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Abstract

In the social media, users frequently use small
images called emojis in their posts. Although
using emojis in texts plays a key role in re-
cent communication systems, less attention
has been paid on their positions in the given
texts, despite that users carefully choose and
put an emoji that matches their post. Exploring
positions of emojis in texts will enhance un-
derstanding of the relationship between emo-
jis and texts. We extend an emoji label pre-
diction task taking into account the informa-
tion of emoji positions, by jointly learning the
emoji position in a tweet to predict the emoji
label. The results demonstrate that the position
of emojis in texts is a good clue to boost the
performance of emoji label prediction. Human
evaluation validates that there exists a suitable
emoji position in a tweet, and our proposed
task is able to make tweets more fancy and
natural. In addition, considering emoji posi-
tion can further improve the performance for
the irony detection task compared to the emoji
label prediction. We also report the experi-
mental results for the modified dataset, due
to the problem of the original dataset for the
first shared task to predict an emoji label in Se-
mEval2018.

1 Introduction

The advent of emojis has dramatically changed the
style of human communication. Currently, emojis
are widely used on social media platforms such as
Twitter, Facebook, and Instagram. Owing to the
prevalent use of emojis in the last few years, they
become a target of recent researches.

As reported by Kralj Novak et al. (2015), ex-
ploring the interplay between emojis and texts can
be a clue for better natural language understanding
(NLU) in social media datasets with full of emojis.
In response to this report, Barbieri et al. (2017)
proposed a task to predict an emoji label given a

Ex.1: was used instead of the word “tree”.
Input : Don’t forget your Christmas TAN!
Previous task :
Proposed task : Don’t forget your Christmas TAN!

Ex.2: was used instead of the character “A”.
Input : @AIIAmericanGirI: U.S. judge sworn

into office on Quran disgusting!
Previous task :
Proposed task : @AIIAmericanGirI: U.S. judge sworn

into office on Quran disgusting!

Ex.3: Two sentences have different emotions.
Input : Grateful for some girl time yesterday with

my favorites. Sad we won’t all be together again...
Previous task :
Proposed task : Grateful for some girl time yesterday with

my favorites. Sad we won’t all be together again...

Figure 1: Example tweets from the training dataset of
SemEval2018 task2. Our goal is to insert a suitable
emoji to a suitable position in a given tweet.

text, which can contribute to various natural lan-
guage processing (NLP) tasks such as information
retrieval, social media content generation, and sen-
timent/emotion analysis. To solve this task, they
used an LSTM-based tagger and achieved even
higher performance than human prediction.

However, in spite of the success of the previous
researches, the existing emoji prediction task tar-
gets only at predicting a single emoji given a text
without considering its position. Kralj Novak et al.
(2015) reported that social media users place an
emoji differently based on its emoji type in a tweet.
They analyzed 751 emoji labels by dividing them
into positive, negative and neutral types to show
that the type of an emoji strongly correlates with
its position in a text. This indicates the information
of the emoji position can be a good clue to boost
emoji label prediction.

Hence, it is necessary to consider an emoji label
and its position together. Social media users do
not simply put an emoji at the end of a sentence.
Automated systems of predicting an emoji with
its position that consider surrounding linguistic in-
formation can further enhance the aforementioned
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Figure 2: 20 most frequent emojis used in our experi-
ments. The red and green bars indicate the emotional
and non-emotional types of emojis, respectively.

tasks in the field of NLU and NLP. Figure 1 de-
scribes the difference between the previous task of
emoji prediction and our proposed task of emoji
insertion to texts. In the first and second examples,
we can understand that the position of emojis is
important and indispensable in cases where they
are used instead of a word or a character. In the
third example, the position of an emoji is required
to investigate the relationship between the emoji
and multiple sentences. To take into account the
position of emoji labels, we first demonstrate that
the information of the emoji position can improve
the performance of emoji label prediction by using
the gold emoji position.

