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Abstract

Identifying whether a word carries the same
meaning or different meaning in two con-
texts is an important research area in natu-
ral language processing which plays a signif-
icant role in many applications such as ques-
tion answering, document summarisation, in-
formation retrieval and information extraction.
Most of the previous work in this area rely on
language-specific resources making it difficult
to generalise across languages. Considering
this limitation, our approach to SemEval-2021
Task 2 is based only on pretrained transformer
models and does not use any language-specific
processing and resources. Despite that, our
best model achieves 0.90 accuracy for English-
English subtask which is very compatible com-
pared to the best result of the subtask; 0.93
accuracy. Our approach also achieves satis-
factory results in other monolingual and cross-
lingual language pairs as well.

1 Introduction

Words’ semantics have a dynamic nature which
depends on the surrounding context (Pilehvar and
Camacho-Collados, 2019). Therefore, the majority
of words tends to be polysemous (i.e. have mul-
tiple senses). For few examples, words such as
"cell", "bank" and "report” can be mentioned. Due
to this nature in natural language, it is important
to focus on word-in-context sense while extract-
ing the meaning of a word which appeared in a
text segment. Also, this is a critical requirement
to many applications such as question answering,
document summarisation, information retrieval and
information extraction.

Word Sense Disambiguation (WSD)-based ap-
proaches were widely used by previous research
to tackle this problem (Loureiro and Jorge, 2019;
Scarlini et al., 2020). WSD associates the word
in a text with its correct meaning from a prede-
fined sense inventory (Navigli, 2009). As such
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inventories, WordNet (Miller, 1995) and Babel-
Net (Navigli and Ponzetto, 2012) were commonly
used. However, these approaches fail to generalise
into different languages as these inventories are of-
ten limited to high resource languages. Targeting
this gap, SemEval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation is
designed to capture the word sense without rely-
ing on fixed sense inventories in both monolingual
and cross-lingual setting. In summary, this task is
designed as a binary classification problem which
predicts whether the target word has the same mean-
ing or different meaning in different contexts of the
same language (monolingual setting) or different
languages (cross-lingual setting).

This paper describes our submission to SemEval-
2021 Task 2 (Martelli et al., 2021). Our approach is
mainly focused on transformer-based models with
different text pair classification architectures. We
remodel the default text pair classification archi-
tecture and introduce several strategies that outper-
form the default text pair classification architecture
for this task. For effortless generalisation across
the languages, we do not use any language-specific
processing and resources. In the subtasks where
only a few training instances were available, we
use few-shot learning and in the subtasks where
there were no training instances were available,
we use zero-shot learning taking advantage of the
cross-lingual nature of the multilingual transformer
models.

The remainder of this paper is organised as fol-
lows. Section 2 describes the related work done in
the field of word-in-context disambiguation. De-
tails of the task data sets are provided in Section
3. Section 4 describes the proposed architecture
and Section 5 provides the experimental setup de-
tails. Following them, Section 6 demonstrates the
obtained results and Section 7 concludes the paper
with final remarks and future research directions.
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2 Related Work

Unsupervised systems Majority of the unsuper-
vised WSD systems use external knowledge bases
like WordNet (Miller, 1995) and BabelNet (Navigli
and Ponzetto, 2012). For each input word, its cor-
rect meaning according to the context can be found
using graph-based techniques from those external
knowledge bases. However, these approaches are
only limited to the languages supported by used
knowledge bases. More recent works like Het-
tiarachchi and Ranasinghe (2020a); Ranasinghe
et al. (2019a) propose to use stacked word em-
beddings (Akbik et al., 2018) obtained by general
purpose pretrained contextualised word embedding
models such as BERT (Devlin et al., 2019) and
Flair (Akbik et al., 2019) for unsupervised WSD.
Despite their ability to scale over different lan-
guages, unsupervised approaches fall behind su-
pervised systems in terms of accuracy.

