What’s in a Span? Evaluating the Creativity of a Span-Based Neural
Constituency Parser

Daniel Dakota
Uppsala University
daniel.dakota@lingfil.uu.se

Abstract

Constituency parsing is generally evaluated
superficially, particularly in a multiple lan-
guage setting, with only F-scores being re-
ported. As new state-of-the-art chart-based
parsers have resulted in a transition from tra-
ditional PCFG-based grammars to span-based
approaches (Stern et al., 2017; Gaddy et al.,
2018), we do not have a good understand-
ing of how such fundamentally different ap-
proaches interact with various treebanks as re-
sults show improvements across treebanks (Ki-
taev and Klein, 2018), but it is unclear what
influence annotation schemes have on various
treebank performance (Kitaev et al., 2019). In
particular, a span-based parser’s capability of
creating novel rules is an unknown factor. We
perform an analysis of how span-based pars-
ing performs across 11 treebanks in order to
examine the overall behavior of this parsing
approach and the effect of the treebanks’ spe-
cific annotations on results. We find that the
parser tends to prefer flatter trees, but the ap-
proach works well because it is robust enough
to adapt to differences in annotation schemes
across treebanks and languages.

1 Introduction

Constituency parsing has slowly shifted from the
once dominant PCFG-based grammar approaches
to span-based neural approaches with a high de-
gree of success (Hall et al., 2014; Cross and Huang,
2016; Gaddy et al., 2018; Kitaev and Klein, 2018;
Kitaev et al., 2019). Such a parser is not re-
stricted to the grammar extracted from training
data anymore, but instead learns which constituents
to group and which new constituent label to as-
sign from its current configuration. This is par-
allel to data-driven dependency parsing (Kiibler
et al., 2009) in that the parser learns parsing actions
rather than probabilities of rules; and it has been
used in shift-reduce constituency parsing (Cross

323

Sandra Kiibler
Indiana University
skuebler@indiana.edu

and Huang, 2016)

Not being limited by the grammar rules from
the training data is one reason for the success of
span-based neural parsers. Being able to create
novel rules' solves one of the problems of grammar-
based parsers since it is often the case that test sen-
tences contain rules in their gold standard tree that
are not present in the training data, which limited
a grammar-based parser’s ability to reach perfect
precision and recall.

In a multilingual setting, where we parse more
than one language without adjusting the parsing
approach to individual languages, there is an inter-
esting interaction between the parser’s ability to
create new rules and the language and treebank in
question. For example, the flatter the gold stan-
dard trees are, the more specific the rules, the more
different rules are needed to cover all variants of
a specific phrase, and the higher the chance that
some of these rules will not be present in the train-
ing data. Since constituent treebanks were anno-
tated with language dependent annotation schemes,
there exist dramatic differences in terms of span
length, or the number of constituent labels, depend-
ing on how much branching an annotation scheme
requires (Seddah et al., 2013, 2014).

In a multilingual setting, the parser needs to be
general enough to capture linguistic phenomena
across languages. Thus, it is important to under-
stand how the underlying mechanism interacts with
the annotations. However, an in-depth analysis of
constituency parses is difficult as trees can differ in
many different aspects, and errors tend to propagate
higher up in the tree. In order to better understand
some of the behaviors of a span-based approach, we
focus on understanding the effect of newly created

'We use the term ‘rule’ to refer to a traditional phrase
structure rule, i.e., including the mother node and the sequence
of daughter nodes; we use ‘span’ to refer to a sequence of
daughters.

Proceedings of the Society for Computation in Linguistics (SCiL) 2021, pages 323-333.
Held on-line February 14-19, 2021

rules across a range of treebanks. More specifically,
we investigate which novel rules the parser can cre-
ate correctly, and which types of errors the parser
makes when it creates incorrect rules.

We use the state-of-the-art Berkeley Neural
Parser (Kitaev et al., 2019) on the SPMRL data
set (Seddah et al., 2013, 2014), and we add the
English Penn Treebank (Marcus et al., 1993) and
the Penn Chinese Treebank (Xue et al., 2005) to
cover typologically different languages.

We begin with brief summaries of span-based
constituency parsing and in-depth evaluations in
section 2 before describing our methodology in
section 3. We then present an overview of treebank
statistics in section 4, followed by an analysis of
known rules in section 5, and of novel rules in
section 6, before concluding in section 7.

2 Previous Work

2.1 Span-Based Neural Constituency Parsing

The shift from grammar-based parsing to data-
driven parsing has first been implemented for
transition-based parsing (Nivre, 2003) and was
adapted for shift-reduce constituency parsing early
on by Sagae and Lavie (2005). However, it has only
recently been implemented in chart-based parsers
(Stern et al., 2017; Gaddy et al., 2018). Traditional
chart parsers based on PCFG grammars had one
major limitation: They assumed a complete gram-
mar, extracted from the training data. This worked
well for languages with a low ratio of unique rules,
where most of the rules were observed in the train-
ing data. However, for languages with annotation
schemes preferring flat trees, this was not true. The
first approach to address this limitation was (hor-
izontal) Markovization (Collins, 1999; Klein and
Manning, 2003), which allowed the parser a strictly
limited type of creating new rules.