We then extend the task of emoji prediction by
proposing a novel task of inserting a suitable emoji
into a suitable position in a given tweet. To solve
this new method, we propose Bi-Affine-based and
Bi-LSTM-based models that can jointly predict
both emoji label and its position without relying on
any linguistic features.

Class-imbalanced data is one of the major con-
cerns in the field of emoji prediction (Barbieri et al.,
2017) because emojis of positive emotion are more
frequently used on social media and dominate mi-
nor classes of negative and non-emotional emo-
jis (Kralj Novak et al., 2015). It is difficult to ob-
tain better results for imbalanced emoji classes.
Figure 2 shows the imbalanced frequencies of emo-
jis that obey a power-law distribution. To deal
with the imbalanced frequencies of emojis, we also
propose a novel method, Contextualized Dynamic-
Smoothing (CDS), which can be adopted in our
proposed models.

Due to the problems of the original dataset for
the shared task for multilingual emoji prediction in

SemEval2018 task2 (Barbieri et al., 2018b), that
sometimes mistakenly contains “traces” of emojis
in tweets, we prepared the modified dataset for our
experiments.

Experimental results show that incorporating the
gold emoji position can improve the performance
of emoji label prediction. In addition, our proposed
models of jointly predicting an emoji label and its
position outperform the baseline model for emoji
label prediction that does not consider the emoji
position in terms of F-1 scores. Specifically, the
results of our models with CDS, that solves the
problem of the imbalanced emoji frequency, show
the additional improvement on infrequent and non-
emotional emojis. Human evaluation shows that
there is a suitable emoji position in a tweet. In
addition, our proposed task to insert an emoji in a
tweet can actually make the tweet more fancy and
natural, compared to the current emoji prediction
task. Considering emoji positions can further im-
prove the performance on the irony detection task
compared to the current emoji prediction.

2 Related Work

Social media platforms contain various types of
emotion expression methods such as emojis and
kaomojis (Kwon et al., 2019). Recently, emojis
occupy a large proportion on social media owing
to the richness in their information. Emoji infor-
mation can enhance the quality of social media
datasets for researches such as sentiment, irony,
emotion, and sarcasm analysis (Felbo et al., 2017;
Singh et al., 2019). Although emojis can be in-
terpreted differently based on social media plat-
forms (Miller et al., 2016), their usage is similar in
multiple countries (Barbieri et al., 2016), meaning
that they can be predicted in different languages
such as English, Spanish (Barbieri et al., 2018b),
and Italian (Ronzano et al., 2018). Emoji pre-
diction can be boosted by incorporating not only
texts but photos in the Instagram dataset (Barbi-
eri et al., 2018a) and can directly improve the task
of sentiment analysis (Chen et al., 2019). Also,
emoji prediction can be used in dialogue systems
to recommend a suitable emoji (Xie et al., 2016),
and using emojis in chatbot systems is effective
to attract users, specifically in the conversation for
mental wellbeing (Fadhil et al., 2018). Recently,
Ma et al. (2020) released an emoji label prediction
dataset with passage-level multi-class/multi-label,
and aspect-level multi-class annotations.
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Our work to predict both an emoji label and its
position is in accordance with sequential labeling
tasks. In dependency parsing, the Bi-Affine de-
pendency label classifier was proposed to study
the relationship between two words, and achieved
the state-of-the-art performance (Dozat and Man-
ning, 2017). Currently, Bi-Affine layers have been
widely adopted in various tasks, such as relation
extraction (Nguyen and Verspoor, 2019), mention
detection and clustering (Zhang et al., 2018), owing
to their effectiveness. Because they have demon-
strated the standout performance in the aforemen-
tioned tasks, we employ them to learn emoji posi-
tions to predict emoji labels.

3 Models

We introduce our proposed models for jointly pre-
dicting an emoji and its position in each tweet. Bi-
LSTM networks are first used to encode a given
tweet (Graves et al., 2013) and a Bi-Affine layer is
used to predict the position of an emoji. Then, the
predicted emoji position is used to predict the label
of the emoji with CDS.