Supervised systems Supervised systems rely on
semantically-annotated corpora for training (Ra-
ganato et al., 2017; Bevilacqua and Navigli, 2019).
Early approaches were based on traditional ma-
chine learning algorithms like support vector ma-
chines (Iacobacci et al., 2016). With the word
embedding-based approaches getting popular in
natural language processing tasks, more recent ap-
proaches on WSD were based on neural network ar-
chitectures (Melamud et al., 2016; Raganato et al.,
2017). However, they rely on large manually-
curated training data to train the machine learning
models which in turn hinders the ability of these
approaches to scale over unseen words and new
languages. More recently, contextual representa-
tions of words have been used in WSD where the
contextual representations have been employed for
the creation of sense embeddings (Peters et al.,
2018). However, they also rely on sense-annotated
corpora to gather contextual information for each
sense, and hence are limited to languages for which
gold annotations are available. A very recent ap-
proach SensEmBERT (Scarlini et al., 2020) pro-
vide WSD by leveraging the mapping between
senses and Wikipedia pages, the relations among
BabelNet synsets and the expressiveness of contex-
tualised embeddings, getting rid of manual anno-
tations. However, SensEmBERT (Scarlini et al.,
2020) only supports five languages making it diffi-
cult to use with other languages.

Considering the limitations of the above meth-

ods, in this paper we propose an approach which
is based on general purpose transformer models
and does not rely on external knowledge bases.
Also, our approach shows strong few-shot/zero-
shot learning performance removing the hurdle of
having manually-curated training data for each lan-
guage pair.

3 Data

The data set used for SemEval-2021 Task 2 is de-
signed targeting a binary classification problem fol-
lowing Pilehvar and Camacho-Collados (2019). To
preserve the multilinguality and cross-linguality of
the task, five different languages: English, Arabic,
French, Russian and Chinese have been considered
for data set preparation. In the monolingual setting,
per instance, a sentence pair written in the same
language is provided with a targeted lemma to pre-
dict whether it has the same meaning (True) or
different meanings (False) in both sentences. In the
cross-lingual setting, each sentence pair is written
in two different languages with the same prediction
requirement. Few samples from the monolingual
and cross-lingual data sets are shown in Table 1.

The monolingual data set covers the language
pairs: en-en, ar-ar, fr-fr, ru-ru and zh-zh. For each
language, 8-instance trial data sets with labels were
provided to give an insight into the task. As training
data, 8,000 labelled instances were provided only
for the English language and as dev data, 1,000
labelled instances were provided per each language.
To use with final evaluation, for each language,
1,000-instance test data sets were provided.

The cross-lingual data set covers the language
pairs: en-ar, en-fr, en-ru and en-zh. Similar to the
monolingual data set, 8-instance trial data sets with
labels were provided for each language pair. How-
ever, no training or dev data sets were provided for
the cross-lingual setting. To use with the final eval-
uation, 1,000-instance test data sets were provided
per each language pair.

4 TransWiC Architecture

The main motivation behind the TransWiC architec-
ture is the success transformer-based architectures
had in various natural language processing tasks
like offensive language identification (Ranasinghe
and Hettiarachchi, 2020; Ranasinghe et al., 2019c;
Pitenis et al., 2020), offensive spans identifica-
tion (Ranasinghe and Zampieri, 2021a; Ranasinghe
et al., 2021), language detection (Jauhiainen et al.,
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Lang. Sentence 1 Sentence 2 Label
ML fr-fr la souris mange le fromage le chat court apres la souris T
en-en In the private sector , activities are guided by ~ The volume V of the sector is related to the F
the motive to earn money. area A of the cap.
CL en-fr click the right mouse button le chat court apres la souris F
Any alterations which it is proposed to make g .
. . Il a aussi été indiqué que, selon les dossiers
as a result of this review are to be reported v .. P
en-fr médicaux, Justiniano Hurtado Torre était T

to the Interdepartmental Committee on
Charter Repertory for its approval.

mort de maladie.

