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Abstract

This paper presents our systems for the three
Subtasks of SemEval Task4: Reading Compre-
hension of Abstract Meaning (ReCAM). We
explain the algorithms used to learn our mod-
els and the process of tuning the algorithms
and selecting the best model. Inspired by the
similarity of the ReCAM task and the lan-
guage pre-training, we propose a simple yet ef-
fective technology, namely, negative augmen-
tation with language model. Evaluation results
demonstrate the effectiveness of our proposed
approach. Our models achieve the 4th rank on
both official test sets of Subtask 1 and Subtask
2 with an accuracy of 87.9% and an accuracy
of 92.8%, respectively1. We further conduct
comprehensive model analysis and observe in-
teresting error cases, which may promote fu-
ture researches.

1 Introduction

Past decades have witnessed the huge progress of
representation learning in Natural Language Pro-
cessing (NLP). With pre-trained language models,
machine reading comprehension (MRC) models
can extract answers from given documents and
even yield better performance than humans on
benchmark datasets such as Squad (Rajpurkar et al.,
2016). However, these successes sometimes lead
to the hype in which these models are being de-
scribed as “understanding” language or capturing
“meaning” (Bender and Koller, 2020). Note that the
intention of MRC is letting the systems read a text
like human beings, extracting text information and
understanding the meaning of a text then answering
questions, which means the systems can not only
conclude the semantic of the text but also compre-
hend the abstract concepts under the constraint of

∗Equal contribution and shared co-first authorship.
1Our implementation is publicly available at https://

github.com/zjunlp/SemEval2021Task4

general knowledge regarding the world (Wang and
Jiang, 2016). Nevertheless, little works as well as
benchmarks focus on this direction.

SemEval 2021 Task4 (Zheng et al., 2021) is an
MRC task that focuses on evaluating the model’s
ability to understand abstract words. Reading
Comprehension of Abstract Meaning (ReCAM)
task is divided into three Subtasks including Sub-
task 1: ReCAM-Imperceptibility, Subtask 2:
ReCAM-Nonspecificity and Subtask 3: ReCAM-
Intersection. Unlike previous MRC datasets
such as CNN/Daily Mail (Hermann et al., 2015),
SQuAD (Rajpurkar et al., 2018), and CoQA (Reddy
et al., 2019) that request computers to predict con-
crete concepts, e.g. named entities. This task chal-
lenges the model’s ability to fill the abstract words
removed from human-written summaries based on
the English context.

Note that this task’s input format is similar to
the MLM pre-training task of BERT (Devlin et al.,
2019), which aims to predict the mask tokens. Pre-
trained language models (PLMs) such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2020), DeBERTa (He et al.,
2021) have achieved success on MRC tasks. In-
spired by this, we introduce a simple yet effec-
tive method, namely, Negative Augmentation with
Language model (NAL) in SemEval 2021 Task4.
Specifically, we augment the answer distribution
with an additional negative candidate from the
mask language model’s prediction. Previous work
(Petroni et al., 2019; Zhou et al., 2020) indicates
that the pre-trained language model has already
captured much world knowledge. Thus, we argue
that knowledge can help guild the model training
and identify those ambiguous abstract meanings.
Further, we introduce other technologies such as
label smoothing, domain-adaptive pre-training in
our system. We describe the detailed approaches
used for the Subtasks in Section 3.

https://github.com/zjunlp/SemEval2021Task4
https://github.com/zjunlp/SemEval2021Task4
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We conduct comprehensive experiments in Sec-
tion 3, and we achieve the 4th system for Subtask
1: ReCAM-Imperceptibility and the 4th system for
Subtask 2: ReCAM-Nonspecificity in the leader-
board. In our experiments, we observe that PLMs
without fine-tuning can easily get 60+% accuracy
on both Subtask 1 and Subtask 2, demonstrating
that pre-trained language models already capture
some abstract meanings. We further find that our
negative augmentation with language model can
improve the performance with 2.6% in Subtask 1
and 4.6% in Subtask 2. Finally, we conduct error
analysis to promote future researches.

