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Abstract
In this paper, we present our systems submitted
to SemEval-2021 Task 1 on lexical complexity
prediction (Shardlow et al., 2021a). The aim
of this shared task was to create systems able
to predict the lexical complexity of word to-
kens and bigram multiword expressions within
a given sentence context, a continuous value in-
dicating the difficulty in understanding a respec-
tive utterance. Our approach relies on gradient
boosted regression tree ensembles fitted using a
heterogeneous feature set combining linguistic
features, static and contextualized word embed-
dings, psycholinguistic norm lexica, WordNet,
word- and character bigram frequencies and
inclusion in word lists to create a model able
to assign a word or multiword expression a
context-dependent complexity score. We can
show that especially contextualised string em-
beddings (Akbik et al., 2018) can help with
predicting lexical complexity.

1 Introduction

In this paper, we present our contribution to
SemEval-2021 Shared Task 1 (Shardlow et al.,
2021a), a shared task focused on the topic of lex-
ical complexity prediction. The term lexical com-
plexity prediction describes the task of assigning
a word or multiword expression a continuous or
discrete score signifying its likeliness of being un-
derstood well within a given context, especially
by a non-native speaker. Solving this task could
benefit second-language learners and non-native
speakers in various ways. One could imagine using
such scores to extract vocabulary lists appropri-
ate for a learner level from corpora and literature
(Alfter and Volodina, 2018), to judge if a given
piece of literature fits a learner’s skill or to assist
authors of textbooks in finding a level of textual
difficulty appropriate for a target audience.

Predicting these scores can be formulated as a
regression problem. Our approach to solve this

problem relies on gradient-boosted regression tree
ensembles which we fit on a heterogeneous feature
set including different word embedding models,
linguistic features, WordNet features, psycholin-
guistic lexica, corpus-based word frequencies and
word lists. We assumed that lexical complexity
could be correlated with a wide range of features,
neural ones as much as distributional or psycholin-
guistic ones, which is why we chose to use an
ensemble-based method in the form of gradient
boosting (Mason et al., 1999) for our system as it
usually performs best for tasks where such a fea-
ture set is needed compared to solely neural models
which need dense, homogeneous input data to per-
form well.

Out of all participants, our systems were ranked
15/54 in the single word- and 19/37 in the multi-
word category during the official shared task eval-
uations according to Pearson’s correlation coeffi-
cient. Our key discovery is that while features from
nearly all categories provided by us were used by
our systems, contextual string embeddings (Akbik
et al., 2018) were the by far most important cate-
gory of features to determine lexical complexity
for both systems. The code and our full results
can be found at https://github.com/SGombert/
tudacclsemeval.

2 Background

2.1 Task Setup

For the shared task, CompLex corpus (Shardlow
et al., 2020, 2021b) was used as data set. This En-
glish corpus consists of sentences extracted from
the World English Bible of the multilingual cor-
pus consisting of bible translations published by
Christodoulopoulos and Steedman (2015), the En-
glish version of Europarl (Koehn, 2005), a corpus
containing various texts concerned with European
policy, and CRAFT (Bada et al., 2012), a corpus

https://github.com/SGombert/tudacclsemeval
https://github.com/SGombert/tudacclsemeval
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consisting of biomedical articles.
CompLex is divided into two sub-corpora, one

dealing with the complexity of single words and
the other one with the complexity of bigram multi-
word expressions. Accordingly, the shared task was
divided into two sub-tasks, one dedicated to each
sub-corpus. Within both CompLex sub-corpora,
the sentences are organised into quadruples consist-
ing of a given sentence, a reference to its original
corpus, a selected word, respectively a multiword
expression from this sentence, and a continuous
complexity score denoting the difficulty of this se-
lected word or bigram which is to be predicted by
systems submitted to the shared task. For the task,
both subcorpora were partitioned into training, test
and trial sets.

The scores given for simple words, respectively
multiword expressions, were derived from letting
annotators subjectively judge the difficulty of un-
derstanding words respectively word bigrams on a
Likert scale ranging from 1 to 5 with 1 indicating
a very simple and 5 a very complex word. The
assigned scores were then projected onto values be-
tween 0 and 1 and averaged between all annotators
to calculate the final scores.