3.1 Bi-LSTM

Bi-LSTM networks are used to capture the
forward and backward context of the in-
put text, given words of input text S =
{w0, w1, w2, ..., wN , wN+1}, which are encoded
as word embeddings {e0, e1, e2, ..., eN , eN+1}. w0

and wN+1 indicate “<s>” and “</s>” tokens for
the beginning and end of a sentence, respectively.
Then, these word embeddings are fed to the for-
ward and backward LSTMs and are converted to
forward and backward hidden states

−→
h t and

←−
h t,

respectively. We use the concatenated hidden state
ht = [

−→
h t;
←−
h t] as the output of Bi-LSTM for each

time step.

3.2 Selective Gate

To enhance the information of each hidden state
for the eligible emoji label and its position, we
incorporate an selective module (Zhou et al., 2017)
on top of the Bi-LSTM networks. Specifically, each
ht, which is the output of Bi-LSTMs, is passed
through the selective gate, sGatet. The sGatet
decides the importance for each hidden state by
considering the entire sentence information that
consists of s = [

←−
h 0;
−→
h N+1], where

←−
h 0 is the

first backward hidden state and
−→
h N+1 is the last

forward hidden state. The formula for sGatet is

defined as follows:

sGatet = σ(Whht +Wss+ b), (1)

h
′
t = ht � sGatet, (2)

where Wh and Ws indicate weight matrices.
b is the bias term. � is a symbol for
element-wise multiplication and σ is a sigmoid
activation function for normalizing ranges of
gate outputs. The sequence of hidden states,
{h0, h1, h2, ..., hN , hN+1}, is computed through
the selective gate. Then, a new sequence of em-
beddings, {h′

0, h
′
1, h

′
2, ..., h

′
N , h

′
N+1}, which takes

into account the sentence information for each time
step, is generated.

3.3 Position Module

This module predicts an emoji position, ˆpos. The
emoji position is predicted by the following equa-
tion:

ˆpos = arg max
pos

scorep(pos), (3)

where pos is possible emoji positions. To calculate
the position score, scorep(pos), we propose the
following two networks.

3.3.1 Simple Concatenation
We simply use the concatenation of the neighbor-
ing two hidden states, [h′i, h

′
i+1], to calculate each

position score as follows:

scorep(pos) = vpti, (4)

ti = σ(W [h′i;h
′
i+1] + b), (5)

where W is the parameter matrix, and b is the bias
term. vp is the learnable vector for emoji position
prediction. σ is the activation function of the Rec-
tified Linear Unit (Nair and Hinton, 2010). The
function, scorep, returns a scalar value for each
possible emoji position.

3.3.2 Bi-Affine
The simple concatenation approach can explain the
interaction between the two hidden states, h′i and
h′i+1. However, the clues from a single state with-
out any interaction with the other state might also
be informative for emoji position prediction. To
facilitate extraction of such pure clues, we addition-
ally propose a method to use Bi-Affine-based trans-
formation of the hidden states h′i and h′i+1, which
contains the terms only with h′i or h′i+1. Specifi-
cally, instead of using Equations (4) and (5), the
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Bi-Affine function is used to calculate each posi-
tion score as follows:

scorep(pos) = biaffine(h′i, h
′
i+1), (6)

biaffine(hl, hr) = vTl hl + hTl Wbhr + vTr hr, (7)

where vTl and vTr are learnable vectors. Wb is
the weight matrix.

3.4 Label Module
As a downstream procedure, this module predicts
an emoji label, ˆlabel. The emoji label is predicted
by the following equation:

ˆlabel = arg max
label

scorel(label), (8)

where label is emoji class labels. Following two
types of networks were used for modeling the score
function, scorel(label), to predict an emoji label.

