intercepting it at two different positions, namely
token ID 0 ∼ 210 and token ID 211 ∼ 420. Then
we fine-tune the Electra-large model for each sub-
task using their own training set and compare the
performance of the fine-tuned Electra model on
two different passage intervals. It means that we
have conducted experiments with different passage
contents twice. Table 3 reports the results of our
system on these different passage intervals. In this

table, compared to the experiment that adopts the
passage content with position from 0 to 210, in-
tercepting the one with position from 211 to 420
leads the performance to drop by about 1 ∼ 2%
on these two subtasks. Thus, we conclude that the
positional bias indeed affects model performance
to some extent.

4 Conclusion

We utilize a knowledge-Enhanced Graph Attention
Network architecture with semantic transformation
strategies for machines to better comprehend the
abstract meanings of natural language. It well in-
corporates heterogeneous knowledge and relies on
Graph Attention Networks to learn adequate evi-
dences. The subsequent semantic transformation
enables an effective representation mapping from
concrete objects to abstract concepts. Our system
achieves strong performance on this comprehen-
sion task in terms of both imperceptibility and non-
specificity. We hope this work can shed some lights
on the study of in-depth reading comprehension.
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