This pivotal advantages of current span-based
neural parsers allows them more freedom in creat-
ing novel rules by decoupling decisions on spans
from a strict set of possible spans, and also de-
coubling decisions on spans from their constituent
labels (Cross and Huang, 2016). This freedom
has been made possible empirically by the use
of LSTMs (Hochreiter and Schmidhuber, 1997),
which provide a rich context for making span deci-
sions.

Span-based parsing encodes a constituency tree
on the span level rather than the word level. While
a span may only cover a single word, it can also

324

represent a sequence of words (i.e., a span). The
constituent label of a given span is often calculated
independently of the span, resulting in a two-step
constituent building process. A tree is considered
to be the collection of spans, thus the goal of a
span-based parser is to build up individual spans
and constituent labels into a well-formed tree.
Current span-based neural parsers tend to use
three aspects: word representations, span represen-
tations, and separate label scoring (Gaddy et al.,
2018). Note that one of the inherent flexibilities of
this approach is the separation of the identification
of a span and its constituent label into two different,
yet ultimately joined, scoring functions. Thus, the
parser is able to balance choosing the type of a span
against identifying the best split point of a larger
span. This allows the parser to have a much more
robust ability to generate novel rules. A tree is then
decomposed into the scores of its constituents, with
the optimal tree being determined via a modified
version of the CYK algorithm. Span-based neu-
ral parsing has shown a clear improvement over
prior approaches in a multilingual setting (Hall
et al., 2014; Kitaev and Klein, 2018), and currently
such approaches give state-of-the-art-performance
across multiple treebanks (Kitaev et al., 2019).

2.2 In-depth Error Analysis

Performing a detailed analysis of constituency
parses is a difficult task. Since parsing is performed
incrementally, a parsing error often propagates up
the tree, thus presenting a complex situation in
which it is impossible to determine the original
cause of an incorrect tree. The situation is even
worse in a multilingual setting since there are signif-
icant differences between the annotation schemes
for the individual languages. While the standard
evaluation consists of reporting EVALB metrics
(Sekine and Collins, 1997), there are investigations
into single linguistic phenomena (e.g., discontin-
uous constituents (van Cranenburgh et al., 2016)
or prepositional attachment (de Kok et al., 2017))
in order to isolate and analyze specific behaviors.
This means there is often a lack of depth in under-
standing the various interactions between a parsing
approach and different annotation schemes.

One of the earliest in-depth investigations was
performed by Levy and Manning (2003) on the
Penn Chinese Treebank. They found that many
errors are due to annotation decisions or ambigui-
ties. In other words, annotation decisions play an

important role in understanding global parsing deci-
sions. This is further emphasized by Kiibler (2005)
and Rehbein and van Genabith (2007) in their dis-
cussions on the comparability of performance and
evaluation based on two German treebanks with
different annotation schemes.

Kummerfeld et al. (2012, 2013) performed a set
of analyses on the English PTB and Chinese PTB
respectively by developing a visualization tool for
errors.? This provided deeper insights into the be-
havior of various constituency parsers in order to
identify systematic linguistic errors. Errors were
mainly PP and clause attachment for English. Ad-
ditionally, gold POS tags did not lead to an im-
provement in verb-argument attachment and co-
ordination scope in Chinese. This is supported
by Dakota (2018) who found that improvements
on the POS level on the German TiGer treebank
(Brants et al., 2004) did not necessarily equally
percolate to higher level projections. Many perfor-
mance aspects can be attributed to various treebank
annotation decisions and are not easily overcome,
particularly if the annotations are inconsistent.

Work by Nguyen et al. (2018) investigated the
low resource language of Vietnamese by comparing
several non-neural and neural parsers to identify
sources of common errors. While POS tagging er-
rors did contribute to problems for specific phrase
types, they were not the predominant issue in re-
gards to NPs and PPs, rather inherent ambiguity in
the language was the main cause. In the same vein,
work by Kim and Park (2020) for Korean shows
that neural parsers improve substantially in error
reduction over their non-neural counterparts, but
the most common remaining errors are still those
related to long distance attachments.

3 Methodology

Treebanks We use the SPMRL dataset (see (Sed-
dah et al., 2013, 2014) for details on the treebanks
and annotation schemes), the English Penn Tree-
bank (Marcus et al., 1993), and the Penn Chinese
Treebank V5 (Xue et al., 2005) as our constituency
treebanks, the former being the de-facto standard
for multilingual evaluation. We use the standard
train, dev, test splits for each treebank>. The dev

*https://github.com/jkkummerfeld/berkeley-parser-
analyser/

3We use standard train, dev, and test sets for English and
Chinese, which equates to the the first 5000, 500, and 500
sentences in the train, dev, and test for both. For Arabic, we
remove sentences longer than 266 words as these sentences

325

sets are used to optimize the parser, and we eval-
uate on the test sets. We use the 5k training sets.
From the dev and test sets, we select the first 500
sentences in the dev and test sets to ensure repli-
cability. The small data sizes were chosen for two
reasons: 1) This normalizes the size of the data sets
across the languages and gives us a better basis for
cross-linguistic comparisons. 2) It maximizes the
effect of rule creation since the parser has not been
exposed to as many rules, providing us with more
examples of possible new rules. We do, however,
recognize that results would be different when us-
ing the full sets or any random sampling of the test
sets, as shown by Dakota and Kiibler (2017).

