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1 Introduction

The question of how children acquire the gram-
matical principles of their native language has been
debated in cognitive science and linguistics for over
50 years (e.g., Chomsky, 1965; Xu and Tenenbaum,
2007). Perfors et al. (2011) suggest that children
compare various syntactic hypotheses in order to
determine which is most compatible with the so-
called primary linguistic data (cf. Chomsky, 1965;
Wexler and Culicover, 1980; Clark and Lappin,
2013; among many others), and that a Bayesian
model selection approach might be able to do some
of this work. More specifically, they demonstrate
that a Bayesian inference system presented with
child-directed input would prefer a probabilistic
context free grammar (PCFG) that used hierarchi-
cal phrase structure over a regular grammar repre-
senting linear phrase structure, without any initial
prior bias towards one grammar type or another.
Therefore, they argued that correct linguistic gen-
eralizations can be achieved by a learner equipped
with domain-general Bayesian inference capacities
but without language-specific innate knowledge.

In their work, the various syntactic hypotheses
were represented by grammars that were all able to
parse the entirety of a pre-processed English child-
directed speech corpus. However, a computational
model without the ability to compare competing
hypotheses that are supported by different subsets
of the data is severely limited due to the inevitabil-
ity of noise. Children are also very likely to hear
errors, actual or only perceived (Krentz and Corina,
2008; Friederici et al., 2011). Furthermore, hy-
potheses concerning typological tendencies might
not warrant comparison over fully congruent data
sets. The premise of this work is therefore to ex-
tend the Bayesian system designed by Perfors et al.
(2011) to allow for comparing models supported
by different data subsets. We evaluated this system

in the context of word order acquisition in German.
To this end, we designed PCFGs representing

different word order hypotheses a child might enter-
tain. Many linguists agree that German word order
is Subject-Object-Verb (SOV) Verb-Second (V2)
(henceforth: SOV+V2) (e.g., Bierwisch, 1963).
Yet many simple German sentences also maintain
Subject-Verb-Object (SVO) order. Because of the
SVO word order of many simple German sentences,
a child might initially consider a left-branching
grammar only able to account for SVO sentences,
only to reject it in order to account for embedded
sentences and sentences with auxiliaries.

Note that we do not commit to a specific theoret-
ical position on the plausibility of humans perform-
ing verb movement operations, and merely lean on
this theory to specify conceivable word order hy-
potheses, assuming that a PCFG representing SVO
word order should be able to parse a decent number
of German sentences, but fewer than the SOV+V2
PCFG. Additionally, our PCFGs are comparable
in complexity in contrast to complexities differing
by orders of magnitude for the grammars used by
Perfors et al. (2011). Our PCFGs can thus serve as
snapshots of different hypotheses comparable in a
priori complexity that a child may at some point
compare in order to determine the word order of
their language, though they by no means exhaust
the space of hypotheses that a child may consider.

2 Methods

We hand-designed four CFGs to represent potential
competing word order hypotheses a child could
consider: SOV, SVO, SOV+V2, and SVO+V2.
The CFGs were all converted to PCFGs via the
Inside-Outside algorithm1 (Baker, 1979) over the
sentences from the German Leo corpus of the

1We gratefully acknowledge Tristan Thrush for providing
his implementation of the algorithm in Python.
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CHILDES database that each CFG could parse
(MacWhinney, 2000; Behrens, 2006). The crucial
scoring criterion to compare the different types of
grammars was the Bayes score following Perfors
et al. (2011) which can be considered by a learner
equipped with Bayesian inference capacity:

P (G,T |D) ∝ P (D|G,T ) · P (G|T ) · P (T ) (1)

where G = grammar, T = grammar type—i.e., SOV,
SVO, etc.—and D = data. So far, the only differ-
ence between our experimental setup and that of
Perfors et al. (2011) was that the PCFGs were not
trained over the same data. Therefore, the likeli-
hoods, P (D|G,T ), of the four grammars are not
directly comparable, especially because they are
each calculated over a different number of sen-
tences. Thus, the more sentences over which the
likelihood is calculated, the smaller it will be, be-
cause more probabilities are multiplied together for
the likelihood calculation. We determined how to
reconcile this fact in order to effectively compare
the four grammars.

2.1 Data Preparation

Our data consisted of the 257,644 utterances
produced by adults in the Leo corpus (Behrens,
2006). We ran the Stanford NLP tagger using the
Stuttgart-Tübingen (STTS) tag set on these sen-
tences (Toutanova et al. (2003), see the appendices
of Smith (2003) for a list of the tags). Upon closer
inspection of the data, we noticed that there were
more tagging errors and ungrammatical sentences
than we expected. Therefore, we built a pipeline
for data preparation. Overall, the pipeline removed
filler words that led to many tagging errors, as well
as very short sentence fragments unlikely to con-
tribute to learning syntactic information for the
task at hand. We excluded 97,009 sentences alto-
gether. Importantly, the data preparation pipeline
simplified the task of designing the grammars and
reduced the number of ungrammatical sentences
from the Leo corpus that they were evaluated on.

