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Abstract

This work describes the participation of the
Skoltech NLP group team (Sk) in the Toxic
Spans Detection task at SemEval-2021. The
goal of the task is to identify the most toxic
fragments of a given sentence, which is a bi-
nary sequence tagging problem. We show that
fine-tuning a RoBERTa model for this prob-
lem is a strong baseline. This baseline can be
further improved by pre-training the RoOBERTa
model on a large dataset labeled for toxicity at
the sentence level. While our solution scored
among the top 20% participating models, it is
only 2 points below the best result. This sug-
gests the viability of our approach.

1 Introduction

Toxicity and offensive content is a major concern
for many platforms on the Internet. Therefore, the
task of toxicity detection has attracted much atten-
tion in the NLP community (Wulczyn et al., 2017;
Hosseini et al., 2017; Dixon et al., 2018). Until
recently, the majority of research on toxicity fo-
cused on classifying entire user messages as toxic
or safe. However, the surge of work on text de-
toxification, i.e., editing of text to keep its content
and remove toxicity (Nogueira dos Santos et al.,
2018; Tran et al., 2020), suggests that localizing
toxicity within a sentence is also useful. If we
know which words of a sentence are toxic, it is
easier to “fix” this sentence by removing or replac-
ing them with non-toxic synonyms. Mathew et al.
(2020) make human labelers annotate the spans
as rationales for classifying a comment as hateful,
offensive, or normal. They show that using such
spans when training a toxicity classifier improves
its accuracy and explainability and reduces unin-
tended bias towards toxicity targets.

This year the SemEval hosts the first competition
on toxic spans detection, namely, SemEval-2021
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Task 5' (Pavlopoulos et al., 2021). It provides
training, development, and test data for English. As
far as we know, it is the first attempt to explicitly
formulate toxicity detection as sequence labeling
instead of classification of sentences.

Multiple NLP tasks recently benefited from
transfer learning — transfer of probability distri-
butions learned on some task to another model
solving a different task. The most common ex-
ample of transfer learning is the use of embeddings
and language models pre-trained on unlabeled data
(e.g. ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019) and its variations, TS5 (Raffel et al.,
2020), etc.) on other tasks (e.g. He et al. (2020);
Wang et al. (2020) inter alia use pre-trained BERT
models to perform tasks from the GLUE bench-
mark (Wang et al., 2018)).

Word-level toxicity classification can be for-
mulated as a sequence labeling task, which also
actively uses the pre-trained models mentioned
above. BERT comprises the versatile information
on words and their context, which allows to suc-
cessfully use it for sequence labeling tasks of dif-
ferent levels: part-of-speech tagging and syntactic
parsing (Koto et al., 2020), named entity recog-
nition (Hakala and Pyysalo, 2019), semantic role
labeling (He et al., 2019), detection of Machine
Translation errors (Moura et al., 2020).

This diversity of applications suggests that word-
level toxicity detection can also benefit from pre-
trained models. Besides that, toxicity itself has
been successfully tackled with BERT-based mod-
els. Research on sentence-level toxicity extensively
used BERT and other pre-trained models. Both
language-specific and multilingual BERT models
were used to fine-tune toxicity classifiers (Leite
et al., 2020; Ozler et al., 2020). This shows that
BERT has information on toxicity.

'https://competitions.codalab.org/
competitions/25623
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Thus, we follow this line of work. Namely, we
fine-tune a RoBERTa model (Liu et al., 2019) to
perform a sequence labeling task. Besides that,
we train a model for sentence classification on the
Jigsaw dataset of toxic comments and use the in-
formation from this model to detect toxicity at the
subsentential level. This helps us overcome the
insufficient data size.

This is in line with previous work, which has
shown that sentence-level labels can be used in
combination with token labels (Rei and Sggaard,
2019) or completely substitute them (Rei and
S@gaard, 2018; Schmaltz, 2019).

In our experiments, we test the hypothesis that
the sentence-level toxicity labeling can be used for
a sequence labeler that recognizes toxic spans in
text. We suggest three ways of incorporating this
data: as a corpus for pre-training, pseudo-labeling,
and for joint training of sentence-level and token-
level toxicity detection models. Our experiments
show that the latter method yields the best result.
Moreover, we show that using sentence-level la-
bels can dramatically improve toxic span prediction
when the dataset with token-level labels is small.

The contributions of this work are the following:

* We successfully use the dataset labeled for
toxicity at the sentence level for token-level
toxicity labeling,

* We propose a model for joint sentence- and
token-level toxicity detection,

* We analyze the performance of our models,
showing their limitations and reveal the ambi-
guities in the data.

2 The task

The training data of the task comprises 7,940 En-
glish comments with character-level annotations of
toxic spans. The labeling was performed manually
by crowd workers.