Parser We use the Berkeley Neural Parser, which
has previously achieved state of the art results on
all datasets used here (Kitaev et al., 2019). The
parser uses a span-based model derived from Stern
et al. (2017) and subsequently Gaddy et al. (2018)
with self-attention and pre-training. We follow the
experimental setup provided with the parser with
one modification: Because of the small training set
size, we check performance on the dev set once
per epoch rather than the default of four. We also
remove all grammatical functions (such as subject
or direct object) from the data before training, as
the parser, when given the full treebank represen-
tations, will use grammatical functions for opti-
mization, but then discards them when evaluating.
This would introduce another variable to our exper-
iments.

Evaluation We evaluate using the scorer for the
SPMRL 2014 shared task?, a re-implementation of
EVALB? that was distributed with the task as well
as being the evaluation used for development of the
parser.

The following analyses are performed per sen-
tence rather than per rule. We focus on an analysis
of the test set with regard to the training set. We
recognize the influence of the dev set for parser
optimization, but considering this interaction is be-
yond the scope of this work. Most of the results
are too long for BERT and thus not used by the Berkeley
Neural Parser as per the experimental setup provided with the
parser, resulting in 4994 training sentences. The dev set was
not affected. For Chinese, 8 sentences were removed from
trainSk and 3 from dev due to lack of roots, resulting in 4992
and 347 sentences respectively. We also note that for both
Swedish and Hebrew, 5000 sentences is the max training size
available, and Swedish has only 494 dev sentences, Hebrew
500.

*http://spmrl.org/spmrl2014-sharedtask

Shttp://nlp.cs.nyu.edu/evalb/

on the treebanks we use were reported on test. We
perform our analysis on the test sets to allow for a
measure of comparability.

4 Treebank Rule Statistics

Before we can start looking at parser performance,
we need a better understanding of the differences
between treebanks. In Table 1 we present rule
statistics and evaluation across the trainSk and
test500 sets. Given the nature of our data splits,
there are no adequate direct comparisons that can
be made with the performance, with the closest
being Dakota and Kiibler (2017) who examined
the variation in performance evaluation when ran-
domly selecting 500 test sentences on a subset of
languages in the SPRML dataset, the English PTB,
and Chinese PTB; however, they used a PCFG-LA
parser (Petrov and Klein, 2007) and no optimiza-
tion on a dev set was performed.

A first look at the numbers in Table 1 shows
radically different numbers of rules present in the
various sets, despite very similar set sizes. The
same holds for the number of rule types (i.e., a
rule S — NP VP would count as one rule type
regardless of how often it occurs). Thus for Arabic,
although there are almost 230 000 total rules in
train, there are only roughly 4 200 rule types to
which the parser is exposed to during training.

We also provide the ratio of rule types to total
rules and number of constituent types (Const; e.g.,
NP or VP) per data set. This gives a general indica-
tion of the rule complexity inherent in each of the
data sets, though it does not show the distribution
within each of the constituent types®. We see that
most languages in the trainSk range between a ratio
of 0.04 and 0.06, but there are some extreme out-
liers with Polish at 0.0043 and German at 0.1488.
Polish may simply have the least rule complexity
to learn, but it may also exhibit a coarse grained
annotation scheme, resulting in fewer rule types.
German may have an intrinsically higher rule com-
plexity, but it is more likely that the high ratio is
related to the flat annotation scheme. The number
of unique constituent types ranges from eight on
the low end (Korean and Swedish) to upwards of
65 for Hebrew.

Looking at the test sets, we see a noticeable in-
crease in the ratios. This is to be expected due to

®This information was collected and is available
along with code to extract rules for individual tree-

banks at https://github.com/ddakota/neural_
parser_span_productivity.

326

the much smaller sizes, but for some languages
such as Hebrew and Polish, there is no substantial
increase in the ratios. Other languages, such as
Swedish, Korean, French and especially German,
see rather large increases in the ratio; for German,
the rule types make up a third of all rules, pointing
to a high number of unique rules. For complete-
ness we also provide the F-scores. Note that these
cannot be compared to previous work because of
the small test set size.

5 Known Rules

We first have a closer look at known rules used in
the parse trees. By known rules we mean rules
that have been seen in the training data, but not
necessarily for the sentence under consideration.
L.e., we are interested in how often the parser pro-
duces known rules and how often those are correct
or wrong.

