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Abstract

Toxic language is often present in online fo-
rums, especially when politics and other po-
larizing topics arise, and can lead to people
becoming discouraged from joining or contin-
uing conversations. In this paper, I use data
consisting of comments with the indices of
toxic text labelled to train an RNN to deter-
mine which parts of the comments make them
toxic, which could aid online moderators. I
compare results using both the original dataset
and an augmented set, as well as GRU versus
LSTM RNN models.

1 Introduction

In this digital era we live in, almost everyone
is communicating online. As of January 2021,
Facebook, YouTube, and WhatsApp each have
over 2 billion users, which means many differing
viewpoints and perspectives being shared (Statista,
2021). With such a huge exchange of ideas, there
is bound to be some toxicity within the comments.
Aside from discouraging users to continue with or
join conversations, toxic comments can also taint
users’ perceptions on news sites (Tenenboim et al.,
2019). Thus it is important to moderate online
conversations without fully censoring users.

While forums typically rely on human moder-
ators, with such vast amounts of data coming in,
it can be difficult for humans to keep up (Nobata
et al., 2016). Advances in deep learning and ma-
chine learning is making text processing a viable
option to replace, or at least assist, human mod-
erators clean up comment sections (Consultants,
2019). Some methods rely on simply classifying
whether a comment is toxic or not, but identifying
what parts of the text are actually toxic can assist
moderators and provide insight into what makes
language toxic. The SemEval task 5 aims to evalu-
ate systems that detect toxic spans wihtin text using

datasets where spans within the comments are la-
belled as toxic, differing from previously released
datasets where whole comments were labelled as
toxic or non-toxic (Pavlopoulos et al., 2021).

This is inherently a natural language processing
task, similar to text classification and sentiment
analysis. This study focuses on training a recurrent
neural network to determine the indices of a given
string that represent the toxic portions of a com-
ment. Recurrent neural networks are classically
used for natural language and sequence labelling
task, and one could view this task as a form of se-
quence labelling. The goal of sequence labelling
is, given a sequence as input, assign a sequence of
labels. Because recurrent neural networks (RNNs)
are flexible in their use of context information and
can recognize sequential patterns, they are an at-
tractive and commonly used choice in sequence
labelling (Graves, 2012). This paper approaches
the task at hand with a sequence labelling method-
ology, applying an RNN and comparing the use
of gated reccurent unit (GRU) and long-short term
memory unit (LSTM) layers in the RNN.

2 Related Work

Aggression in text is complex, often clouded by sar-
casm or including repeat words that cause a model
to incorrectly identify words as toxic. A study by
Vaidya, Mai, and Ning found that comments includ-
ing identities, such as LGBTQ+, Black, Muslim,
and/or Jewish identities, often resulted in false pos-
itives for toxic comments, so this was a bias we
wanted to be aware of in our study (Vaidya et al.,
2020).

Detecting toxic spans is not as common of a task
as toxic comment detection or sentiment analysis.
Many studies surrounding toxic comments have
been completed largely in part due to the avail-
ability of a large corpora of data released by the
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Wikimedia Foundation, as well as several Kaggle
competitions hosted by Google Jigsaw. Other stud-
ies generally take a text classification approach
similar to sentiment analysis, which as previously
mentioned, is not exactly the task at hand (Nobata
et al., 2017).

One of the comparisons made in this research is
between GRU and LSTM recurrent models. Gen-
erally, LSTM units have issues with vanishing gra-
dients when text sequences are too long, so GRUs
are used instead. GRU controls the flow of infor-
mation like the LSTM unit, but without the use
of a memory unit (Chung et al., 2014). Previous
research has shown GRU outperforms LSTM for
all depths in speech recognition. The same study
determined that bi-directional RNN models consis-
tently outperform uni-directional models and found
that models with 5 or more recurrent layers did not
improve the results (Khandelwal et al., 2016). As
a result, in our research, we compare GRU and
LSTM models to find if GRU will consistently out-
perform LSTM in a sequence labelling task, as op-
posed to speech recognition, and use bi-directional
RNN models with fewer recurrent layers, as they
were not shown to have any benefit. This paper
will also compare the results of augmented and
non-augmented datasets to determine if the use of
synonyms will improve the performance after train-
ing.