3.4.1 Linear Projection
We used a linear projection layer to map the simple
concatenated hidden states in Equation (5) to the
emoji label space. To take the predicted emoji
position into account in predicting an emoji label,
ˆpos is applied to calculate the score function:

scorel(label) = Wlt ˆpos + bl, (9)

where Wl and bl are the weight matrix and the bias
term for emoji label prediction, respectively.

3.4.2 Contextualized Dynamic-Smoothing
(CDS)

As shown in Figure 2, the frequencies of emojis are
imbalanced, that can result in difficulties to obtain
better performance in emoji label prediction (Barbi-
eri et al., 2017). To address this issue, we propose
a novel smoothing method based on the left and
right context vectors for the emoji label prediction.
In Equation (9), the bias term bl for predicting an
emoji label is shared in all emoji positions regard-
less of the predicted emoji position ˆpos. It would
be beneficial for the bias term to consider the eligi-
ble value at each emoji position to predict an emoji
label. Hence, we calculate the contextualized bias
term based on the information of each emoji po-
sition using Bi-Affine layers, revealed as follows:

bdynamic = h
′T
l Wdh

′
r, (10)

whereWd is the weight matrix. We use h′l and h′r to
obtain various bias values as the effect of smooth-
ing the distribution of emoji classes. bdynamic is

added to calculate the emoji label score as follows:

scorel(label) = Wlt ˆpos + bdynamic. (11)

3.5 Objective Function
Our objective function is composed of two Cross-
Entropy losses for the emoji label and its position.
To learn parameters by backpropagating two losses,
we sum two losses through a hyperparameter λ:

loss = losslabel + λ · losspos. (12)

4 Experimental Settings

In this section, we report the problems of the orig-
inal datasets from the SemEval2018 task2. Then,
we describe the datasets we modify and use in pre-
dicting emoji labels and their positions.

4.1 Datasets
4.1.1 Original SemEval2018 datasets
The SemEval2018 task2 was the first shared task in
predicting emoji labels with multilingual datasets:
English and Spanish tweets (Barbieri et al., 2018b).
Although various submitted systems attained good
results in predicting emoji labels, we found the
released SemEval2018 task2 datasets have some
problems.

The trial and test datasets were composed of
50k tweets and were released by dividing them
into two files, target emoji labels and their corre-
sponding input tweets. However, some of English
and Spanish input tweets contained hidden “traces”
of the corresponding target emoji labels. Specifi-
cally, English input tweets in the test dataset whose
target emoji labels are and had such hidden
“traces” over than 85% and 98%, respectively. They
essentially consisted of two Unicode fragments of
emojis: “\ufe0f” and “\ufe0e”. They indi-
cated the target emojis with their exact positions
in the input tweets. Moreover, the released code,
which splits the raw training dataset into the two
files of input tweets and target emoji labels in the
preprocessing step, also had a problem. It affects
the training dataset to contain such hidden “traces”.
The emoji , including the “traces”, is the most
frequent in all of the training, trial and test datasets.
It may influence the performance of emoji label
prediction.

4.1.2 Modified Dataset
To remedy the above problems, we modified the
shared English dataset from the SemEval2018
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task2. We refrained from using the original trial
and test datasets owing to no information of emoji
positions and the problems of hidden “traces” in
them. In addition, we did not use the released code,
which divides the raw training dataset into two files
of the input tweets and target emoji labels.

Thus, we retrieved 450,021 tweets in the training
dataset. To use exact positions of emojis, we dis-
carded a few tweets with an emoji appearing more
than once (e.g., My baby bear ) from the ex-
tracted training dataset. As a result, we obtained
our final dataset of 357,305 tweets in total with 20
emoji class labels. Figure 2 indicates the statistics
of emojis in the final dataset. We also prepared
its subsets for the 10 (250,747 tweets) and 5 most
frequent emojis (180,767 tweets), with the same
procedure in the previous work for emoji label pre-
diction (Barbieri et al., 2017, 2018a). We randomly
shuffled and split them into three parts: training
(80%), validation (10%), and test (10 %) datasets.