2.2 Related Work

The first approaches to the systematic prediction
of lexical complexity were made during SemEval-
2016 Task 11 (Paetzold and Specia, 2016). Here,
the problem of determining the complexity of a
word was formulated as a classification task de-
signed to determine whether a word could be con-
sidered as being complex or not. The data set used
for this task was created by presenting 20 non-
native speakers with sentences and letting them
judge whether the words contained within these
sentences were rated as complex or not. From these
judgements, two different data sets were derived.
In the first one, a word was considered complex
if at least one of the annotators had judged it as
such, and in the second one, each word was given
20 different labels, one per annotator. The most
important findings for this shared task were that
ensemble methods performed best in predicting
lexical complexity with word frequency being the
best indicator.

In 2018, a second shared task was conducted on
the same topic as described in Yimam et al. (2018).
This shared task focused on predicting lexical com-
plexity for English, German, Spanish and a multi-

lingual data set with a French test set. The data for
this was acquired by presenting annotators on Ama-
zon Mechanical Turk with paragraphs of text and
letting them mark words which according to their
perception could hinder the same paragraph from
being understood by a less proficient reader. The
findings of this shared task confirmed the finding
of the previous one that using ensemble methods
yield best results for complex word identification
with a system submitted by Gooding and Kochmar
(2018) relying on decision tree ensembles.

3 System Overview

Our systems rely on gradient-boosted regression
tree ensembles (Mason et al., 1999) for predicting
lexical complexity scores. We trained one model to
predict single word lexical complexity scores and
another one to predict bigram multiword expression
complexity scores. Our models are based on the
implementation of gradient boosting provided by
CatBoost1 (Dorogush et al., 2018; Prokhorenkova
et al., 2018). We set the growing policy to loss-
guide, the L2 leaf regularisation to 15, the learning
rate to 0.01, tree depth to 6 and the maximum num-
ber of leaves to 15. Additionally, we set the number
of maximum iterations to 5000 and then used the
trial set to perform early stopping during training
in order to determine the exact number of required
iterations.

The motivation behind using this algorithm was
its general ability to perform well on heterogeneous
and sparse feature sets which allowed us to mix
regular linguistic features, WordNet features, word
embeddings, psycho-linguistic norm lexica, corpus-
based word frequencies and selected word lists as
all of these were features we assumed to possibly
correlate with lexical complexity. Moreover, the re-
portings of Paetzold and Specia (2016) and Yimam
et al. (2018) that ensemble-based learners perform
best for complex word identification contributed to
this decision, as well. While the problem presented
in their paper is formulated as a binary classifica-
tion task using different data sets, we wanted to test
if their findings would still translate to a regression
task on CompLex.

3.1 Feature Engineering

The following paragraphs describe the features we
used to create the feature vectors used to represent
words. In case of our system dealing with bigram

1https://catboost.ai/

https://catboost.ai/
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multiword expressions, we calculated such a vector
for each of both words and then concatenated them
to acquire the final input vectors. Thus, the exact
number of input features was 7424 for our system
dealing with single words and 14848 for our system
dealing with multiword expressions.

Syntactic features: This category of features in-
cludes XPOS-, UPOS-, dependency- and named
entity tags as well as universal features2 inferred
using the English Stanza3 (Qi et al., 2020) model
fit to the version of the English Web Treebank fol-
lowing the Universal Dependencies formalism (Sil-
veira et al., 2014). In addition to the tags assigned
to the word(s) whose score was to be predicted,
we included the XPOS- and UPOS tags of the two
neighbouring words to the left and to the right as
well as the dependency tags of the siblings, direct
children and the parent of the word(s) within the
dependency structure of a given sentence. All of
these features are encoded as one-, respectively
n-hot vectors using the LabelBinarizer and Mul-
tiLabelBinarizer classes provided by Scikit-learn
(Pedregosa et al., 2011).