2 Background

Machine reading comprehension (MRC) has re-
ceived increasing attention recently, which is a chal-
lenging task. According to the type of the answer,
reading comprehension tasks can be divided into
four categories (Chen, 2018): 1) Cloze-style: The
question contains a ”@placeholder,” and the sys-
tem must choose a word or entity from the set of
candidate answers to fill in the ”@placeholder” to
make the sentence complete. 2) Multiple choice: In
this type of task, Choosing a suitable answer from
K sets of given answers. This answer can be one
word or a sentence. 3) Span prediction: This kind
of task is also called (Extractive question answer-
ing), which requires the system to extract a suitable
range of text fragments from a given original text
based on the question as to the answer. 4) Free-
form answer: This task allows the answer to be
any type of text, which is necessary to mine deep-
level contextual semantic information according
to a given question and a collection of candidate
documents, and even combine multiple articles to
give the best answer.

In SemEval 2021 Task4, it requires the system
to have a strong ability of reading comprehension
not only because the task is the cloze-style format
as mentioned above but also the abstract words
in answers. There are two definitions of abstract
words: imperceptibility and nonspecificity. Con-
crete words refer to things, events, and proper-
ties that we can perceive directly with our senses
(Spreen and Schulz, 1966; Turney et al., 2011).
Compared to concrete words like ”trees” and ”red,”
abstract words for imperceptibility are created by
humans instead of pointing the things in the natural
world. For example, as shown in Table 1, ”want”
and ”achieve” means a person’s attitude towards

P: Briton Davies won F42 shot put gold with
a Games record at Rio 2016, but was un-
able to defend his 2012 discus title as it did
not feature in Brazil. ”I don’t normally say
what I’m going for,” said the Welshman, 25.
”But this time I’m definitely going for the two
golds in both disciplines and nothing will be
better than being in front of a home crowd.”
...

Q: Paralympic champion Aled Sion Davies
@placeholder two gold medals at the 2017
World Para Athletics Championships in Lon-
don.

A: (A) suffered (B) promoted (C) remains (D)
wants (E) achieved

P: ... Low vitamin D levels can lead to brittle
bones and rickets in children. The figures
from the HSCNI show a dramatic rise in Vi-
tamin D prescriptions over the last 10 years:
The data does not include Vitamin D bought
over the counter...

Q: Rickets does not have the ring of a 21st
Century problem - it sounds more like the
@placeholder of a bygone era .

A: (A) horror (B) size (C) fate (D) tale (E)
death

Table 1: Examples of the SemEval 2021 Task 4.
Given a passage and a question, the model needs to
pick the best one from the five candidates to replace
@placeholder.

something and a person’s accomplishment about
something. Meanwhile, the abstract words for non-
specificity can be described as upper words. By
determining whether one word can generalize an-
other word, we can get dictionaries of different
levels. The words with higher levels are the non-
specificity words. Compared to concrete concepts
like groundhog and whale, hypernyms such as ver-
tebrate are regarded as more abstract (Changizi,
2008).

The difference between Subtask 1 and Subtask
2 is the definition of abstract words. So the in-
put of both Subtask 1 and Subtask 2 are the same.
The input of these tasks are shown in Table 1, it
can be represented as a triple < P,Q,A >, where
P = s1, s2, ..., sm is the passage from CNN daily
(Hermann et al., 2015), Q is a human-written sum-
mary based on the passage with one abstract word
replaced by ”@placeholder” andA is a set of candi-
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date abstract words for filling in the ”@placeholder”
in the question.

3 System Overview

3.1 Model Design

Recently, with the development of the large Pre-
trained Language Models (PLMs), such as GPT
(Radford et al., 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), DeBERTa (He et al., 2021), have overwhelm
the NLP community (Zhang et al., 2020c). The
powerful semantic feature extraction capabilities
of the PLMs make us only need to make better use
of the BERT-like model itself for downstream tasks
instead of adding different layers to the model.