Table 2 shows statistics about known rules. Row
1 gives the absolute number of rules in the gold test
sentences, and row 2 the equivalent for the parsed
trees. Row 3 gives the percentage of known rules
that are predicted correctly, i.e., are also observed
in the gold tree of the test sentence. Row 4 shows
the percentage of known rules that were incorrect’ .
Row 5 shows the percentage of cases from row
4 where the incorrect rule has the correct yield
(i.e. covers the same words). Row 6 shows the
corresponding percentage of incorrect rules with
incorrect yield.

We observe that the numbers of rules in the
parsed trees are very similar to the numbers in the
gold trees. The highest difference occurs for He-
brew?, with 182 more rules in the gold trees, and
for German, with 181. However, the ratio of known
rules that were predicted correctly (row 3) varies
considerably: On the one extreme, Polish shows
a ratio of 95.54%, in contrast to German, which
shows only 73.03%, and to Korean’s 77.01%. Over-
all, however, all of these ratios are above 70%; all
but German and Korean are above 80%. This tells
us that in most cases, known rules are parsed cor-
rectly. Row 4 shows the opposite, i.e., the percent-
age of known rules that were not parsed correctly.

Rows 5 and 6 in Table 2 split the incorrectly
parsed known rules into cases where the yield of

"We note that percentages in rows 3/4 and 5/6 do not add
to 1 due to unary nodes.

8For better readability, we use the terms language and
treebank indiscriminately since we look at one treebank per
language.

Train5k Test500 Eval
Language Total Type Ratio AvgLen Const Total Type Ratio AvgLen Const | F-Score
Arabic 226726 4214 0.0186 44.68 22 | 17368 917 0.0528 35.31 18 87.38
Basque 72090 3431 0.0476 12.38 11| 6917 672 0.0972 11.70 11 90.47
Chinese 129500 2064 0.0159 24.56 28 | 8530 415 0.0487 23.01 19 89.49
English 93585 4355 0.0465 24.01 26 | 9356 1038 0.1110 23.78 19 92.68
French 101464 7942 0.0782 30.20 29 | 10155 1454 0.1432 30.06 27 85.40
German 36754 5468 0.1488 17.57 23 | 3555 1157 0.3255 17.25 20 85.73
Hebrew 257381 3788 0.0147 25.61 65 | 23034 854 0.0371 23.02 56 93.77
Hungarian | 102 827 5670 0.0551 22.00 15| 8916 906 0.1016 18.49 15 94.07
Korean 73816 2844 0.0385 11.56 81| 7977 911 0.1142 12.37 8 82.75
Polish 134 549 564 0.0042 10.18 35 | 13675 295 0.0220 10.28 33 95.66
Swedish 62214 3694 0.0594 15.27 8| 6240 887 0.1421 15.37 8 88.82

Table 1: Rule statistics for training and test sets. Total is all found rules, Type is the unique number of rules, while
Ratio is type/total ratio of rules. Avg Len is the average number of words per sentence and Const is the set of

constituent labels.

Ara. Bas. Chi. Eng. Fre. Ger. Heb. Hun. Kor. Pol. Swe.
1) No. gold rules 17368 6917 8530 9356 10155 3555 23034 8916 7977 13675 6240
2) No. parsed rules 17347 6922 8461 9340 10119 3374 23216 8899 7998 13669 6147
3) % parsed N train N gold 89.47 86.88 90.85 89.40 80.44 73.03 9329 84.58 77.01 9554 84.32
4) % parsed N train N — gold 877 9.17 693 751 1194 1295 540 6.04 2051 3.82 10.85
5) 4. + correct yield 61.10 64.72 60.75 69.61 56.21 51.72 74.62 63.38 72.07 82.18 56.72
6) 4. + wrong yield 3890 35.28 39.25 30.39 4379 4828 2538 36.62 2793 17.82 43.28

Table 2: Known rules in the parsed test sentences.

the rule is correct and where the yield is not cor-
rect. The former are cases where the parser found
a correct constituent, but either the constituent la-
bel is wrong, or the internal structure in terms of
daughter nodes is incorrect. The latter are the more
concerning cases where the parser did not find a
correct constituent. This could indicate that the
parser is too conservative in the sense that it has
a tendency to overuse known rules instead of cre-
ating novel ones. The statistics show that there
is a significant amount of parsed rules that follow
this pattern. Polish and Hebrew have the fewest
with 17.82% and 25.38%. On the other end is Ger-
man with 48.28%, i.e., almost half of all incorrectly
parsed known rules are structurally wrong. Next in
line are French and Swedish with percentages of
around 43%. Note that these languages are also the
languages with the highest ratio of unique rules in
the test data (see Table 1) while Polish and Hebrew
have the lowest ratios.

Overall, most of the known rules are parsed cor-
rectly, and most of the incorrectly parsed rules have
the correct yield. However, there are considerable
differences across languages. The ratio of incorrect
rules with the wrong yield, the more detrimental
type of error, seems to be correlated with the ratio
of unique rules.

327

6 Novel Rules

Now we turn to our primary interest: The parser’s
ability to produce novel rules, i.e., rules that have
not been seen in training, and could not be pro-
duced by a traditional, grammar-based CYK parser.
We distinguish between cases where those novel
rules are correct (section 6.1) and where they are
incorrect (section 6.2).