WordNet features: Here, we included the num-
bers of hypernyms, root hypernyms, hyponyms,
member holonyms, part meronyms and member
meronyms of the respective word(s) as well as
the number of given examples and the length of
the shortest hypernym path from WordNet (Miller,
1995). In cases where multiple synsets were given
for a word, we calculated the respective means and
in cases where a given word was not included in
the resource, we set all respective feature values to
0. We accessed WordNet using NLTK (Bird et al.,
2009). The main intuition behind using this re-
source was that the length of the shortest hypernym
path and the count for the different lexico-semantic
relations could be a good indicator for lexical com-
plexity.

Word embeddings: We used multiple static and
contextual word embedding models for our fea-
ture set. This includes the transformer-based
(Devlin et al., 2019) BiomedNLP-PubMedBERT-
base-uncased-abstract (Gu et al., 2020), distilgpt24

(Radford et al., 2018) and distilbert-base-uncased
(Sanh et al., 2019), the contextual string embed-

2https://universaldependencies.org/u/
feat/all.html

3https://stanfordnlp.github.io/stanza/
4https://huggingface.co/distilgpt2

ding models mix-forward and mix-backward5 (Ak-
bik et al., 2018), and the static GloVe6 (Pennington
et al., 2014) and English fastText7 (Bojanowski
et al., 2017) embeddings.

This collection of embeddings was derived from
previous experiments on the CompLex corpus
where we tried to fine-tune a purely neural model
using the approach of stacking different embedding
models in combination with an attached predic-
tion head central to flairNLP8 (Akbik et al., 2019).
More precisely, in the setup we chose, the outputs
of all language models were fed to a feed-forward
layer responsible for calculating the final complex-
ity scores. This network was then trained for 5
epochs with a learning rate of 0.000001, mean
squared error as loss function and Adam (Kingma
and Ba, 2015) as optimizer on the training set part
of CompLex. During this training, fine-tuning was
active for all transformer-based language models so
that their weights were adjusted during the process
and scalar mixing (Liu et al., 2019) was used for
the transformer-based language models as it was
not foreseeable which layers of the transformer
models would influence results the most.

This model achieved a Pearson’s correlation co-
efficient score of 0.7103 when evaluated on the
trial set. While we deemed this an okay result,
we decided to stick with gradient boosting for our
final systems as early experiments with this algo-
rithm yielded results superior to the purely neural
approach when evaluated on the same set. As we
switched to using gradient boosting for our final
systems, we decided to use the fine-tuned variants
of the transformer embedding models as using them
led to small improvements when testing our models
on the shared task trial sets compared to using the
non-fine-tuned variants.

Psycholinguistic norm lexica: Our feature set
includes two psycholinguistic norm lexica. The
first one is described in Warriner et al. (2013) and
scores words with empirical ratings for pleasant-
ness, arousal and dominance using the SAM score
(Bradley and Lang, 1994). These ratings were ac-
quired from annotators on the Amazon Mechanical
Turk platform. The second lexicon is described in

5https://github.com/flairNLP/flair/
blob/master/resources/docs/embeddings/
FLAIR_EMBEDDINGS.md

6https://nlp.stanford.edu/projects/
glove/

7https://fasttext.cc/
8https://github.com/flairNLP/flair

https://universaldependencies.org/u/feat/all.html
https://universaldependencies.org/u/feat/all.html
https://stanfordnlp.github.io/stanza/
https://huggingface.co/distilgpt2
https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/FLAIR_EMBEDDINGS.md
https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/FLAIR_EMBEDDINGS.md
https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/FLAIR_EMBEDDINGS.md
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Malandrakis and Narayanan (2015) and includes
ratings for arousal, dominance, valence, pleasant-
ness, concreteness, imagability, age of acquisition,
familarity, pronouncability, context availability
and gender ladenness. The ratings within this lexi-
con were derived algorithmically from smaller lex-
icons using linear combinations and semantic simi-
larity scores to approximate the ratings for words
not included in the source lexica. In both cases,
the inclusion of these features was mainly moti-
vated by our general intuition that the perceived
complexity of words could be linked to different
psycholinguistic variables.

