
Proceedings of the Conference on Reasoning and Interaction (ReInAct), pages 47–52
October 4-6, 2021. ©2021 Association for Computational Linguistics

47

Decoupling Pragmatics: Discriminative Decoding for Referring
Expression Generation
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Abstract

The shift to neural models in Referring Ex-
pression Generation (REG) has enabled more
natural set-ups, but at the cost of interpretabil-
ity. We argue that integrating pragmatic rea-
soning into the inference of context-agnostic
generation models could reconcile traits of tra-
ditional and neural REG, as this offers a sepa-
ration between context-independent, literal in-
formation and pragmatic adaptation to context.
With this in mind, we apply existing decod-
ing strategies from discriminative image cap-
tioning to REG and evaluate them in terms of
pragmatic informativity, likelihood to ground-
truth annotations and linguistic diversity. Our
results show general effectiveness, but a rela-
tively small gain in informativity, raising im-
portant questions for REG in general.

1 Introduction

In recent years, neural models have become the
workhorses for Referring Expression Generation
(REG, e.g. Mao et al., 2016; Yu et al., 2016; Zarrieß
and Schlangen, 2018), as in other tasks in the Vi-
sion and Language (V&L) domain (Mogadala et al.,
2019). In REG, this was accompanied by a major
shift in how the task was conceptualized. Classical
approaches (e.g. Dale, 1989; Dale and Reiter, 1995)
mostly investigated rule-based procedures to deter-
mine combinations of properties that distinguish
target objects from distractors, based on knowledge
bases of objects and associated attributes (Krahmer
and van Deemter, 2019). Recent work in REG has
shifted to more natural settings (e.g. objects in
photographs, cf. Figure 1), but at the expense of
interpretability: Since continuous representations
have replaced knowledge bases as the input, prag-
matic processes in neural REG no longer operate
on symbolic properties, but are deeply woven into
model architectures and training schemes.

Greedy traffic light
Beam traffic light
ESλ0.5 red light
RSAα1.0 stop light

Figure 1: Example from RefCOCO. ES and RSA de-
scribe the target (marked green) less ambiguously.

Decoding and reasoning methods for discrim-
inative image captioning (Vedantam et al., 2017;
Cohn-Gordon et al., 2018) could represent a middle
ground in this regard: During inference, predictions
from a captioning model are reranked according to
pragmatic principles, boosting contextually infor-
mative and inhibiting ambiguous utterances. This
offers interesting similarities to traditional REG,
as it is carried out through explicit algorithms and
targets symbolic representations (e.g. word tokens).
Discriminative decoding has been shown to be ef-
fective for image captioning (Vedantam et al., 2017;
Cohn-Gordon et al., 2018; Schüz et al., 2021). In
this work, we investigate discriminative decoding
for REG, adapting the methods from Vedantam
et al. (2017) and Cohn-Gordon et al. (2018). We
compare them to standard greedy and beam search
decoding, in terms of informativity, likelihood to
ground-truth annotations, and linguistic diversity.
We show that discriminative decoding increases
informativity and diversity, although the results are
less clear than expected. We attribute this, in part,
to the way human annotations are collected, high-
lighting implications for REG research in general.

2 Background

Traditional and neural REG In REG, the goal
is to generate descriptions for entities, which al-



48

low their identification in a given context (Reiter
and Dale, 2000); i.e. generating expressions with
sufficient, but not too much information, follow-
ing a Gricean notion of pragmatics (Grice, 1975;
Krahmer and van Deemter, 2019). In classic work,
target and distractor objects were defined in terms
of symbolic attributes and associated values (e.g.
color - red). The full REG task was conceived as
involving different levels of processing, i.e. lexi-
calization, content selection and surface realization
(Reiter and Dale, 2000; Krahmer and van Deemter,
2019). However, foundational work in REG has
mostly focused on algorithms for finding distin-
guishing sets of attribute-value pairs, which apply
to the target, but rule out distractor objects, such
as the Incremental Algorithm (IA, Dale and Reiter,
1995). This algorithm iterates over the attribute set
in a pre-defined order, selects an attribute if it rules
out objects from the set of distractors and termi-
nates when the set is empty. It has been refined,
extended and tested in subsequent work (Krahmer
et al., 2003; Mitchell et al., 2010; van Deemter
et al., 2012; Clarke et al., 2013).