6.1 Correct Novel Rules

Here, we focus on novel rules that were parsed cor-
rectly. This gives us an indication to what degree
the parser can use context information to create the
correct rule. Le., for every sentence, we identify if
there are gold rules not found in the training set and
then determine whether the parser can create these
novels rules. The results are shown in Table 3.
One instant observation is that for most lan-
guages, the parser produces (many) more novel
rules than in the gold trees, indicating the ability of
the parser to develop novel rules. The exceptions
are Korean, for which the parser produces fewer
novel rules, and Hungarian, for which the parser
produces only slightly more novel rules (381 vs.
364). There is, however, a significant variance be-
tween languages when we look at how many of the
novel rules are correct. Both German and Hungar-

Language | Gold Parsed Correct | Most freq. const Avg. no. daughters

Arabic 242 305 41 | VP (31),NP (4),S (3) VP (3.42), NP (1.79), S (2.08)
Basque 188 273 47 | S (34), SP (5), SN (4) S (3.09), SP (1.55), SN (1.63)
Chinese 47 188 11 | VP (5),NP (5),IP (1) VP (2.18), NP (1.78), IP (2.22)
English 255 301 92 | NP (41), VP (33), S (7) NP (2.21), VP (2.31), S (1.73)
French 552 771 166 | SENT (67), NP (36), VN (15) | SENT (5.91), NP (2.40), VN (1.71)
German 442 473 209 | S (148), VP (20), PP (19) S (3.80), VP (2.51), PP (2.70)
Hebrew 206 305 49 | S (26), S-ROOT (19), NP (2) | S (3.13), S-ROOT (5.02), NP (1.72)
Hungarian | 364 381 204 | CP (195), NP (6), XP (2) CP (4.86), NP (2.04), XP (3.65)
Korean 244 199 27 | NP (23), VP (3), AUXP (1) NP (1.56), VP (2.04), AUXP (1.86)
Polish 14 87 2 | fpt (1), fno (1) fpt (1.19), fno (1.45)

Swedish 265 298 94 | S (63), NP (16), VP (12) S (3.26), NP (1.76), VP (2.44)

Table 3: Correctly parsed novel rules. Gold and Parsed are the number of rules not found in train5k and Most freq.
const and avg. no. daughters show the top three constituent labels for rules from the parse trees.

S
PP VVFIN ADV NP PTKVZ
— | | |
Im Dezember duckte namlich weg

auch der Fraktionsvorsitzende

Figure 1: Correct novel S rule from the German trebank. (Eng.: In December even the chairman of the parliamen-

tary group sidestepped.)

ian are on the high end with a match rate of 47.3%
(209/442) and 56% (204/364) correct respectively,
while most other languages range between 13%
and 30%. Polish is an extreme case, it has only 14
novel rules in the gold trees, which makes sense
in the light of the statistics in Table 1, showing
that Polish has short sentences (on average 10.28
words) and a low ratio of unique rules (0.0220).
Additionally, Polish has the highest ratio of correct
gold rules and incorrect rules with the correct yield
(see Table 2). However, the parser still creates 87
novel rules, only two of which match the gold rules.
These results may indicate that the parser’s creativ-
ity would benefit from added constraints in certain
situations.

Returning to Table 3, the average number of
daughters in parse trees’ can be seen as an indica-
tion of how flat or hierarchical the parser prefers
its trees. When examining the most frequent con-
stituent labels in novel rules from the parse trees,
most languages show one particular label as the
dominant source of correct novel rules, and for

Gold trees in the test set are very similar in terms of
average number of daughters, the only exceptions are English
and Swedish S nodes, which are considerably longer in the
gold test trees. German also shows slight variation.

almost all it is either an S type or an NP, the ex-
ception being Arabic, where it is a VP. With regard
to the daughters, Polish prefers very short phrases.
However, for both German and Hungarian, the lan-
guages with the highest ratio of correctly parsed
novel rules, the most frequent label (S and CP re-
spectively) has many daughters while the other
two labels have considerably fewer. This seems
to be an indication that S and CP collect unattached
constituents in the respective annotation schemes.
Figure 1 shows an example of a German sentence
collecting constituents under the S node.

6.2 Incorrect Novel Rules

Next we look at novel rules that are parsed incor-
rectly. First, we identify novel rules in every gold
test sentence, and if a novel rule is found, we see
if it is also found in the parsed tree for that sen-
tence. If the parser produces a novel rule not found
in the corresponding gold test sentence (i.e., it is
incorrect), we group it into one of four types of
errors. We explicitly exclude sentences in which
the parsed tree is incorrect, but the rule is known!©,

9The rule, however, may exist in another test gold sentence,
but does not exist in the current gold test sentence.

328

VP VP
PP VVPP PP VVFIN
Bei Licht besehen BeiLicht besehen

Figure 2: Type 1 error (gold left, parse right; Eng.: In
the cold light of day).