Word frequencies: We utilised three resources
containing corpus-based word respectively char-
acter bigram frequencies. The first of these data
sets was the frequency list extracted from the SUB-
TLEXus corpus (Brysbaert and New, 2009) con-
sisting of various movie subtitles from which we
used the log-normalised term frequency and the
log-normalised document frequency as features.
Besides SUBTLEXus, we utilised the character bi-
gram frequencies from Norvig (2013) which were
extracted from the Google Books Corpus. Here,
to represent a word, we calculated the mean of all
frequencies of the bigrams consituting the same
and used this as feature. In the case of both sets,
our intuition was that lower frequency would likely
function as a proxy for complexity. The third set
we used was EFLLex (Dürlich and François, 2018)
which lists the frequencies of words within several
pieces of English literature appropriate for different
CEFR9 levels. We included this set as we deemed
that CEFR as a framework for rating language com-
petence could also function as an according proxy.

Word Lists: We used two different word lists as
features. The first one is Ogden’s Basic English
Vocabulary10, a list of simple words used for writ-
ing simple English as described in Ogden (1932).
Here, our idea was that this could help to identify
simple words within CompLex. The other one was
the Academic Word List as described in Coxhead
(2011), a structured lexicon of terms used primar-
ily in academic discourse which we believed to
contain more complex words. In both cases, we
encoded the inclusion of a word within a respective
word list binarily.

9https://tracktest.eu/
english-levels-cefr/

10http://ogden.basic-english.org/

Metric System Rank Best Res.
Pearson 0.7618 15/54 0.7886
Spearman 0.7164 26/54 0.7425
MAE 0.0643 20/54 0.0609
MSE 0.0067 9/54 0.0061
R2 0.5846 10/54 0.6210

Table 1: Results achieved by our system dealing with
single word complexity. Best Results refer to the best
score achieved within each category by a competing
system.

Metric System Rank Best Res.
Pearson 0.8190 19/37 0.8612
Spearman 0.8091 19/37 0.8548
MAE 0.0711 14/37 0.0616
MSE 0.0080 12/37 0.0063
R2 0.6677 13/37 0.7389

Table 2: Results achieved by our system dealing with
multiword expression complexity. Best Results refer
to the best score achieved within each category by a
competing system.

4 Results

Throughout the shared task, the systems were eval-
uated with regard to Pearson’s correlation coef-
ficient, Spearman’s rank correlation coefficient,
mean average error, mean squared error and R2
with Pearson’s correlation coefficient determining
the main ranking. According to this, our systems
achieved the 15th and 19th rank respectively. Ta-
ble 1 shows the results achieved by our system
dealing with single words and Table 2 the results
achieved by our system dealing with multiword ex-
pressions. The results show that our systems, while
only achieving upper mid-table results on average,
come close to the best systems performance-wise
which speaks for our approach. Further hyperpa-
rameter tuning and the addition of more features
could likely close this gap. The full results for all
submitted systems are presented in Shardlow et al.
(2021a).

4.1 Most Important Features

To determine which features were used by our mod-
els to predict lexical complexity, we rely on the
functionality provided by CatBoost which scores
each feature for its influence on a given final pre-
diction. This is achieved by changing a respective
feature values and observing the resulting change

https://tracktest.eu/english-levels-cefr/
https://tracktest.eu/english-levels-cefr/
http://ogden.basic-english.org/
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Rank Feature Importance
1 flair-mix-b. 25.10
2 flair-mix-b. 11.79
3 flair-mix-b. 7.03
4 flair-mix-f. 4.09
5 flair-mix-f. 2.98
6 flair-mix-b. 1.33
7 flair-mix-f. 1.20
8 distilbert-b.-u. 1.19
9 BiomedNLP 1.12
10 GloVe 1.03

Table 3: The 10 most important features observed for
our system dealing with single word complexity and
their categories. Each entry refers to a single dimension
of the feature vector.

in the model prediction (see 11 for further infor-
mation on the exact method). The outputs of this
method are normalised so that the sum of the im-
portance values of all features equals 100. Feature
importance was calculated using the evaluation set
of CompLex.