Table 1: Monolingual (ML) and cross-lingual (CL) sentence pair samples with targeted lemma (highlighted in red
colour) and label (T:True, F:False). Lang. column represent the languages which are indicated using ISO 639-1

codes!

pE—

Transformer

Figure 1: Default sentence pair classification architecture - ([CLS] Strategy).Wr is the target word.

2021) question answering (Yang et al., 2019) etc.
Apart from providing strong results compared to
RNN based architectures (Hettiarachchi and Ranas-
inghe, 2019; Ranasinghe et al., 2019c), transformer
models like BERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020) provide pretrained language
models that support more than 100 languages. This
is a huge benefit when compared to the models
like SensEmBERT (Scarlini et al., 2020) which
supports only five languages. Furthermore, mul-
tilingual and cross-lingual models like multilin-
gual BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) have shown strong transfer learn-
ing performance across scarce-resourced languages
which can be useful in non-English monolingual
subtasks where there are fewer training examples
and cross-lingual subtasks where there are no train-
ing examples available (Ranasinghe and Zampieri,
2020, 2021b; Ranasinghe et al., 2020a). There-

fore we took the general purpose transformers like
BERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020), reworked their sentence pair classifica-
tion architecture with so called strategies described
below to perform well in word-in-context disam-
biguation task.

Preprocessing As a preprocessing step we add
two tokens to the transformer model’s vocabulary:
<B> and <E>. We place them around the target
word in both sentences. For example, the sentence
"la souris mange le fromage" with the target word
"souris" will be changed to "la <B> souris <E>
mange le fromage'.

i [CLS] Strategy - This is the default sentence
pair classification architecture with transform-
ers (Devlin et al., 2019) where the two sen-
tences are concatenated with a [SEP] token and
passed through a transformer model. Then the
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(a) <B> Strategy
ats

= () G

7

G o J ()

(i) [CLS] + Entity First Strategy (j) [CLS] + Entity Last Strategy

Figure 2: Strategies in the TransWiC Framework. W is the target word.
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output of the [CLS] token is fed into a softmax
layer to predict the labels (Figure 1).

<B> Strategy - We concatenate the output of
two <B> tokens of the two sentences and feed it
into a softmax layer to predict the labels (Figure
2a).

<B> + [CLS] Strategy - We concatenate the
output of two <B> tokens of the two sentences
with the [CLS] token and feed it into a softmax
layer to predict the labels (Figure 2b).

<E> Strategy - Output of the two <E> tokens
of the two sentences are concatenated and feed
into a softmax layer to predict the labels (Figure
2¢).

<E> + [CLS] Strategy - We concatenate the
output of two <E> tokens of the two sentences
with the [CLS] token and feed it into a softmax
layer to predict the labels (Figure 2d).

Entity Pool Strategy - To effectively deal with
rare words, transformer models use sub-word
units or WordPiece tokens as the input to build
the models (Devlin et al., 2019). Therefore,
there is a possibility that one target word can
be separated into several sub-words. In this
strategy, we generate separate fixed-length em-
beddings for each target word by passing its
sub-word outputs through a pooling layer. The
pooled outputs are concatenated and fed into a
softmax layer to predict the labels (Figure 2e).

Entity First Strategy - Similar to the previous
strategy, instead of using all the sub-words of
the target word, we only use the output of the
first sub-word in this strategy. We feed the
concatenation of these outputs into a softmax
layer to predict the labels (Figure 2f).

Entity Last Strategy - Similar to the Entity
First Strategy instead of the first sub-word, we
use the last sub-word to represent the target
word. We feed their concatenation into a soft-
max layer to predict the labels (Figure 2g).