S
VMFIN NP APPR
\ \
Il ..
soflte der BA-Bundesanteil iiber
S
VMFIN ART NN APPR
\ \ \ \
sollte der BA-Bundesanteil iiber

Figure 3: Type 2 error (gold top, parser bottom; Eng.:
should the BA federal portion [be] above ...).

We focus on this type of error since we assume the
parser will prefer known rules (see Table 2), and
such situations where the parser produces a com-
pletely novel span can give us insights into where
the parser’s creativity needs to be constrained or
modified.

Error Types Since the annotation schemes
across the languages are very different, defining
error types that generalize across treebank annota-
tions is difficult. We define four error types that
are relevant on a rule level, but also collect addi-
tional statistics that allow a glimpse of the treebank
specific errors. The four types of errors are:

T1 Label errors: The parser covers the same
yield as the gold tree and has the same daugh-
ters, but at least one label (either mother or
daughter, including POS daughters) is differ-
ent (see Figure 2 for an example)''.

T2 Flatness errors: The parsed rule covers the
same yield but contains more daughters (i.e.,
it is flatter than the gold tree (Figure 3).

'The examples are taken from the German treebank.

329

PP
APPR NN NE
| | |
durch ~ CDU-Spitzenmann Schéuble
PP
PP NN
|
Schiuble

durch CDU-Spitzenmann

Figure 4: Type 3 error (gold top, parser bottom; Eng.:
by CDU head Schiuble).

T3 Hierarchy errors: The parsed rule covers
the same yield but contains fewer daughters
(i.e., it is more hierarchical) than the gold tree
(Figure 4).

T4 Unmatched errors: The parser covers a yield
for which there is no corresponding gold rule
(in terms of yield; Figure 5).

Note that the error types are strictly based on
single rules (and their yields). We do not make
claims about errors in other parts of the trees, in-
cluding the subtrees below the daughters, though
we assume that the parser has selected the rule at
this level in the tree based on the composition of
the daughters up to this projection layer. We also
need to point out that some errors fit into more than
one type and are thus counted more than once.

Analysis Table 4 shows an overview of the error
types in novel rules across the languages. We first
see that almost a quarter of the total errors across
the treebanks can be viewed as label errors (T1),
further suggesting that actual identification of novel
rules is quite successful. On the low end, this type
constitutes around 16% of total errors for French
(though the overall number of errors is high for
French). On the high end, Korean has around 60%,
and most languages fall between 20-30% of label
errors. Given that many rules in the test set are
unique, it is to be expected that a large number of
errors involves wrong labels, but the parser seems
to be able to identify novel rules. For Korean, the
parser favors NP labels (with about 2/3 of the label
errors being NPs), potentially because these are the

[VROOT ...[S [CPP [PP [APPR von] [ADV da] [APZR an]] [KON und] [PP [APPR bis] [CARD 1987]]]
[ADV jedoch] [AP [AVP [ADV nur] [ADV noch]] [CARD 46]1] [$. .]
[VROOT ...[PP [APPR von] [ADV da] [APZR an]] [KON und] [AP [PP [APPR bis] [CARD 1987]]
[ADV jedoch] [AP [ADV nur] [ADV noch] [CARD 46]1] [$. .1]

Figure 5: Type 4 error (marked in bold; Eng.: but from then on and till 1987 only 46).

Lang. Rules | T1 T2 T3 T4 | Total
Arabic 154 39 78 17 53 187
Basque 141 36 29 23 56 144
Chinese 60 | 24 17 7 21 69
English 137 46 49 15 29 139
French 506 | 87 142 89 225 543
German 231 | 55 122 39 55 271
Hebrew 149 | 52 105 15 38 210
Hungarian 140 | 36 109 15 37 197
Korean 103 | 64 12 4 25 105
Polish 10 4 4 2 2 12
Swedish 148 | 31 72 9 36 148
Total 1786 | 472 739 241 5711|2033

Table 4: Error types for novel rules per language (T1:
label errors, T2: flatness errors, T3: hierarchy errors,
T4: unmatched errors).

most frequent type of unique rules.

Across the board, flatness errors (T2) are more
common than hierarchy errors (T3), and Ger-
man, Hebrew, Hungarian, and Swedish are heavily
skewed towards flatness errors. This suggests that
the parser prefers flatter tree structures. For Ger-
man, this is understandable since the annotation
scheme does not project to the noun phrase level in-
side a prepositional phrase so that the parser needs
to learn from context when it needs an NP node
and when it does not.

Another interesting observation concerns the dif-
ference between the number of rules and the total
number of errors. If the difference is high, then
many rule errors fall into more than one error type.
Basque, English, Korean, Polish, and Swedish have
very few multiple errors. However, for Hebrew and
Hungarian, there are almost 50% errors falling into
more than one type. These languages are both po-
larized towards flatness errors, suggesting that the
parser’s preference for flatter rules results in mul-
tiple error types; a trend that Arabic, French, and
German also demonstrate. Swedish has no double
errors. This strongly suggests that the wrong pro-
jections in Swedish are higher up in the tree and
do not percolate upwards. This is supported by the
fact that S is the type of constituent with the highest
count of incorrect novel rules (see Table 5).