The spans labeled as toxic often contain rude
words: “Because he’s a moron and a bigot. It’s
not any more complicated than that” (toxic
spans are underlined). Other toxic spans con-
sist of words that become toxic in context: “Sec-
tion 160 should also be amended to include
sexual acts with animals not involving penetra-
tion”. Borders of some toxic spans fall in the mid-
dle of a word; we treat such cases as markup errors.

As a development set, we use the trial dataset
of 690 texts provided by the task organizers. We
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evaluate our final models on the hidden test set of
the task consisting of 2,000 texts.

3 Pre-training for toxic span detection

Here we give the motivation behind our models and
describe their architecture and training setup.

3.1 Motivation

Our intuition is that the toxicity is often lexically-
based, i.e., there are certain words that are consid-
ered offensive and make the whole sentence toxic.
In this case, we expect that as we add extra data
to our toxic span dataset, after some point, the vo-
cabulary of toxic words in it will saturate and stop
increasing. However, Figure 1 shows that the size
of the toxic vocabulary linearly depends on the
dataset size, which suggests that its size is insuf-
ficient for the task. In this case, the model will
often need to label unseen words. To mitigate the
lack of data, we leverage the additional dataset
with toxicity information, namely, the Jigsaw toxic
comments dataset?> which features 140,000 user
utterances labeled as toxic or safe.
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Figure 1: Size of the toxic vocabulary as a function of
the corpus size.

3.2 Transfer learning for spans detection

Our base model is RoBERTa. We fine-tune
roberta-base model on the toxic spans train-
ing set for sequence labeling task (further denoted
as RoBERTa tagger). This model already gives
promising results. We further improve it by provid-
ing it with the additional training signal from the
https://www.kaggle.com/c/jigsaw—

toxic-comment-classification-challenge/
data
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Jigsaw toxic comments dataset. We propose three
ways of incorporating this data.

The first way is pseudo-labeling (Lee et al.,
2013). We apply the RoBERTa tagger to predict
the toxic spans in the Jigsaw dataset. We use these
predictions to further train the model.

Another option is to use the Jigsaw data to fine-
tune RoBERTa with it. We suggest two scenarios.
The first is to fine-tune the model on the Jigsaw
dataset for the sentence classification task, and then
on the toxic spans dataset — this model is referred
to as RoBERTa classifier + tagger. In this case,
the model has different output layers for the two
tasks, and other layers are shared.

Finally, we propose a novel architecture for joint
token- and sentence-level classification, where the
score y for a sentence x = {x1, x9, ..., T, } is com-
puted as the average of word-level scores:

N 1.
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where «, [ and + are trainable parameters, and
o is the logistic function. This model does not
need to be trained on the data with token-level la-
beling but can get token-level toxicity information
from sentence labels. We fine-tune this model both
on Jigsaw and toxic spans datasets. The model is
referred to as tagging classifier.

3.3 Working with spans

To reformulate toxic spans detection as a token
classification problem, we label a token as toxic
if at least one of its characters is toxic. When
projecting the predicted token-level labels back to
the character level, we try two strategies:

1. Consider a token to be toxic if its toxicity
score is higher than the threshold, do not force
the labels of tokens within a word to agree
with each other.

2. Consider a word to be toxic if the aggregated
toxicity score of all its tokens is higher than
the threshold. We try four different aggre-
gation functions: min, max, mean, and the
simplified naive Bayes formula:

[L; i
[Lzi + 11 (1 — )
In both methods, we label a space character as toxic

only if the characters both to the right and to the
left of it are toxic.

(%:

4 Baselines

In this section, we present a set of common base-
line approaches used for sequence tagging, such
as CRF and LSTM with pretrained word embed-
dings. We implement them in order to analyze the
performance of our methods in the context of other
techniques.

Word-based LogReg This is a vocabulary-based
method: we label words as toxic if they appear in
our toxic vocabulary. The vocabulary is created as
follows. We create a set of toxic and safe phrases,
where toxic phrases are toxic spans from our data
and safe phrases are sentences from our data with
removed toxic spans. We then train a binary logistic
regression classifier of toxic and safe phrases using
words as features. The by-product of this classifier
is the list of weights for all words from the data.
We consider words with weights greater than a
threshold as toxic.

Attention-based LogReg Another approach to
represent words is to take their attention weights
from a RoBERTa-based sentence-level toxicity
classifier (we train it on the Jigsaw dataset). We as-
semble attention weights from all RoOBERTa heads
and layers in a single vector of dimension 144.
These vectors are used as features in a logistic re-
gression classifier. This approach is motivated by
the fact that a RoOBERTa model trained to recognize
toxicity puts more emphasis on certain words as-
sociated with sentence-level toxicity. Surprisingly,
this model underperforms the logistic regression
classifier, which uses words as features.