Inspecting the results of these calculations, we
noticed that our systems did not use the charac-
ter bigram frequencies derived from the Google
Books Corpus, nor the frequencies from EFLLex
or the word list inclusion features. While features
from all other categories were utilised, the most
dominant features by far are contained in the word
embedding category. Within this category, the most
dominant features for both models came from the
flair-mix-backward and flair-mix-forward models
(see Tables 3 and 4). A few single dimension from
the embeddings provided by flair-mix-backward
seem to play the major role here.

In the case of our model dealing with multiword
expressions, the ten most important features all
stem from the flair-mix-backward embedding of
the second word. This could be explained by the
fact that most multiword expressions within the
CompLex corpus follow the structure of a semantic
head in combination with a modifier as most of
them are either multi token compounds or single
token nouns modified by adjectives. It is intuitive
from a linguistic point of view that in such cases,
the semantic head, which comes as second element,
should play the dominant semantic role resulting
in it being more influential in the overall results.

11https://catboost.ai/docs/concepts/
fstr.html

Rank Feature Importance
1 flair-mix-b. (2nd w.) 9.28
2 flair-mix-b. (2nd w.) 7.24
3 flair-mix-b. (2nd w.) 6.09
4 flair-mix-b. (2nd w.) 3.80
5 flair-mix-b. (2nd w.) 3.60
6 flair-mix-b. (2nd w.) 3.17
7 flair-mix-b. (2nd w.) 2.44
8 flair-mix-b. (2nd w.) 1.88
9 flair-mix-b. (2nd w.) 1.34
10 flair-mix-b. (2nd w.) 1.08

Table 4: The 10 most important features observed for
our system dealing with multiword expression complex-
ity and their categories. Each entry refers to a single
dimension of the feature vector.

While the exact reason for the strong influence
of the contextualised string embeddings is hard to
determine due to the fact that embeddings lack the
property of being easily interpretable, we assume
that the dominant role they play for the results
could be determined by them being calculated on
the character level (Akbik et al., 2018) instead of
the level of fixed words or subword units such as
morphemes. As a consequence, such models use
fewer input dimensions and each of the dimensions
present is in turn involved in the encoding of more
different words. This links each input dimension
also to a larger variety of latently encoded distribu-
tional knowledge which could then contain certain
regularities strongly correlated with lexical com-
plexity. However, without further research, this
currently remains pure speculation.

4.2 Predictions vs. Ground Truth

In order to compare the predicted values of our
models to the ground truth data, we scatterplotted
the relationship between ground truth labels and
the scores predicted by our systems (see Figures
1 and 2) using the CompLex evaluation set. It can
be observed that both systems, especially the one
dealing with single word complexity, show the ten-
dency to assign slightly higher scores than given
in the ground truth for simple words and slightly
lower scores for complex words. The system deal-
ing with multiword expressions does not assign
any value below 0.2 at all and the one dealing with
single word complexity rarely does so. This indi-
cates that our feature set does not contain features
which could help our models to identify very sim-
ple words.

https://catboost.ai/docs/concepts/fstr.html
https://catboost.ai/docs/concepts/fstr.html
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Figure 1: Scatterplot visualising the relationship be-
tween the ground truth and the predictions of our model
for single word complexity. X: ground truth Y: predic-
tion

5 Conclusion

We presented both our systems submitted to
SemEval-2021 Task 1 combining a heterogeneous
feature set with gradient boosting as regression
algorithm. Our systems ware ranked 15/54 and
19/37 during shared task evaluations according to
Pearson’s correlation coefficient. However, the re-
sults achieved by our systems were still close to
the best results, especially in the case of the sys-
tem dealing with single word complexity. The type
of feature playing the most important role for our
models are contextual string embeddings as they
influenced the outcome the most. We attribute this
to a relationship between lexical complexity and
the distribution of characters throughout words and
sentences, but this needs further clarification which
could be the objective of future work. Moreover,
our systems rarely assign scores below 0.2. It must
be explored further if there are features which could
improve our systems in this respect. In summary,
we can report that ensemble methods turned out to
be fruitful when applied to CompLex.
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