330

We also see the prevalence of unmatched errors
(T4) across languages, i.e., errors that do not have
any correspondence in the gold tree. French is an
extreme outlier on the upper end with around 40%
of errors of this type. This seems to be due to
a single constituent type, multi-word expressions
(MWESs; see Table 5). The parser seems to over-
generalize this constituent to cover sequences of
numbers.

Table 5 shows the most frequent error types per
constituent type'?. Most languages fall into one of
two categories: those with many S type phrase er-
rors (Basque, French, German, Hebrew, Hungarian,
and Swedish) and those with more balanced error
types, with potentially one or two outliers (Chinese,
English, and Korean). This is a continuation of the
results in Table 3 in that these languages also pos-
sess high unique ratios of S phrases, thus are also
prone to errors on the same phrases.

In contrast, Arabic shows a distinct trend of hav-
ing primarily VP errors, as it did with correct VP
rules. When looking at individual treebank statis-
tics, Arabic has, on average, the longest VP rules
in terms of number of daughters, at over 3.23 in the
training sentences and 3.42 in the test sentences.
(All other language are below 3, with an average
around 2.) The longest Arabic VP has 28 daugh-
ters. As a consequence of the length of Arabic VPs,
the parser seems to prefer flatter parses that attach
more constituents directly to a VP. While just under
10% of the VPs in the training set are unique, this
increases to around 25% in the test set. However,
this factor alone cannot explain the VP errors since
German shows a unique VP ratio of about 20% in
the training set and 44% in the test set, but does not
have such a large number of VP errors.

One possible explanation can be found in the fact
that Arabic has free word order, which means that
many different configurations are possible under
the VP node.

2We exclude Polish because of its small number of errors.

Arabic Basque Chinese | English French German Hebrew Hungarian Korean Swedish
label VP (11) S (16) NP (9) | NP (26) | SENT (20) | S (26) S (10) CP (28) NP (41) S (13)
ADIJP (6) | GRUPNOM (6) | VP (5) VP (7) NP (19) NP (8) NP (9) NP (4) | ADJP(11) | NP (6)
NP (5) GV (5) ADVP (3) | PP (4) PP (7) CNP (5) | S-ROOT (7) | ADJP (2) VP (8) PP (4)
flatness VP (37) S (27) VP (6) | VP(18) | SENT (55) | S(84) | S-ROOT (65) | CP (100) VP (6) S (38)
S (17) SN (1) 6 (NP) | NP (16) | NP (25) PP (14) S (15) NP (6) NP (4) NP (12)
NP (11) SADV (1) CP (3) S PP (14) VP (11) NP (12) XP (3) ADJP (2) | VP(8)
hierarchy VP (12) S (15) IP (4) VP (6) | SENT (34) | S(22) | S-ROOT (10) | CP (15) NP (4) S (6)
S4) SP (3) NP (2) NP (3) NP (22) PP (5) S 4) XP (1)
NP (1) SADV (2) VP (1) S(3) Sint (11) VP (5) VP (1) NP (1)
unmatched | NP (17) SN (13) VP (6) VP (8) | DET+ (60) | PP (19) S (9 CP (21) NP (14) S
VP (16) S (12) NP (4) NP (6) NP (46) NP (9) NP (5) NP (9) ADJP (4) | NP (9)
PP (7) GV (10) ADVP(33) | S(5) PP (28) S8 PP (4) ADJP (3) | AUXP(3) | VP(7)

Table 5: The most frequent error types per constituent type.

7 Conclusion & Future Work

We have started the first (to our knowledge) mul-
tilingual error analysis of how a span-based neu-
ral parser behaves across languages and treebanks,
with a focus on the parser’s creativity. We were
able to identify some generalized behaviors but also
its interaction with treebank-specific annotations.

Overall, the parser is good at creating new rules,
and incorrect parses for novel rules tend towards
the less serious errors (T1). For a range of lan-
guages, however, the parser has a tendency to over-
generate novel rules, including languages that have
a large ratio of unique rules. It also has a tendency
to create flat structures, which tend to collect con-
stituents it could not group otherwise.

Consequently, the parser may benefit from more
constraints to reduce over-generations and prefer-
ences for flatter structures, but it may be difficult
to generalize constraints across multiple treebank
annotations. Areas worth exploring are examining
how the rule errors change over the development
set within each epoch of training to better under-
stand where the parser is quickly able to optimize
for specific rule and label types, and where the
parser shifts its preferences in order to increase per-
formance, and the subsequent trade-offs. Another
approach may be using grammatical functions as
natural constraints that provide additional informa-
tion to distinguish between structures.

Additionally, it would be worthwhile to examine
treebanks for the same language that contain differ-
ent annotation schemes to determine whether the
effects we found are due to language or treebank
characteristics.