Similar to the normal multi-choice task, we have
five candidates, one passage, and one question per
sample. Here we leverage PLMs as encoders to cap-
ture the global context representation about the pas-
sage, question, and answer. Then a decoder is used
to determine the score of each < P,Q,A > pair.
Since we get A1, ..., An n answers, for every pas-
sage, we construct n input samples as [Q−Ai;P ],
the concatenation of Q−Ai and P . Because the
question is the summary with an abstract word re-
moved. We construct Q−A by replacing ”@place-
holder” with the option from the candidate set in-
stead of concatenating Q and A. After encoding
all n inputs for a single passage, we get the global
representations Ti for different options in the candi-
date set. During fine-tuning PLMs, the first special
token [CLS] represents the global meaning of the
whole input. We use an dense decoder layer to com-
pute the score for all Ti, the calculation of score is
as follow:

Ti = PLM(Q−A;P ) (1)

scorei =
exp (f (Ti))∑
i′ exp (f (Ti′))

(2)

where the [Q − A;P ] is the input constructed ac-
cording to the instruction of PLMs and MRC tasks,
and the T∗ is the final hidden state of the first token
[CLS]. The candidate answers with higher scores
will be identified as the final prediction.

Since previous research (Gao et al., 2020; Yang
et al., 2019) demonstrate that there exists a gap be-
tween language model pre-training and fine-tuning
the models in the downstream task and inspire by
the similar task definition as MLM, we introduce

Figure 1: The procedure of Negative Augmentation
with Language Model (NAL).

the negative augmentation with language model
mechanism (Section 3.2). Note that the additional
label will enhance the discriminability of the ab-
stract meanings in a contrastive manner. In other
words, the model is encouraged NOT to gener-
ate those abstract tokens from the language model,
but the golden candidates from the given docu-
ments. We further introduce the label smooth-
ing (Section 3.3), which can enhance the model
performance. Finally, we leverage task-adaptive
pre-training (Section 3.4) inspired by (Gururangan
et al., 2020) to obtain better performance.

3.2 Negative Augmentation with Language
Model

Inspired by the same format of MLM and this task,
we first conduct a toy experiment to test whether
a PLM can get the right answer without any su-
pervised signal. Firstly we replace the ”@place-
holder” with [MASK] to reconstruct the input and
ask the BERT model with MLM head to predict
the word token at the [MASK]. Then we calculate
the similarity between the word model predict and
the options from the set of candidate answers. We
set the option with the highest similarity score as
the model’s choice. Then we find that the BERT
model without any fine-tuning gets 60+% accuracy
in both Subtask 1 and Subtask 2. The result above
shows that PLMs have the ability to predict abstract
words, and those predicted words can be leveraged
as negative candidates in the fine-tuning period.

Note that huge languages have quantities of
parameters; the PLMs are able to store much
knowledge through pre-training tasks. However,
[MASK] is not used when fine-tuning the model
for downstream tasks; how to use the knowledge
stored by the model on pre-training tasks more ex-
plicitly on downstream tasks has become a hot topic
of current research. Motivated by this, we try to
bridge the gap between pre-train and downstream
tasks. Inspired by the contrastive learning (Chen
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Figure 2: System overview (Best viewed in color.). The top of the Figure refers to the normal fine-tuning of
multi-choice models, ignoring the form of pre-training tasks. While the bottom of the Figure refers to our system
with Negative Augmentation with Language Model (NAL), which uses the abstract words predict by the original
PLM as negative candidates to augment fine-tuning.

et al., 2020; Robinson et al., 2020) as stronger neg-
ative samples will help the model learning with
better performance, we introduce our negative aug-
mentation with language model method. Specifi-
cally, we let the PLMs predict the ”@placeholder”
replaced with [MASK] token to generate negative
candidates. Thus, we can leverage those negative
words that may mislead the models to help train
the models. Formally, we have:

P = p(mi|θ, [Q−A;P ]),mi ∈ [1, 2, ..., |V |] (3)

where P are the distribution of words model, pre-
dict, mi is the token in the vocabulary, and |V | is
the total number of the vocabulary. We can use
the distribution to get the top confusing words to
augment our models, which is described in Figure
2. Due to the limitation of GPU, we add the most
possible word to augment our models.