3 Methodology

3.1 Pre-Processing

Quite a bit of pre-processing was required to pre-
pare this data for training. First, we label the com-
ments using the given indices representing the toxic
spans within the comments. A word labelled with
a ”/1” is toxic and with ”/0” is not toxic. The com-
ments are then run through a function that goes
through the following text preprocessing steps:

1. Text to lowercase

2. Remove URLs

3. Remove numbers

4. Remove extra whitespace

5. Expand contractions (”it’s” to ”it is”, ”they’re”
to ”they are”, etc.)

6. Remove punctuation

7. Tokenize the strings - here one token is one
word in the comment

8. Lemmatize the tokens

9. Remove stop words (list of stop words from
nltk.corpus package)

After this text processing is completed, we use
SAS DLPy1 and SAS SWAT Python2 packages
to continue with the processing. From the SAS
SWAT package, we are able to connect to a server
where we can upload the cleaned text data into a
CASTable (similar to a Pandas DataFrame). Then
the text data needs to be converted to embeddings.
To do this, we use GLOVE 100-dimension trained
word vectors and apply the vectors to the CASTable
containing the comments. Because text data from
human sources is so varied and can often include
unknown words or misspellings, we remove any
comments that could not be converted to numeric
embeddings and place them in a separate table. In-
stead of using these unknown embeddings in train-
ing and scoring using a neural network, we will
make simple predictions based on if any common
toxic words are present in the comments. This is
not ideal but only about 2-5% of data ends up in
this separate table and saves us the trouble of deal-
ing with finding all of the words that could not be
converted to embeddings.

Ideally we would not be removing observations
from the dataset and further experimentation with
different embedding sets could lead to better out-
comes. This does affect the final results slightly
as there is both less data being used in training
and worse prediction accuracy from the comments
not used in the main prediction set contributing to
the final score, but because the percentage of data
actually removed is so low, we decided it would
not make a big enough difference to focus on. The
comments removed from the main set are predicted
using common toxic words gathered from the train-
ing set. Although misspellings are often a cause
for the embeddings failing on a comment, the mis-
spelled word may not have been part of the toxic
span, so the comment could still be predicted using
common toxic words and have a fairly acceptable
accuracy.

After the comments are converted to embed-
dings, we find the maximum column count of a

1https://sassoftware.github.io/python-dlpy/
2https://sassoftware.github.io/python-swat/
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single embedding and pad all other embeddings
to this maximum value. We then create output
columns - one column for each 100-D word vec-
tor - and fill the columns with the toxicity labels
from earlier. The final table used for training and
scoring contains columns for the original comment,
the labelled comment, the cleaned comment, 100
dimension embeddings for each word in the com-
ment and the rest of the columns zero-padded to
the longest value, and toxicity labels for each word
in the comment, also zero-padded to the longest
value.

We can then build an RNN using SAS’
deepLearn actionset3, train the model using the
dlTrain action, and score using the dlScore action.
When training, the embeddings columns are used
as input columns to the model, where each token is
100 columns for each 100 dimension embedding,
and the target columns are the label columns that
contain either a 1 for a toxic word or a 0 for a
non-toxic word, where each token is one column.

3.2 Augmented Data

The goal of using augmented data was to increase
the amount of data being used in training the mod-
els. To do this, we found every comment with only
one toxic word and created up to five new com-
ments with the toxic word replaced with a different
synonym. We were able to do this by using word-
net from the nltk Python package that finds a list
of synonyms for a given word. Figure 1 shows

Figure 1: Original toxic comments

the original comments, with comment 2 being the
example that is augmented, and figure 2 shows
the new comments created using synonyms of the

3https : //go.documentation.sas.com/doc/en/pgmsascdc/9.43.3/casdlpg/cas−
deeplearn− TblOfActions.htm

Figure 2: Augmented toxic comments

word “damn”. By augmenting only comments that
contain a single toxic comment, we are able to in-
crease the size of the data set from 7,939 comments
to 21,822 comments - almost three times as many
comments to be used in training. The idea here
was to increase the size of the training data set to
improve performance.

3.3 GRU vs LSTM

As mentioned in the introduction, we trained a bi-
directional RNN model. After comparing perfor-
mance, we found that a model with more than one
bi-directional RNN layer was not improving the
accuracy of the predictions, so we used a smaller
model with only one bi-directional layer. The input
layer connects to a fully connected layer, which
goes into the bi-directional layer, into another fully
connected layer, and finally to the output layer. Fig-
ure 3 shows the model architecture. We trained our
data on two different models, one with a GRU cell
used in the bi-directional layer and one that uses an
LSTM cell in the bi-directional layer.