Another more theoretical angle is examining
what exaclty is encoded in the pretrained language
models used in the parsers. Probing techniques
have been applied in dependency parsing (Hewitt
and Manning, 2019; Kulmizev et al., 2020) to ex-

331

tract trees from language models such as BERT
and ELMO (Peters et al., 2018). Such avenues of
research could be extended to constituency parsing.

Acknowledgements

The authors would like to thank the members of the
Uppsala NLP Parsing Group: Joakim Nivre, Sara
Stymne, Artur Kulmizev and Ali Basirat, as well
as the reviewers for their comments. The first au-
thor is supported by the Swedish strategic research
programme eSSENCE.

References

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia
Hansen, Esther Konig, Wolfgang Lezius, Christian
Rohrer, George Smith, and Hans. Uszkoreit. 2004.
TIGER: Linguistic Interpretation of a German Cor-
pus. Journal of Language and Computation, 2004
(2):597-620.

Michael Collins. 1999. Head-Driven Statistical Meth-
ods for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language
Modelling, 4(1):57-111.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1-11, Austin,
Texas.

Daniel Dakota. 2018. Using Distributional Word Rep-
resentations for the Statistical Constituency Parsing
of German. Ph.D. thesis, Indiana University.

Daniel Dakota and Sandra Kiibler. 2017. Towards
Replicability in Parsing. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing, RANLP 2017, pages 185-194,
Varna, Bulgaria.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 999-1010, New Orleans, Louisiana.

David Hall, Greg Durrett, and Dan Klein. 2014. Less
grammar, more features. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics), pages 228-237, Baltimore,
Maryland.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129-4138, Minneapolis, Minnesota.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
8(9):1735-1780.

Mija Kim and Jungyeul Park. 2020. A note on con-
stituent parsing for Korean. Natural Language Engi-
neering, page 1-24.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3499-3505, Florence, Italy.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 26762686, Mel-
bourne, Australia.

Dan Klein and Christopher Manning. 2003. Accurate
Unlexicalized Parsing. In Proceedings of the 41st
Annual Meeting on Association for Computational
Linguistics, pages 423-430, Sapporo, Japan.

Daniél de Kok, Jiangiang Ma, Corina Dima, and Erhard
Hinrichs. 2017. PP attachment: Where do we stand?
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 311-317, Valencia, Spain.

Sandra Kiibler. 2005. How Do Treebank Annotation
Schemes Influence Parsing Results? Or How Not to
Compare Apples And Oranges. In Proceedings of
the International Conference on Recent Advances in
Natural Language Processing RANLP 2005, pages
293-300, Borovets, Bulgaria.

Sandra Kiibler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan Claypool.

Artur Kulmizev, Vinit Ravishankar, Mostafa Abdou,
and Joakim Nivre. 2020. Do neural language mod-
els show preferences for syntactic formalisms? In

332

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4077—
4091, Online.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of er-
ror types in parser output. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1048-1059, Jeju Is-
land, Korea.

Jonathan K. Kummerfeld, Daniel Tse, James R. Curran,
and Dan Klein. 2013. An empirical examination of
challenges in Chinese parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, pages 98—103, Sofia, Bulgaria.

Roger Levy and Christopher Manning. 2003. Is It
Harder to Parse Chinese, or the Chinese Treebank?
In Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics, pages 439—
446, Sapporo, Japan.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313-330. Penn Tree-
bank.

Quy Nguyen, Yusuke Miyao, Hiroshi Noji, and Nhung
Nguyen. 2018. An empirical investigation of er-
ror types in Vietnamese parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3075-3089, Santa Fe, New Mex-
ico.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149-160, Nancy, France.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227—
2237, New Orleans, Louisiana.

Slav Petrov and Dan Klein. 2007. Improved Infer-
ence for Unlexicalized Parsing. In Proceedings of
Human Language Technologies 2007: The Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 404411,
Rochester, NY.

Ines Rehbein and Josef van Genabith. 2007. Treebank
Annotation Schemes and Parser Evaluation for Ger-
man. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 630-639, Prague, Czech
Republic.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Pars-
ing Technology, pages 125-132, Vancouver, British
Columbia.

Djamé Seddah, Sandra Kiibler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 Shared Task on Pars-
ing Morphologically-rich Languages. In Proceed-
ings of the First Joint Workshop on Statistical Pars-
ing of Morphologically Rich Languages and Syn-
tactic Analysis of Non-Canonical Languages, pages
103-109, Dublin, Ireland. Dublin City University.

Djamé Seddah, Reut Tsarfaty, Sandra Kiibler, Marie
Candito, Jinho D. Choi, Richiard Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiérkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Wolinski, Alina Wréblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 Shared Task: A Cross-Framework Evaluation
of Parsing Morphologically Rich Languages. In Pro-
ceedings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, pages 146—
182, Seattle, Washington, USA.

Satoshi Sekine and Michael Collins. 1997.
EVALB Bracket Scoring Program.
http://nlp.cs.nyu.edu/evalb/.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, pages 818—
827, Vancouver, Canada.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Palmer
Marta. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2):207-238.

333