2.2 Grammar Design

The SOV+V2 grammar was hand-designed as a
representation of standard German. We stress that
advancing beyond the Perfors et al. (2011) gram-
mars, our grammar was able to parse more com-
plicated syntactic phenomena, such as questions
and negations. The terminals of the SOV+V2 CFG
consisted of the POS tags of the processed data.

Although the SOV+V2 CFG was designed to parse
German, it was still only able to parse 48.98% of
all POS-tagged sentences in the corpus and only
21.29% of unique POS strings. To determine the
extent to which residual errors left in the corpus
were to blame for this, as opposed to the shortcom-
ings of the CFG, we randomly sampled 100 POS
strings and their corresponding sentences that the
SOV+V2 CFG could parse and 100 that it could not.
We determined how many of these sentences were
grammatical, how many were tagged correctly, and
how many of the POS strings could correspond to
grammatical German sentences (s. Section 3).

The other three CFGs were derived from the
SOV+V2 CFG, such that about 80% of the CFGs
were unchanged across the grammar types. As
expected, the SOV+V2 CFG parsed the greatest
percentage of POS strings from the processed Leo
corpus (s. Figure 1). The relative ranking in parsing
ability did not change over only the unique POS
strings of our processed data.

Figure 1: The percentage of POS strings corresponding
to sentences from the processed Leo corpus that each
PCFG can parse.

2.3 Calculating the Likelihood and the Prior
To compute the posterior, we first calculated the
likelihood of the data being generated by the indi-
vidual grammars. We trained a PCFG from each
CFG using all the POS strings that the CFG could
parse from the processed Leo corpus as the training
data. Next, we determined the overall likelihood of
the data being generated from the particular gram-
mar G of type T by calculating the product of the
likelihoods of the n sentences in the data. The
likelihood of a particular sentence is determined
by summing over the probabilities of all possible
parses for a given sentence si. The greater the value
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of n, the smaller P (D|G,T ) will be, so grammars
are penalized for parsing more sentences. There-
fore, we determined the mean P (si) of each PCFG
as an average estimator for the grammar’s tightness-
of-fit per sentence. Nonetheless, the ranking of the
PCFGs’ mean P (si) was the exact inverse of the
ranking in Figure 1. We identified three characteris-
tics of the PCFGs able to parse more sentences that
could account for this: (1) greater average sentence
length, (2) greater average number of parses per
sentence, (3) greater generalizability over different
sentence types.

To confirm the role of (1) in a greater likeli-
hood of the data, we compared the mean sentence
log-likelihood across PCFGs against the sentence
length. We suspected that grammars unable to
parse many sentences, such as the SOV PCFG,
were only able to parse short sentences, which
have greater likelihoods because they require the
application of fewer production rules. The corre-
lation coefficient for the PCFGs’ mean sentence
log likelihood and mean sentence length was in-
deed -0.9971(p = 0.0029). We therefore normal-
ized each sentence’s log likelihood by the sen-
tence length in order to combat the penalty that
the PCFGs able to parse longer sentences incurred.

In addition, we suspected that longer sentences
are more likely to be ambiguous, and therefore have
more than one parse. We confirmed that this was
the case: the SOV PCFG, which had the highest
likelihood, had the lowest average number of parses
per sentence (1.33 parses/sentence vs 1.59 for SVO,
1.50 for SVO+V2, and 1.45 for SOV+V2). There-
fore, (2) might be partially responsible for PCFGs
able to parse more sentences having a lower likeli-
hood; however, it is clearly not as predictive of the
PCFGs’ data likelihoods as mean sentence length.
For this reason, we did not correct for the potential
effect of the number of parses.

Lastly, the ranking of PCFG parsing ability pre-
sented in Figure 1 was the same over just the unique
POS strings of our data, which we deem to reason-
ably approximate a grammar’s generalization to
distinct grammatical phenomena. Yet, the more
sentence types a grammar can parse, the lower is
the probability of a single sentence parse (Perfors
et al., 2011). Therefore, we inferred that PCFGs
able to parse more sentences were penalized for
their ability to generalize to a greater number of
sentence types. To counter this, we weighted the
mean sentence log likelihood, normalized by sen-

tence length, by the percentage of unique sentence
types that the PCFG can parse.

The second component of the posterior of each
grammar is the prior probability of the particular
grammar given a specific type, P (G|T ) (s. Eq. 1).
The prior of each grammar was calculated by fol-
lowing the generative process underlying the se-
lection of that grammar from the space of gram-
mars of that type, formalized in terms of a meta-
grammar, generally preferring simpler grammars
which require making less design decisions (cf. Per-
fors et al., 2011; Feldman et al., 1969). Refer to
Perfors et al. (2011) for details on the implementa-
tion. Crucially, the grammar types are all equally
likely, so the uniform P (T ) component of the prior
can be dropped from the proportion.

3 Results

3.1 Corpus Analysis

First, we assessed the critical assumption that the
system’s input resembled that of a child through
our statistical analysis of the SOV+V2 CFG’s abil-
ity to distinguish grammatical and ungrammatical
German POS strings. We used this analysis to de-
termine the approximate percentage of errors in the
processed Leo corpus.