4.2 Baseline Model

Barbieri et al. (2017) proposed the task of emoji la-
bel prediction with a simple emoji classifier. Their
Bi-LSTM classifier received an input tweet with-
out an emoji label to predict a suitable emoji label.
In this study, we used their network as our base-
line model to examine whether the information of
emoji positions can improve the performance of
emoji label prediction.

4.3 Parameter Settings

We used one-layer stacked Bi-LSTMs with hidden
states of 256 dimensions for all models. The Adam
optimizer was used with a learning rate of 0.001,
betas of 0.9 and 0.999, and epsilon of 1.0 ∗ 10−8.
The value of λ in Equation (12) is 0.2, which was
estimated based on the performance of the average
macro F-1 score in emoji label prediction on the val-
idation dataset. Glove embeddings are well-known
pre-trained vector representations for words (Pen-
nington et al., 2014). We used 27 billion pre-trained
word embeddings of 200 dimensions trained from
the Twitter dataset. We concatenated Glove em-
beddings with the initialized word embeddings to
obtain each word embedding.

5 Experiments and Evaluation

5.1 Emoji Insertion

5.1.1 Emoji Label Prediction

As the evaluation metrics, we employed the preci-
sion, recall, and macro F-1 scores, officially used
in the SemEval2018 task2.

In Table 1, we compare the results of emoji label
prediction for the baseline and proposed models
with the gold and jointly learned emoji positions,
respectively. The baseline was described in Sec-
tion 4.2. Upper Bounds 1 and 2 used the gold emoji
positions to predict emoji labels without and with
applying CDS, respectively. The results for Upper
Bounds 1 and 2 demonstrate that the information
of emoji positions can improve the performance
of emoji label prediction. Specifically, using gold
emoji positions in the model of Upper Bound 1 im-
proved +3, +4.41, and +2.36 average F-1 scores on
the modified datasets for top 5, 10, and 20 emojis,
compared with the Baseline that does not consider
emoji positions. Incorporating the proposed CDS
to deal with the class-imbalanced problem yields
the further improvement of +1.22, +1.14, and +1.57
on each dataset between Upper Bounds 1 and 2.

Joint Learning models 1 and 2 predicted the po-
sition of emojis using simple concatenation and
Bi-affine layers, respectively. Joint Learning mod-
els 3 and 4 incorporate CDS to predict emoji labels.
The joint learning models without any external re-
sources outperformed the Baseline model. The
highest F-1 score was obtained by Joint Learning 4,
that uses Bi-Affine layers to predict the position of
emojis and applies CDS to predict the emoji labels.
It improved +2.77, +2.5, and +1.93 average F-1
scores on the modified datasets for top 5, 10, and
20 emojis, compared with the Baseline.

Table 2 describes F-1 scores for top 20 individual
emojis with the Baseline and Upper Bound 2. Ap-
plying CDS with the position information can im-
prove the performance of predicting non-emotional
emojis. The performance for the non-emotional
emojis, , , , , , , and , increased
by +7.7, +2.6, +3.5, +2.5, +5.3, +4, and +5.3, re-
spectively, compared with the baseline model. In
addition, incorporating CDS with the information
of emoji positions is effective for infrequent emojis,

(+2.5), (+5.3), (+10.2). It also helps the
model to predict and with F-1 scores of 5
and 3, respectively.
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Model

Position Label Macro avg F-1 Avg position accuracy

Gold Concat Bi-Affine CDS Top 5 Top 10 Top 20 Top 5 Top 10 Top 20

Baseline 37.34 29.97 24.73 - - -

Upper Bound 1 X 40.34 33.24 27.09 - - -
Upper Bound 2 X X 41.56 34.38 28.66 - - -

Joint Learning 1 X 38.92 31.03 25.74 77.23 77.40 76.71
Joint Learning 2 X 39.80 31.04 26.28 77.57 77.62 76.89

Joint Learning 3 X X 39.64 31.60 26.06 77.73 77.63 76.94
Joint Learning 4 X X 40.11† 32.47† 26.66† 77.90 77.75 76.97

Table 1: Average F-1 scores for emoji label prediction and accuracy for emoji position prediction. The best scores
in all the models except Upper Bounds are shown in bold. † indicates that the improvement from the Baseline is
statistically significant by using the paired bootstrap resampling method (Koehn, 2004) (p < 0.001).