4 Experimental Results

In this section, we discuss the results from the
two experiments - GRU vs LSTM models and aug-
mented vs original data used in training. We use
F1 scores to compare the two different models and
types of data sets. The F1 scores, discussed later on,
are a combination of both the predictions from the
trained models and the comments that are predicted
using common toxic words (which will henceforth
be referenced as “guessed comments” for lack of
better terms). The guessed comments do have a
slight effect on the final results which will be de-
scribed in this section
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Figure 3: RNN model architecture showing layer di-
mensions

4.1 Evaluation Metric

Each model’s performance was evaluated using an
F1 score, as described in (Martino et al., 2019). If
the system is represented by Ai, the return set from
the system is St

Ai
, t represents a post or comment,

and G represents the ground truth annotations for
post t, then F1 score of a system is defined as:

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)
(1)

P t (Ai, G) =
|St

Ai
∩ St

G|
St
Ai

(2)

Rt(Ai, G) =
|St

Ai
∪ St

G|
St
Ai

(3)

If St
G = 0, an instance where there are no toxic

spans present, then F t
1(Ai, G) = 1 if no toxic

spans are predicted, and F t
1(Ai, G) = 0 otherwise.

To obtain the final F1 score for a particular system,
the F1 scores are averaged over all posts t.

4.2 Augmented Data

Table 1 shows comparisons between the use of
augmented and non-augmented data when training
both the GRU and LSTM. We can see in the various
hyperparameter settings, the augmented data actu-
ally performs worse than the original data. This
is interesting considering generally the more data
points used, the better the model. It is possible that

the method in which we augmented the data, only
changing one word within a comment, did not help
the model learn any of the connections between the
text but rather memorize more toxic words, many
of which are often repeated.

Table 1 also shows that the learning rate does
not affect the augmented data quite as drastically
as it does the non-augmented data, with the non-
augmented data showing much lower F1 scores
when a lower learning rate is used, such as 0.001.
It may be interesting to further explore if larger
datasets are less affected by changes to the learning
rate. The augmented dataset is almost three times
larger than the original dataset, so it is also much
more time consuming to train. With much longer
training times and worse performance, the original
dataset proves to be the more effective option. Ta-
ble 3 shows that across both dev and test datasets,
results from augmented dataset training were worse
than their non-augmented counterparts.

We also compared results from only comments
with a single toxic word present to find if these
performed better for the augmented data, since
only comments with a single toxic word were aug-
mented. Again, the original dataset outperformed
the augmented data. The differences between the
single toxic word scores and scores when all com-
ments are factored in are also very similar between
augmented and non-augmented data results, show-
ing the augmented data did not make much of a dif-
ference in predicting single toxic word comments.
Table 2 shows these results.

4.3 GRU vs LSTM
After tuning the hyperparameters for both models,
we found that the GRU model performs slightly
better than LSTM across most hyperparameter set-
tings. We were able to get the highest F1 score
using GRU as well. Even between the scores using
augmented data, GRU still performs slightly better
than LSTM. Table 1 shows these results.

4.4 Results and analysis
Table 3 shows F1 scores using the best hyperparam-
eter settings across the four methods - GRU, GRU
trained with augmented data, LSTM, and LSTM
trained with augmented data. The F1 test column
shows scores for the evaluation data given, which
was to be used for submitting a team’s results. Our
team submitted results for each of these methods in
hopes of securing a better spot on the leaderboard,
but ultimately ended up with a very low score, the
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Max
Epochs

Learn
Rate

Mini-batch
Size

GRU GRU Augmented LSTM LSTM
Augmented

10 0.1 5 0.515 0.504 0.514 0.501
10 0.05 5 0.514 0.503 0.499 0.495
10 0.001 5 0.287 0.406 0.324 0.393
10 0.1 10 0.473 0.459 0.463 0.469
50 0.1 5 0.518 0.478 0.512 0.460
20 0.1 5 0.519 0.494 0.504 0.464
20 0.05 5 0.369 0.433 0.396 0.513
20 0.001 5 0.521 0.500 0.505 0.501