3.3 Label Smoothing

Label smoothing is a well-known ”trick” to im-
prove the model’s performance effectively. It en-
courages the activations of the penultimate layer
to be close to the template of the correct class and
equally distant to the templates of the incorrect
classes (Müller et al., 2019). With more options
than the original dataset by the approach mentioned
in Section 3.2, label smoothing will magnify our
method’s effect while fine-tuning the models. Sup-
pose the output of the final layer and softmax layer

as follows:

pk =
ex

Twk∑L
l=1 e

xTwl
(4)

where pk is the likelihood the model assigns to the
k-th class, wk represents the weights and biases of
the last layer. x is the vector containing the activa-
tions of the penultimate layer of a neural network
concatenated with ”1” to account for the bias. let
us see the equitation about the cross entropy loss.

L = −
M∑
c=1

yk log (pk) (5)

The cross-entropy formula without Label
smoothing only focuses on whether the positive
example is true and does not pay attention to the
negative examples’ relationship. We make the soft
y as follows:

yi =

{
(1− ε), right answer

ε
K−1 ,wrong answer (6)

We set ε as 0.1 in our models.

3.4 Task-Adaptive Pre-training

The BERT-like model is pre-trained in the general
domain corpus such as Wikipedia. Since passages
mainly come from CNN daily, the data distribu-
tion may be quite different from pre-training data.
Therefore, we utilize task-adaptive pre-train BERT
with masked language model and next sentence
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Statistics / Dataset Subtask 1 Subtask 2

# Train 3,227 3,318
# Trail 1,000 1,000
# Dev 837 851
# Test 2,025 2,017
Avg. # Length Per Passage 262 418

Table 2: Statistics of the SemEval 2021 Task 4 dataset.

prediction tasks on the domain-specific data. Task-
adaptive pre-training not only makes the model
better fit the distribution in the domain but also
helps the model to predict good negative words to
enhance the original dataset, which is described in
Section 3.2. We take two different approaches for
task-adaptive pre-training as follows:

1) In-domain pre-training, we use the source data:
CNN Daily to task-adaptive pre-training our
base models(Sun et al., 2020).

2) Within-task pre-training, practically we replace
the ”@placeholder” with the correct answer and
put the same input format as the fine-tuning
steps, which is [Q − A;P ] (Gururangan et al.,
2020).

4 Experimental Setup

4.1 Dataset
In Subtask 1, the training/trail/development/test
contains 3, 227/1, 000/837/2, 025 instances. In
Subtask 2, the training/trail/development/test con-
tains 3, 318/1, 000/851/2, 017 instances. The over-
all statistics can be found in Table 2.

4.2 Pre-processing
For data pre-processing, we use the byte-level BPE
encoding (Sennrich et al., 2016), and the official
vocabulary contains more than fifty thousand byte-
level tokens. All tokens are stored in MERGES.TXT,
while VOCAB.JSON is a byte-to-index mapping.
Generally speaking, the higher the frequency, the
smaller the byte index. Since the average length of
the passage about Subtask 1 and Subtask 2 is 262
and 418, we divide those long context paragraphs.
We limit the max number of tokens in an input sam-
ple [Q − A;P ] to 256 for our system. Statically,
60% of the paragraphs exceeds the 256 tokens (in-
cluding the special tokens like [CLS], [SEP] and
so on. For these input samples, we divide them into
new input samples with at most 256 tokens. To be
more specific, we divide the passage to different
inputs with the same question and answer.

4.3 Hyper-parameter Setting

Our system is implemented with PyTorch (Paszke
et al., 2019) and we use the PyTorch version of
the pre-trained language models2. We employ
RoBERTa, ALBERT, and DeBERTa large models
as our PLM encoder. We use AdamW optimizer
(Loshchilov and Hutter, 2018) to fine-tune the mod-
els. We set the batch size to 1, and the max length
of input to 256 for RoBERTa, 128 for ALBERT.