Conditional Random Fields We suggest that
the toxicity level of a word can be context-
dependent, so we also experiment with sequence la-
beling models. We try Conditional Random Fields
(CRF) (Lafferty et al., 2001) model. It uses the
following features: the word itself, the word’s part
of speech, whether the word is a digit and con-
sists of uppercase letters. Each word is represented
with these features of the current, previous, and
next words. The model performs closely to the
attention-based classifier.

Sequence labeling with LSTM Finally, we ex-
periment with the LSTM architecture (Hochreiter
and Schmidhuber, 1997). We implement a Bi-
LSTM network and also train an LSTM tagger
from the AllenNLP library.> We do not use any pre-

Shttps://github.com/allenai/allennlp
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trained embeddings in the Bi-LSTM model and use
two versions of the AllenNLP LSTM: without pre-
trained embeddings and with GloVe embeddings
(Pennington et al., 2014).

5 Evaluation

5.1 Experimental Setting

For each transfer learning model, we use two-
stage fine-tuning. We first train only the output
layers of the models with the learning rate of
1073, and then the whole models with the learn-
ing rate of 1075, In both cases, we use linear
learning rate warm-up for 3000 steps. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
and the batch size of 8, and early stopping to de-
termine the number of training steps. We use the
transformers* library for training.

For all the models which use the additional data
from Jigsaw, we apply this scheme twice. The
pseudo-label model is first fine-tuned on the origi-
nal toxic spans dataset, and then on the self-labeled
Jigsaw dataset, whereas the ROBERTa classifier
+ tagger and tagging classifier are first fine-tuned
on the Jigsaw dataset (as classifiers), and then on
the toxic spans dataset (as taggers).

5.2 Results

The scores of our models and the competing sys-
tems are shown in Table 1. Our best submitted sys-
tem (tagging classifier) had the F;-score of 0.681
on the test set, while the best team over the whole
task got 0.708. This brings our team to the top
20% of the leaderboard. The pseudo-labeling ap-
proach was only marginally worse, scoring 0.674.
Simply fine-tuning RoBERTa only on the tagging
problem scored 0.668. On the other hand, none of
our baselines could approach this result. Our best
baseline is the word-based LogReg classifier. Ap-
parently, other models fail to learn even the toxic
vocabulary because their word representations are
not informative enough.

While our best-performing model is only 18th
best out of 92 participating systems, the results of
the top systems are fairly close to ours (the dif-
ference is less than 2.5%). The variation of deep
learning models often falls in this margin (Reimers
and Gurevych, 2017). For our models, the sample
standard deviation of the F;-score is about 0.9%, so
the difference between their performance is likely
to be statistically insignificant.

*nttps://huggingface.co/transformers

Model F; score

Top-5 participants
HITSZ-HLT 0.708
S-NLP 0.707
hitmi&t 0.698
L 0.698
YNU-HPCC 0.696

Our models
tagging classifier 0.683
pseudo-labeling 0.682
RoBERTa tagger 0.678
RoBERTa classifier + tagger 0.670
Our baselines
Word-based LogReg 0.556
LSTM basic embeddings 0.538
Bi-LSTM basic embeddings 0.530
Attention-based Logreg 0.524
CRF 0.523
LSTM Glove embeddings 0.497
Table 1: Performance of our models (baselines and

RoBERTa-based models) and their comparison with
the 5 best-performing participants. Models within each
section are sorted from best to worst.

An important hyper-parameter of the models is
the probability threshold. It is usually fine-tuned
on the development set. However, the development
set provided for the task is too small. The thresh-
old fine-tuned on it performs even worse than the
standard threshold of 0.5. Thus, during the evalua-
tion period of the competition, we tried submitting
models with different threshold values. While this
is not a completely fair practice because we indi-
rectly used the test for tuning a model parameter,
we suspect that many teams were overfitting to the
test set in a similar way. We suggest that in order to
make the evaluation fair, the results of the models
on the final test set should not be available before
the end of the competition, even in the indirect way
(i.e., in the form of teams ranking without scores
as it was done in this competition).

The best results which we report here were
achieved with the threshold of 0.6 (see Table 1).
We compare these results with those of the same
models with the default threshold of 0.5 in Table 3.
It shows that these scores are lower by up to 1%.

Another hyper-parameter of our models is
the method of converting token-level labels to
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F; score

0.685

Aggregation Type

No aggregation

Aggregation of word-level scores

max token score 0.673
min token score 0.641
average token scores 0.670
naive Bayes 0.653

Table 2: Scores of the tagging classifier model with
different token aggregation methods (computed on the
development set).

threshold
Model 0.5 0.6
tagging classifier 0.681 0.683
pseudo-labeling 0.674 0.682
RoBERTa tagger 0.668 0.678
RoBERTa classifier + tagger | 0.664 0.670

Table 3: F;-scores of models with different probability
thresholds.

character-level labels. We compare different meth-
ods on the development set (see Table 2). Sur-
prisingly, the prediction of labels for each token
individually with no aggregation works better than
assigning labels to the whole words. This might
happen because the attempts to decode words con-
sistently lead to the propagation of wrongly pre-
dicted labels. Following this observation, we use
the no-aggregation strategy for all models.