In recent years, neural models have enabled REG
set-ups based on real-world images (Kazemzadeh
et al., 2014; Gkatzia et al., 2015; Mao et al., 2015;
Zarrieß and Schlangen, 2016, 2018; Tanaka et al.,
2019; Liu et al., 2020; Kim et al., 2020; Panagia-
ris et al., 2020, 2021), representing scenes with
many different types of real-world objects. Most
commonly, neural REG models follow the encoder-
decoder scheme and are trained end-to-end. Based
on low-level visual representations as the input,
various aspects of the task are modeled jointly, e.g.
lexicalization and content selection.

Neural Generation and Pragmatics Various
approaches were proposed to generate more dis-
criminative expressions in neural REG, such as
specialized training objectives (Mao et al., 2016),
enhanced input representations and joint genera-
tion for objects in the same scene (Yu et al., 2016),
listener / comprehension components or reinforce-
ment modules (Luo and Shakhnarovich, 2017; Yu
et al., 2017), and classifiers which predict attributes
for depicted objects (Liu et al., 2017, 2020). Here,
the REG models are trained to jointly determine
truthful descriptions for depicted objects and for-
mulate expressions that are unambiguous in a given
context. Hence, semantic and pragmatic processing
are tightly intertwined, preventing a clear separa-
tion between context-independent information and

pragmatic adaption as in traditional REG.
In image captioning, e.g. Andreas and Klein

(2016); Vedantam et al. (2017); Cohn-Gordon et al.
(2018) tried to generate pragmatically informative
captions, by decoding general captioning models,
at testing time, to produce captions that discrimi-
nate target images from a given set of distractor im-
ages. This corresponds more closely to approaches
such as the IA, as it takes place over a finite set
of symbolic (word) tokens and leaves the literal
generation process untouched. In this work we use
the methods proposed by Vedantam et al. (2017)
and Cohn-Gordon et al. (2018) and adapt them to
neural REG. For evaluation, we roughly follow the
experimental set-up from Schüz et al. (2021) and
consider likelihood to human annotations, infor-
mativity and diversity, the latter as a proxy for the
degree of linguistic adaptation to context.

3 Experiments

3.1 Decoding Methods

We compare contrasting decoding methods, which
focus either on likelihood or informativity.

For the former, Greedy Search selects the to-
ken with the highest probability at each time step.
Beam Search simultaneously extends a fixed num-
ber of k hypotheses at each step (here: k = 5).

Based on the Rational Speech Acts model (Frank
and Goodman, 2012), RSA Decoding (Cohn-
Gordon et al., 2018, henceforth RSA) aims for
higher informativity by integrating pragmatic rea-
soning into the iterative unrolling of recurrent cap-
tioning models. Given a target and a set of distrac-
tors, the literal speaker S0 generates initial distribu-
tions over possible next tokens. The literal listener
L0 determines which tokens effectively distinguish
the target from the distractors. Finally, the prag-
matic speaker S1 selects tokens rated informative
by L0. A rationality parameter α specifies the rela-
tive influence of L0 in S1, cf. Cohn-Gordon et al.
(2018) for more details. In our REG setting, targets
and distractors are objects in the same image.

In the conceptually similar Emitter-Suppressor
approach (Vedantam et al., 2017, henceforth ES),
a speaker (emitter) models a caption for a target
image It in conjuction with a listener function (sup-
pressor) that rates the discriminativeness of the ut-
terance with regard to a distractor image, cf. Vedan-
tam et al. (2017). λ is a rationality parameter; the
smaller the value of λ, the more the suppressor is
weighted. We adapt the extended implementation
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testA testB testA+ testB+ testg
BL1 CDr det. BL1 CDr det. BL1 CDr det. BL1 CDr det. BL1 CDr det.

greedy 53.2 0.79 75.1 56.2 1.27 66.4 45.6 0.68 63.8 33.9 0.64 43.0 45.0 0.71 54.4
beam 52.8 0.81 75.0 55.4 1.31 66.0 40.4 0.66 62.4 32.5 0.75 43.6 45.0 0.79 54.8