[CLS] + Entity Pool Strategy - We concate-
nate the pooled outputs generated by Entity
Pool Strategy with the [CLS] token and feed it
into a softmax layer to predict the labels (Figure
2h).
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x [CLS] + Entity First Strategy - Similar to the
[CLS] + Entity Pool Strategy, instead of the
pooled outputs, we concatenate the first sub-
word output of the target words with [CLS]
token and feed it into a softmax layer to predict
the labels (Figure 21i).

xi [CLS] + Entity Last Strategy - In this strat-
egy, we concatenate the last sub-word output of
the target words with [CLS] token and feed it
into a softmax layer to predict the labels (Figure
2j).

5 Experimental Setup

This section describes the training data and hyper-
parameter configurations used during the experi-
ments.

5.1 Training Configurations

English-English For the English-English sub-
task, we performed training on the English-English
training data for each strategy mentioned above.
During the training process, the parameters of the
transformer model, as well as the parameters of
the subsequent layers, were updated. We used the
saved model from a particular strategy to get pre-
dictions for the English-English test set for that
particular strategy.

Other Monolingual Since there were less train-
ing data available for non-English monolingual
datasets, we followed a few-shot learning approach
mentioned in Ranasinghe et al. (2020c,b). When
we are starting the training for non-English mono-
lingual language pairs, rather than training a model
from scratch, we initialised the weights saved from
the English-English experiment. Then we per-
formed training on the dev data for each language
pair separately. Similar to English-English experi-
ments, during the training process, the parameters
of the transformer model, as well as the parameters
of the subsequent layers, were updated.

Crosslingual Since there were no training data
available for cross-lingual datasets, we followed
a zero-shot approach for them. Multilingual and
cross-lingual transformer models like multilingual
BERT and XLM-R show strong cross-lingual trans-
fer learning performance. They can be trained on
one language; typically a resource-rich language
and can be used to perform inference on another
language. The cross-lingual nature of the trans-
former models has provided the ability to do this



(Ranasinghe et al., 2020c). Therefore, we used the
models trained on the English-English dataset to
get predictions for cross-lingual datasets.

5.2 Hyperparameter Configurations

We used a Nvidia Tesla K80 GPU to train the mod-
els. We divided the input dataset into a training set
and a validation set using 0.8:0.2 split. We predom-
inantly fine-tuned the learning rate and the number
of epochs of the classification model manually to
obtain the best results for the validation set. We ob-
tained le™ 5 as the best value for the learning rate
and 3 as the best value for the number of epochs.
We performed early stopping if the validation loss
did not improve over 10 evaluation steps. The rest
of the hyperparameters which we kept as constants
are mentioned in the Appendix. When performing
training, we trained five models with different ran-
dom seeds and considered the majority-class self
ensemble mentioned in Hettiarachchi and Ranas-
inghe (2020b) to get the final predictions.

6 Results and Evaluation

Organisers used the accuracy as the evaluation met-
ric as shown in Equation 1 where TP is True Posi-
tive, TN is True Negative, FP is False Positive and
FN is False Negative.

y TP+ TN "
ccuracy =
Y= TPYTN+FP+ FN

Since there were less or no training data available
for other monolingual and cross-lingual settings,
we trained and evaluated models for each of our
strategies using English-English training and dev
sets. Then the best models are picked to use with
few-shot and zero-shot learning approaches. We
report the results obtained by English-English eval-
uation in Table 2. In the BERT column, we report
the results of the bert-large-cased model while in
the XLM-R column, we report the results of the
xlm-r-large model.

As shown in Table 2, some strategies outper-
formed the default sentence pair classification ar-
chitecture. Among all experimented strategies <B>
+ [CLS] strategy performed best. Usually, mul-
tilingual transformer models like XLLM-R do not
outperform the language-specific transformer mod-
els. Surprisingly, in this task XLM-R models out-
perform bert-large models. We selected three best
performing models for the submission; XLM-R

Strategy BERT XLM-R
CLS 0.8350  0.7860
<B> 0.8450  0.8750%
<B>+ CLS 0.8590  0.8810*
<E> 0.6672  0.5590
<E>+ CLS 0.6982  0.5630
Entity Pool 0.8420  0.8521
Entity First 0.8390  0.8462
Entity Last 0.8550  0.8660
CLS + Entity Pool ~ 0.8570  0.8700%
CLS + Entity First  0.8540  0.8580
CLS + Entity Last  0.8568  0.8610

Table 2: TransWiC accuracy in English-English dev set
for each strategy. Best is in Bold. Submitted systems
are marked with £

<B> + [CLS], XLM-R <B> and XLM-R [CLS] +
Entity Pool.