Usually, the batch size has a significant influ-
ence on the BERT-like model; due to the limit of
GPU memory, we use gradient accumulation in
our training steps. We set the gradient accumu-
lation step as 32, which means the formal num-
ber of batch sizes is 32 in training. We pick the
best learning rate from the dev set, fine-tuning the
RoBERTa, ALBERT, DeBERTa with the learning
rate of 9×10−6, 1×10−5 and 1×10−5 respectively.
We set the number of epoch to 8 for ALBERT and
12 for RoBERTa and DeBERTa. Furthermore, we
save the best model on the validation set for testing
during training. Because the formats of both Sub-
task 1 and Subtask 2 are the same, we set the same
batch size and max length of the input sequence for
training.

5 Results

5.1 Subtask 1 Results

On Subtask 1 , the ReCAM-Imperceptibility task,
the evaluation results are illustrated in Table 3.
We set the three baseline models: RoBERTaLarge,
DeBERTaLarge, and ALBERTxxLarge. RoBERTaLarge

+ NAL, DeBERTaLarge + NAL, and ALBERTLarge

+ NAL denotes the language model with our pro-
posed negative augmentation with language model.
Ensemble refers to the ensemble model of the three
models as mentioned above with all strategies. We
find that ALBERT achieves better performance in
Subtask 1 but fails to get good performance in Sub-
task 2, while DeBERTa and RoBERTa have better
performance in Subtask 2. Comparing with the
original RoBERTa, DeBERTa, and ALBERT mod-
els, each model is hugely improved with NAL by
about 2.1% accuracy. We further observe that De-
BERTa and RoBERTa, which have the same archi-
tecture, obtain better performance than ALBERT in
the dev and test sets. We think the possible reason
is that ALBERT uses layer weight sharing, which

2https://github.com/huggingface/trans
formers (version 3.3.0)

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Model Dev Test
Baseline
RoBERTaLarge 83.3 -
ALBERTxxLarge 85.1 -
DeBERTaLarge 84.1 -
Ours
RoBERTaLarge + NAL 85.9 86.1
ALBERTxxLarge+ NAL 86.2 85.6
DeBERTaLarge+ NAL 86.7 86.8
Ensemble 88.5 87.9

Table 3: Results (Accuracy) on Subtask 1.

Model Dev Test
Baseline
RoBERTaLarge 86.7 -
ALBERTxxLarge 84.3 -
DeBERTaLarge 87.7 -
Ours
RoBERTaLarge + NAL 91.1 89.7
ALBERTxxLarge+ NAL 89.3 88.6
DeBERTaLarge+ NAL 91.3 90.3
Ensemble 93.7 92.8

Table 4: Results (Accuracy) on Subtask 2.

reduces the model’s generalization ability in read-
ing comprehension, especially the abstract words
meaning. Finally, the ensemble of the best model of
RoBERTa, DeBERTa, and ALBERT lead to a sig-
nificant improvement (4.3% accuracy) compared
with baselines, which is also our final submission
to the leaderboard.

5.2 Subtask 2 Results

On Subtask 2, the ReCAM-Nonspecificity task, the
experiment results are showed in Table 4. Similar
to the models in Subtask 1, we choose RoBERTa,
DeBERTa and ALBERT as our baseline models.
All RoBERTaLarge + NAL , ALBERTxxLarge + NAL
and DeBERTaLarge + NAL are the models with nega-
tive augmentation with language model. Ensemble
refers to the ensemble model of RoBERTa, De-
BERTa, and ALBERT with all strategies. We notice
that our proposed mechanism brings significant im-
provement (averaging 4.3% of the accuracy score)
compared with baselines, demonstrating the effec-
tiveness of our proposed strategies such as negative
augmentation with a language model, label smooth-
ing, and task-adaptive pre-training. We observe

that ensemble approach of three enhanced models
(RoBERTaLarge + NAL, ALBERTxxLarge+ NAL and
DeBERTaLarge+ NAL) obtain the best accuracy of
92.8% at test set, which is also our final submit to
the leaderboard.