Table 1: F1 scores during hyperparameter tuning for GRU and LSTM models with both original and augmented
data

Max
Epochs

Learn
Rate

Mini-Batch
Size

Single Toxic
Original

All Toxic
Original

Single Toxic
Augmented

All Toxic
Augmented

10 0.1 5 0.622 0.515 0.594 0.504
10 0.05 5 0.623 0.514 0.602 0.503
10 0.001 5 0.351 0.287 0.489 0.406
10 0.1 10 0.542 0.473 0.530 0.459
50 0.1 5 0.610 0.518 0.561 0.478
20 0.1 5 0.623 0.600 0.583 0.494
20 0.05 5 0.451 0.369 0.528 0.433
20 0.001 5 0.616 0.521 0.601 0.500

Table 2: F1 scores during hyperparameter tuning comparing performance for only single toxic comments and all
toxic comments using the GRU model

Method F1 Dev F1 Test

GRU 0.519 0.602
GRU Augmented 0.504 0.551

LSTM 0.514 0.600
LSTM Augmented 0.501 0.550

Table 3: Best F1 scores for dev and test sets

reasoning for which is described in the note below.
We were able to later calculate the F1 scores for
the evaluation data when the entire dataset was re-
leased, after the competition ended, and those are
the scores shown in Table 3.

It is interesting to note that the test data outper-
forms the dev data for every method used. This
may be due to some kind of overfitting occurring.
This is peculiar but is also likely due to the eval-
uation data containing fewer guessed comments,
or comments predicted using common toxic words
instead of predicted by the model. Because both
the predicted comments and the guessed comments
are used in calculating the F1 score, the portion

of the entire dataset that is guessed would have an
impact on the final score. The dev set had 2.5%
of guessed comments and the test set had slightly
fewer, with 2% of the entire dataset being com-
prised of guessed comments, which would explain
the better results shown.

One can also see in Table 3 that the GRU model
outperforms the LSTM model, even if just slightly,
for both the original and augmented datasets and
across both dev and test data. Other research has
noted that GRU cells may be better for specificity,
or finding true negatives, and focusing on less
prevalent content, whereas LSTM cells are better
for detecting true positives and focusing on highly
prevalent content. (Gruber and Jockisch, 2020).
Looking into the dev dataset, only 6% of the ob-
servations contain no toxic spans, but this model
is not predicting whether an entire comment con-
tains any toxic spans, it is predicting if each word
is toxic. Out of all of the text, 93% of the words
are non-toxic words, or in this case, words to be
labelled negative for toxicity. A model that can
better predict true negative outcomes would have
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the best performance with this data.

4.5 Note on Official Results Discrepancy
The official results in task 5 for the SemEval confer-
ence show this team to have an F1 score of 0.070.
This score is much lower than the values we are
presenting here because after adding the ground-
truth values for the evaluation data it was found that
the best F1 score we achieved was 0.602, as shown
in Table 3, and the results were submitted to the
competition out of order or formatted incorrectly,
producing a very low F1 score.

5 Conclusion

We experimented with several different RNN mod-
els and ultimately utilized the results from bi-
directional GRU and LSTM models. It was
found that the GRU model slightly outperforms
the LSTM model for this test case. As was found
by Gruber and Jockisch, GRU cells can be better
for detecting true negatives and since 93% of the
words in the training dataset we used were non-
toxic words, it follows that GRU cells may outper-
form LSTM cells in cases where there are more
negative instances than postive in the datasets. It
would be interesting to explore if using both a GRU
cell and an LSTM cell in a model would further
increase performance, with GRU focusing on less
prevalent content and true negatives, and LSTM fo-
cusing on high prevalent content and true positives.

In the exploration of the use of augmented data,
we found that not only did the models trained on
augmented data perform worse than those trained
on the original dataset, but they were also much
slower to train. We compared if the F1 scores for
observations with a single toxic word were higher
for the models trained with augmented data, since
only comments with a single toxic word present
were augmented, but still the original datasets out-
performed the augmented datasets. Because the
augmented data does not improve results, we can
continue to use the original dataset to cut down on
computation time. We also found that the F1 scores
resulting from the augmented data training did not
react as greatly to changes in the learning rates as
the original datasets did, which may be interesting
to explore further.
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