We found that only 11% of the sampled POS
strings that the SOV+V2 CFG could not parse
were actually representative of grammatical Ger-
man sentences. Similarly, only 12% of the sen-
tences that the CFG could parse should not have
been parseable because they were not representa-
tive of grammatical sentences. From the sample er-
ror proportions, we calculated the error proportion
upper bound for the POS strings of the processed
data that the SOV+V2 CFG could and could not
parse to be 0.20 and 0.19 respectively (p < 0.05).
These upper bounds are particularly noteworthy
given that the SOV+V2 CFG can only parse 21.29%
of the unique POS strings in the processed corpus.
By calculating the total number of ungrammatical
POS strings in the entire processed Leo corpus, we
conclude that errors in the data (tagging or other-
wise) were responsible for the majority of unique
POS stings that could not be parsed. The result
of multiplying our upper-bounds and their com-
plements by the number of unique POS strings
that the SOV+V2 CFG could and could not parse is
shown in Table 1. By summing over Table 1’s right-
most column, we approximated the total number of
unique ungrammatical POS strings in the processed
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Table 1: Proportion of Grammatical/Ungrammatical
POS Strings in the Processed Leo Corpus

Grammatical
POS String

Ungrammatical
POS String

Parsed by
SOV+V2 CFG

0.80(15,916)
= 12,732

0.20(15,916)
= 3,183

Not Parsed by
SOV+V2 CFG

0.19(58,842)
= 11,180

0.81(58,842)
= 47,662

Leo corpus to be 50,845, or 68% of the total num-
ber of unique POS strings. With the assumption
that each unique ungrammatical POS string only
occurs once in the processed Leo corpus, we con-
servatively estimated that 31.65% (50,854/160,635
total POS strings) of the entire corpus are ungram-
matical POS strings. Therefore, we argue that this
data might not accurately represent a child’s lin-
guistic input because we deem adults very unlikely
to produce ungrammatical speech over 30% of the
time in their native language. Although our sub-
jective grammaticality judgments may contribute
to a somewhat inaccurate estimation of this error
proportion, this is likely counteracted by the con-
servative assumption that unique ungrammatical
POS strings only occur once in the entire processed
corpus.

3.2 Posterior Probabilities of the Grammars

The different grammars were compared using their
posterior probabilities given the processed data they
could parse, computed via Bayes’ rule (s. Eq. 1).
The prior probabilities of each of the grammars are
reported in Table 2. Rules that were never used
during training were discarded so as to compute
the prior probability only over the relevant rules.
After applying the suggested normalization steps
(s. Section 2.3), we multiplied the result by 22,657,
the number of sentences parsed by the SOV PCFG,
which parsed the smallest subset of the data. We
decided to multiply by the minimum number of
sentences parsed in order to estimate a lower bound
of the likelihood’s weight on the posteriors of the
grammars compared to the priors. We confirmed
the stability of the qualitative results reported: With
95% confidence, the log likelihood ranking of the
PCFGs will hold irrespective of the initialization.2

We realize that the PCFG preference based on the
posterior probabilities shown in Table 2 could be

2Only two initializations were performed for computa-
tional tractability reasons.

achieved by simply picking the PCFG able to parse
the greatest percentage of the corpus. However, in
different circumstances, perhaps given less error-
ridden data, or comparing grammars than can parse
approximately the same percentage of a corpus,
this may not be the case.

Table 2: All in terms of log. From left to right: pos-
terior of grammar G and type T , likelihood of data D,
and prior of G given T .

G P (G,T |D) P (D|G,T ) P (G|T )
SOV -851,854.0 -849,792.2 -2,061.8
SVO -418,402.1 -416,430.2 -1,971.9

SVO+V2 -322,738.5 -320,747.9 -1,990.7
SOV+V2 -223,738.5 -221,574.6 -2,163.9

4 Discussion

With the additional calculations called for by our
extended Bayesian model selection scheme to coun-
teract the three compounding effects of parsing a
larger subset of the data that we identified, our
system prefers the expected SOV+V2 grammar.
We recommend that our result be verified with
a demonstrably less error-ridden German child-
directed speech corpus. This error proportion may
be an artifact of the specific corpus we chose, or
the result of POS taggers performing worse on
languages other than English; however, this demon-
strates that corpus quality and POS-tagging accu-
racy should not be taken for granted. The results of
our scheme should also be compared with the pref-
erence of strict Bayesian inference over smoothed
versions of the same PCFGs augumented to parse
the entire dataset; though these require greater com-
putational resources to train.

In sum, we propose a Bayesian model selection
scheme as a more flexible model of child language
acquisition able to compare hypotheses compatible
with different subsets of a child-directed speech
corpus. We envision our flexible model selection
scheme supporting bilingual language acquisition
modeling in future research. We leave the verifica-
tion of the assumptions that children can represent
such grammars and employ Bayesian inference to
future research. Nonetheless, our scheme is espe-
cially useful when the training data is relatively
sparse or contains errors that a grammar should not
be able to parse, but would still cause the grammar
to be invalidated under strict Bayesian inference.
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