5.3 Subtask3 Results

Subtask3 focuses on the model’s transferability.
During the evaluation period, we use the data on
Subtask 2 to evaluate the models trained on the Sub-
task 1 and vice versa. We obtain the 82% accuracy
of the model trained on Subtask 1 and evaluated on
Subtask 2 on the dev set.

During experiments for all tasks, we have tried to
use different decoders like MLP and other network
architecture. Eventually, we find that it does not
help to improve the system’s performance. An
explanation is that the pre-trained language models
(PLMs) have already captured global contextual
sentence meaning at the [CLS] token.

5.4 Further Analysis

5.4.1 Analysis of Negative Augmentation
with Language Model

During our experiments, we conduct case studies to
figure out how our method of NAL helps the model
to boost performance. From Table 5, we notice
that the original PLM considers using the ”all”,
”half” as its choice instead of ”parts”. Although
fine-tuned on the downstream task, the baseline
model still choose ”half”. In our NAL method,
we add some misleading negative words to help
models correct the knowledge learned from the
pre-training task.

5.4.2 Analysis of Passage Length
In usual MRC tasks, the length of the passage is a
key factor for the models to solve the problems. We
conduct experiments to analyze the performance
regarding different lengths of passage. Contrary to
the common assumption, from Figure 3 and Figure
4, we observe that the instances with long passage
obtain better performance. We think that abstract
mean understanding may need comprehensive con-
text information from the long sentence, and we
will conduct further analysis in future works.

5.4.3 Case Study
We select four kinds of different types of error
cases to promote further researches. We classify
the examples according to the main causes (pre-
training, fine-tuning, and so on) of the error. We
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Example
Question: The Aurora Borealis, better known as the Northern Lights, was spotted across

@placeholder of England on Sunday.
Answer set {(A) millions, (B) parts, (C) half, (D) isle, (E) remains}
NAL set {all, half, parts}
Baseline (C) half
Model with NAL (B) parts
Question: The BBC is providing live coverage of the Scottish National Party conference in

Glasgow. This live @placeholder has finished .
Answer set {(A) results, (B) recording, (C) event, (D) action, (E) center}
NAL set {blog, recording , stream}
Baseline (B) recording
Model with NAL (C) event

Table 5: We can clearly see the negative options can help the model better understand the abstract meaning in the
passage and question. Answers are bold in the Table.

40-340 340-680 680-1020 1020-1360 1360-1700

Paragraph Length (term)

70

80

90

100

A
c
c
u
ra

c
y
(%

)

RoBERTa
large

ALBERT
xxlarge

DeBERTa
large

Figure 3: Results (Accuracy) on Subtask 1 with the
length of passage.
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Figure 4: Results (Accuracy) on Subtask 2 with the
length of passage.

think it will help us better understand what the
model learns from pre-training and fine-tuning.

Case 1 - Influenced by the original pre-training
task

• Passage: ”...found the United States to have
the highest number of sleep deprived students,
with 73% of 9 and 10 year olds and 80% of 13
and 14 year olds identified by their teachers
as being adversely affected. The BBC’s Jane
O’Brien reports.”

• Question: Sleep deprivation is a significant
hidden factor in lowering the @placeholder

of school pupils , according to researchers
carrying out international education tests .

• Answer: (A) morale (B) IQ (C) mortality (D)
closure (E) achievement

• Negative augmented choice: (F) intelli-
gence

• Right Option: (E) achievement
• Wrong Option: (B) IQ
• Potential causes: After pre-training on the

large general domain corpus, PLMs have
a huge bias on predicting the [MASK] to-
ken. Just like the ”IQ” model predict in the
”@placeholder”. Even after fine-tuning, our
models still cannot recognize the strong evi-
dence ”being adversely affected”. In our daily
life, we wouldn’t hold that being adversely af-
fected by lack of sleep can lead to a decrease
in IQ. We usually say that lack of sleeping
may lower one’s achievement in the future.

• How to help models? To prevent the model
from relying too much on pre-training tasks,
we create more negative samples to help the
model to understand what is wrong or right
about the abstract words.