5.3 Efficiency of pre-training

To understand the effect of the use of additional
sentence-labeled data, we compare the perfor-
mance of ROBERTa tagger (a model which uses
only the toxic span dataset) and tagging classi-
fier (a model which uses sentence-labeled Jigsaw
data in addition to the toxic span dataset) models
trained on subsets of the data of different sizes. We
would like to see if the usefulness of additional
sentence-labeled data reduces as we get more data
with token-level labeling.

Figure 2 plots the F;-scores of the two models
trained on datasets of sizes between 10 and 7,940
sentences. It shows that when the training set size is
between 10 and 1,000, pre-training with sentence-
level annotations gives a considerable boost in per-
formance. However, the effect of this pre-training
becomes insignificant after the size of the data with
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word-level labeling reaches around 3,000. Thus,
this pre-training strategy is efficient only in cases
when the size of the data with word-level labeling
is very small.
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Figure 2: Learning curves for two transfer learn-

ing models, with (tagging classifier) and without
(RoBERTa tagger) additional sentence-level data.

5.4 Error analysis

We analyze the errors of our best submitted system
(tagging classifier) by comparing its predictions
with the ground truth labels released after the end
of the competition.

The vocabulary of false negative spans (527
unique tokens) is more diverse than that of false
positives (275 unique tokens), while the number of
false positives and false negatives in the test set is
comparable (860 vs 813 tokens). It may indicate
that the model is cautious and prefers to highlight
only the hypotheses which have high confidence,
while human annotators are more creative in their
analysis. We give some examples of correct and
incorrect labelings by our model in Table 4.

The most frequent false positive words charac-
terize incompetence or lack of mental capacities:
stupid, idiot, ignorant, moron, dumb, etc. Other
frequent false positives are derogatory (pathetic,
ridiculous, ass, garbage, loser, etc.), denounce par-
ticular misdeeds (liar, troll, racist, hypocrite, etc.),
or express general negativity (damn, fuck, etc.). It
is not obvious why human annotators label them
as toxic in some cases, and as non-toxic in other
cases. We suspect that inter-annotator agreement
on such words is not very high.

The most frequent false negative words are func-
tion words: and, the, are, a, you etc. It happens
because annotators sometimes label the whole text



Correct labeling

See a shrink you pathetic troll.

They’re not patriots. They’re vandals, thieves, and bullies.
Trudeau and Morneau are fiscally and economically inept and incompetent.

Incorrect labeling

That’s right. They are not normal.

And I am starting from the premise that they are

ABNORMAL. Proceed wth the typical racist, bigot, sexist rubbish. Thanks!
ADN is endorsing, without officially endorsing. Bunch of cowards!!!

Rabidly anti-Canadian troll.

Table 4: Examples of ground truth (underlined) and predicted (in bold) toxic spans

Top 20 false positive words

Top 20 false negative words

stupid ass
idiot liar
ignorant garbage
moron loser
dumb fools
idiots troll
fool crap
pathetic damn
stupidity fuck
ridiculous clown

and of

the have

are loser

a crap
ignorant all

racist chemical
you that

in not

is bunch

to dumb

Table 5: The most common false positive and false negative words

or a large chunk of it as toxic. The more mean-
ingful false negatives belong to the same classes
as the false positives (ignorant, racist, loser, etc.).
The most common false positive and false negative
words are listed in Table 5.

In general, the performance on this task might
be limited to 0.7 F;-score (the quality of the best-
performing model) by the ambiguity of the annota-
tions. In future work, it

6 Conclusions

We present a number of models for the detection
of toxic spans within toxic sentences. All models
are RoBERTa language models fine-tuned on the
data with character-level labeling of toxic spans.
In addition to that, we perform fine-tuning on an
additional dataset with sentence-level toxicity la-
beling. This yields an improvement. However, our
analysis shows that the effect of such pre-training
is marginal when the main dataset size exceeds
1,000 samples. Therefore, substantial improvement
is observed for small dataset sizes. Nevertheless,
the models we propose can be useful in extremely

low-resource scenarios.

Our model performs closely to the winning sys-
tems. We suggest that the differences between the
20 top models might be attributed to the variation of
deep learning models and overfitting the test set. In
addition to that, the error analysis shows that some
errors in our model might be due to inconsistencies
in the test data.

We release the code required to reproduce our
experiments online.’
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