ESλ0.7 52.9 0.80 77.6 55.7 1.24 70.5 40.3 0.67 67.1 30.9 0.71 46.9 44.1 0.74 57.1
ESλ0.5 49.8 0.73 80.6 53.3 1.11 71.8 37.1 0.60 68.7 27.4 0.61 47.3 40.4 0.63 57.0
ESλ0.3 35.8 0.53 79.1 44.5 0.81 71.3 23.1 0.37 66.5 21.0 0.40 48.1 29.5 0.37 54.6
RSAα0.5 50.2 0.77 76.0 55.1 1.26 69.4 32.7 0.58 62.8 28.2 0.67 44.4 43.5 0.70 55.7
RSAα1.0 50.4 0.77 76.4 54.8 1.22 69.1 33.3 0.59 63.2 27.5 0.65 44.6 43.0 0.69 56.1
RSAα5.0 50.9 0.75 79.3 52.7 1.05 70.9 35.4 0.57 66.3 25.7 0.58 46.8 40.2 0.61 57.4

human - - 84.4 - - 74.2 - - 72.6 - - 57.9 - - 63.7

Table 1: Likelihood (BLEU1, CIDEr) and informativity (detection) for decoding strategies and data splits.

from Schüz et al. (2021) for multiple distractors.
We use both RSA and ES in a beam search de-

coding scheme. Whereas in the original approaches
the number of distractors is fixed, it varies between
images in our REG setting: For an image with n
objects, the number of distractors is n− 1.

3.2 Data and Model
We use the data and pre-defined splits from Re-
fCOCO, RefCOCO+ (Kazemzadeh et al., 2014)
and RefCOCOg (Mao et al., 2016) for training and
evaluation. All of these datasets contain English
referring expressions to objects in images from
MSCOCO (Lin et al., 2014), collected in interactive
(RefCOCO, RefCOCO+) or non-interactive (Ref-
COCOg) settings. In RefCOCO and RefCOCO+,
testA contains references to humans and testB ref-
erences to other object types. Since both targets
and distractors are required for RSA and ES, we
remove images from our test splits which contain
only a single object. After this, our test splits com-
prise approximately 1950 (testA / testA+), 1750
(testB / testB+) and 4000 (testg) objects.

We adopted the image captioning model from
Lu et al. (2017)1 as the basis for our REG model.
Similar to e.g. Mao et al. (2016), we complemented
the original model by supplying 7 location features
along with the input image.

3.3 Evaluation
Likelihood is measured through BLEU1 (Papineni
et al., 2002) and CIDEr (Vedantam et al., 2015)
scores, calculated using the RefCOCO API2.

For Diversity, we calculate the type-token ra-
tio (TTR) for unigrams and bigrams, and the pro-
portion of the model vocabulary used (coverage).
Importantly, we look at global diversity, i.e. the

1https://github.com/yufengm/Adaptive
2https://github.com/lichengunc/refer

corpus-level variation in the usage of words and
phrases (van Miltenburg et al., 2018).

Informativity is assessed through the precision
of a separate, pre-trained Referring Expression
Comprehension model (Luo et al., 2020). Given a
generated expression and corresponding image, the
model predicts a bounding box which locates the
described object in the image. As in the original
paper, predictions are deemed correct if the inter-
section over union between predicted and ground-
truth bounding boxes is greater than 0.5. Previous
work in neural REG mostly assessed informativ-
ity through human evaluation (e.g. Yu et al., 2016,
2017; Liu et al., 2017, 2020). We decided for auto-
matic evaluation for the sake of better comparabil-
ity and exhaustive coverage of our expressions.

4 Results

4.1 Likelihood and Diversity

The results in Table 1 show that discriminative de-
coding leads to a decrease in both BLEU (BL1)
and CIDEr (CDr). Whereas ES with λ = 0.7
achieves comparable results to greedy and beam
search, both metrics drop if rationality is increased.
In most cases, this also applies to RSA. This corre-
sponds to the general findings in Schüz et al. (2021):
With higher rationality, ES and RSA generate ex-
pressions that deviate further from the model pre-
dictions, resulting in lower n-gram overlap.

Similarly, the diversity results in Table 2 confirm
the findings in Schüz et al. (2021). Discrimina-
tive decoding increases TTR (T1, T2) and coverage
(cov.), indicating that pragmatic reasoning leads to
more variation and the usage of a larger vocabulary.