Case 2 - Adverse affected by fine-tuning
• Passage: ” 17 May 2017 Last updated at

12:44 BST Adrien Gulfo, wearing red, who
plays for the Swiss side Pully Football, tried to
clear the ball away from his goal with a spec-
tacular bicycle kick. Unfortunately for him it
all went very wrong - watch the video... There
was a happy ending to the story for Gulfo
though, Pully went through to the cup final on
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penalties after the match finished 3-3.”
• Question: You won’t believe this own goal

that was @placeholder in the Swiss lower
league !

• Answer: (A) scored (B) born (C) eliminated
(D) closed (E) beaten

• Negative Augmented Choice: (F) scored
(model predict ”scored.” Because it is the right
answer, so we choose another choice ”played”
as an augmented choice. )

• Right Option: (A) scored
• Wrong Option: (E) beaten
• Potential Causes: It is quite weird that the

original PLMs can predict the right answer,
but fail to make it after fine-tuning. We sup-
pose that in the process of fine-tuning, the
inconsistency of abstract vocabulary predic-
tion and the interference of other vocabulary
caused the model’s effect in some cases to
decrease instead.

• How to help models? We could use our ap-
proach of NAL to increase the weight of the
knowledge learned in the pre-training task or
leverage external knowledge (Zhang et al.,
2019, 2020b; Yu et al., 2020; Zhang et al.,
2020a).

Case 3 - Obscure abstract word meaning
• Passage: ” ...Mr Habgood said: ”We’re pretty

sure it will be popular because it was when
East Street was closed for other reasons and
we want to make it a friendlier place to be. ”It
does fit with our larger objectives to improve
the town and make it safer for cyclists and
pedestrians.” ...”

• Question: Three busy town center streets
are to be pedestrianised in a bid to improve
@placeholder for shoppers and cyclists .

• Answer: (A) opportunities (B) services (C)
quality (D) disruption (E) safety

• Negative Augmented Choice: (F) access
• Right Option: (E) safety
• Wrong Option: (B) services
• Potential Causes: Due the limit of GPU

memory, we cannot put the long passage into
the model once a time. So during the train-
ing, the model can only see a small chunk of
the passage, so that it cannot get the global
representation of the passage.

• How to help models? We chunk those long
sentences with the approach of the sliding
window to help the model understanding the

whole passage.

Case 4 - Hypernyms is not always right
• Passage: ” North Wales Fire and Rescue Ser-

vice was called to Express Linen Services on
Vale Road in Llandudno Junction just before
19:30 GMT on Thursday. North Wales Police
said a man was treated at the scene for smoke
inhalation. Police have asked people to avoid
the area...”

• Question: A number of @placeholder have
been evacuated as firefighters tackle a blaze
at a commercial laundry firm ’s premises in
Conwy county.

• Answer: (A) families (B) properties (C) wa-
ter (D) disruption (E) vehicles

• Negative Augmented Choice: (F) homes
• Right Option: (B) properties
• Wrong Option: (A) families
• Potential Causes: Hypernyms is the main fo-

cus of Subtask 2, the model may consider the
”families” as the upper level of the ”people”
occur in the passage and choose the ”(A) fam-
ilies” instead of the right answer ”(B) proper-
ties”.

• How to help models? We try to use the
proposed NAL to add more abstract words
learned from the pre-training to mitigate this
issue.

6 Conclusion

This paper presents our system design for the Se-
mEval 2021 Task4. We propose a simple yet effec-
tive method called negative augmentation with lan-
guage model. Comprehensive experiments demon-
strate the effectiveness of our proposed approach.
We also conduct case studies and investigate why
the model fails to obtain the correct prediction.

Note that language models are pre-trained from
the huge corpus; recently, researchers have iden-
tified the bias in the language model, which may
mislead the model prediction. Our proposed neg-
ative augmentation with language model can help
the model better discriminate candidates in fine-
tuning, thus boost the performance. From another
perspective, as depicts in Section 3.2, the language
model without any fine-tuning gets 60+% accuracy
in both Subtask 1 and Subtask 2. This indicates
that bias exists in the datasets (Part of the abstract
meaning can be obtained from the language model).
More strong benchmarks should be constructed in
the future.
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