Since multilingual models provided the best re-
sults for the English-English dataset, it provided
an additional advantage as they can be used di-
rectly in other language pairs too as mentioned
in Section 5. For other language pairs, we did
not perform any evaluation due to the lack of data
availability. We trusted the cross-lingual perfor-
mance of XLM-R and used the best three models
of the English-English experiment. For the rest of
the monolingual pairs, we used the few-shot learn-
ing approach using the given dev sets and for the
cross-lingual pairs, we used the zero-shot learning
approach mentioned in Section 5.

We report the results we got for the test set in
Table 3. According to the results, <B> + [CLS]
strategy performs best in all the language pairs
except Ar-Ar, where <B> strategy outperforms
<B> + [CLS] strategy. When compared to the best
models submitted to each language pair, our ap-
proach shows very competitive results in the ma-
jority of the monolingual language pairs. However,
we believe that the cross-lingual performance of
our methodology should be improved. Nonethe-
less, we believe that as a methodology that did not
use any language-specific resources and did not
see any language-specific data, the results are at a
satisfactory level.

7 Conclusions

In this paper, we presented our approach for tack-
ling the SemEval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation.
We use the pretrained transformer models and re-
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Monolingual Crosslingual
Strategy en-en ar-ar fr-fr ru-ru zh-zh en-ar en-fr en-ru en-zh
<B> + [CLS] 0.9040 0.7800 0.7970 0.7610 0.6210 0.6690 0.5860 0.6900 0.7640
I <B> 0.8980 0.7980 0.7760 0.7160 0.6090 0.6260 0.5850 0.6770 0.7280
[CLS] + Entity Pool ~ 0.8400 0.7621 0.7321 0.6954 0.5880 0.5921 0.5572 0.6561 0.7002
II  Best System 0.9330 0.8480 0.8750 0.8740 0.9100 0.8910 0.8910 0.8940 0.9120

Table 3: Row I shows the accuracy scores for the test set with strategies submitted. Best results for each language
pair with our strategies are in bold. Row II shows the accuracy scores for the test set with the best system submitted

for each language pair.

model the sentence pair classification architecture
for this task with several strategies. Our best strate-
gies outperform the default sentence pair classifica-
tion setting for English-English. For other monolin-
gual language pairs, we use the few-shot learning
approach while for cross-lingual language pairs we
use the zero-shot approach. Our results are com-
patible with the best systems submitted for each
language pair and are at a satisfactory level given
the fact that we did not use any language-specific
processing nor resources.

As future work, we would be looking to improve
our results more with new strategies. We would
like to experiment with whether adding language-
specific processing and resources would improve
the results. We are keen to add different neural
network architectures like Siamese transformer net-
works (Reimers and Gurevych, 2019) that perform
well in sentence pair classification tasks (Ranas-
inghe et al., 2019b; Mueller and Thyagarajan, 2016)
to the TransWiC framework. Furthermore, we are
hoping to work in a multi-task environment and
experiment whether transfer learning from a simi-
lar task like semantic textual similarity (Cer et al.,
2017) would improve the results for this task.
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A Appendix

A summary of hyperparameters and their values
used to obtain the reported results are mentioned
in Table 4. The optimised hyperparameters are
marked with I and their optimal values are reported.
The rest of the hyperparameter values are kept as
constants.

Parameter Value
learning rate* le™®
number of epochs* 3
adam epsilon le~8
warmup ration 0.1
warmup steps 0
max grad norm 1.0
max seq. length 120

gradient accumulation steps 1

Table 4: Hyperparameter specifications
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