4.2 Informativity

For informativity, ES and RSA outperform greedy
and beam search (cf. Table 1, det.), although
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testA testB testA+ testB+ testg
T1 T2 cov. T1 T2 cov. T1 T2 cov. T1 T2 cov. T1 T2 cov.

greedy 7.0 29.2 4.1 10.6 46.5 5.6 8.7 28.2 4.2 16.5 48.1 7.7 16.7 40.0 10.7
beam 6.6 27.8 3.6 10.3 48.6 5.2 9.4 32.7 4.1 16.4 56.4 6.9 17.5 42.4 10.4

ESλ0.7 8.3 35.0 4.8 11.6 49.7 6.1 12.5 42.6 5.4 19.3 64.0 7.9 19.8 48.0 13.0
ESλ0.5 11.6 46.4 6.9 13.4 54.4 7.6 16.1 54.4 7.9 22.2 70.3 9.5 22.7 56.4 16.5
ESλ0.3 17.5 60.7 12.6 18.4 62.6 13.0 22.7 65.8 13.2 29.2 80.3 14.8 28.7 71.0 23.6
RSAα0.5 7.8 33.7 4.3 11.6 50.2 5.9 12.1 43.2 5.0 18.5 61.0 7.4 19.8 48.1 12.6
RSAα1.0 7.8 34.6 4.4 11.8 51.6 5.9 13.0 47.0 5.7 19.7 64.7 7.9 20.4 49.8 13.6
RSAα5.0 9.4 39.0 5.7 13.5 55.8 7.2 16.1 54.1 7.6 23.9 74.4 10.6 22.5 57.7 16.3

human 24.9 71.7 22.4 27.6 79.6 23.1 31.2 80.6 20.9 39.6 91.2 26.2 34.0 77.8 44.4

Table 2: Diversity results (TTR1, TTR2, coverage) for decoding strategies and data splits

even greedy decoding can perform well in certain
cases (e.g. testA). Overall, the gain is rather mod-
est: Here, the maximum relative increase is 10%
(testB+), whereas Schüz et al. (2021) report more
than 30% increase in retrieval3. This could be due
to upper bounds for possible detection results: De-
pending on the data set, the comprehension task
itself poses a considerable challenge, as can be
seen, for example, in the detection results for hu-
man annotations in testB+.

An alternative explanation can be seen in the
data used to train the model: Unlike in image cap-
tioning, the utterances in our datasets were explic-
itly produced for distinguishing targets and distrac-
tors. Thus, by re-using linguistic patterns from the
training data, our model might be able to gener-
ate relatively informative expressions without even
considering the situational context. This way of im-
plicitly learning to fulfill pragmatic requirements
might render additional layers of pragmatic reason-
ing less effective. This hypothesis is supported
by the decent results for greedy search e.g. in
testA. Also, beam search occasionally improves the
greedy results, indicating that optimizing model
predictions increases pragmatic informativity. In
similar set-ups for image captioning, beam search
was reported to decrease informativity (Schüz et al.,
2021).

Somewhat surprisingly, ES with λ = 0.5 mostly
obtains better results than λ = 0.3, i.e. higher ratio-
nality does not always lead to higher informativity.
Figure 2 shows this for a wider range of λ: For ev-
ery data split, the detection results drop drastically
if λ approaches 0. We attribute this to ES strug-
gling to generate well-formed descriptions for high
rationalities (as reflected in BLEU1 and CIDEr for
λ = 0.3), and increasingly diverging from the data

3Due to differences in tasks, models, data and evaluation,
this comparison should be taken with caution.

Figure 2: Detection results for different λ settings in ES
decoding. Crosses mark the highest detection results.

used for training the comprehension model.

5 Discussion and Conclusion

Discriminative decoding is appealing for REG, as
it combines traits from traditional REG with neural
generation models. Our results confirm findings
previously reported for image captioning: Discrim-
inative decoding decreases likelihood to ground-
truth annotations, but increases informativity and
diversity. For informativity, the margin of gain was
surprisingly low in our experiments. We attributed
this, in part, to the high informativity of underlying
model expressions. While this is of importance
especially in our setup (both ES and RSA assume
a basis of pragmatically neutral descriptions), the
question of whether pragmatic informativity has to
be explicitly modelled or is implicitly learned from
the data is relevant for REG research in general,
and should be investigated in subsequent work. To
this end, controlling the impact of pragmatic pro-
cessing as in discriminative decoding could be a
valuable instrument.

Beyond this, future work should investigate dis-
criminative decoding in REG in more detail, e.g.
to see whether pragmatic reasoning leads to the
generation of different or more specific attributes.
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