Emoji Base.
F-1

UB2.
F-1 % Emoji Base.

F-1
UB2.
F-1 %

48.2 50.6 23.1 3.9 14.1 3.4
28 31.1 9.7 24.4 24.2 3.3

35.7 40.2 6.6 57.8 61.3 3.4
3 7.4 5.9 42.2 44.7 3.3

11.5 16.2 5.3 0 5 2.9
17 19.5 4.9 40.6 45.9 2.8

48.1 55.8 3.9 63.3 67.3 2.7
10.5 10.9 3.4 0 3 2.7
25.2 27.8 3.4 25.9 31.2 2.6
6.8 12.1 3.3 5.5 4.68 2.6

Table 2: F1 scores for emoji label prediction with top
20 emojis. Base. indicates the baseline model and UB2.
describes the Upper Bound 2. % is the proportion of
each emoji in the test dataset.

5.1.2 Emoji Position Prediction
As the evaluation metrics, we employed the accu-
racy for emoji position prediction. We do not need
to measure the precision, recall, and F-1 scores
because each tweet contains only one emoji, and
the accuracy, precision, recall, and F-1 scores are
always equal.

The baseline model predicts emoji labels with-
out considering emoji positions, and upper bound
models used gold emoji positions. Therefore, we
compare the performance of predicting emoji po-
sitions only among our joint learning models. The
average accuracies for emoji position prediction
are shown in Table 1. Following the same tendency
with emoji label prediction, the highest accuracy
was obtained by Joint Learning 4 on all top 5, 10,
and 20 modified datasets.

Table 3 shows example outputs of the baseline
and our best model, Joint Learning 4. As analyzed
by Barbieri et al. (2017), it is difficult for the base-
line model to predict as it prefers to select the
more frequent emoji of similar semantics, . Our
best model can resolve this issue. In the first exam-
ple, the baseline model prefers to choose the more
frequent emoji of similar semantics, . Instead of

Input Thanks for giving me your number sidneycrosby text ya later ...
Gold Thanks for giving me your number sidneycrosby text ya later ...
Baseline
Joint Learning4 Thanks for giving me your number sidneycrosby
text ya later ...

Input the is where the food is! the dining room is one of the most
important parts of your home. it...
Gold the is where the food is! the dining room is one of the most
important parts of your home. it...
Baseline
Joint Learning4 the is where the food is! the dining room is one of
the most important parts of your home. it...

Table 3: Examples of predicting emoji labels and their
positions with our best model, Joint Learning 4, com-
pared with the baseline model.

choosing the more frequent emojis, our best model
successfully inserted the predicted emoji, , into
the exact position. In the second example, using
emoji positions is effective when emojis were used
instead of words. Specifically, when was used
instead of the word “love” between two words “the”
and “is”, the baseline model predicted instead
of . However, the obtained position informa-
tion enables our proposed model to consider the
relationship between two words. Our best model
can recognize the difference between and .
The model successfully predicted and inserted
it between two words, “the” and “is”.

Figure 3 shows average estimated probabilities
of emoji labels and their positions. “Blue” and
“Orange” bars are average estimated probabilities
of emoji labels and their positions from the model
Joint Learning 3. “Green” bar is average estimated
probabilities of emoji labels from the model Joint
Learning 4. We sorted the emoji labels and their
positions in the order of the probability obtained
from softmax layers. We then averaged probabil-
ities for each rank of labels and positions. Note
that we only visualize the top 20 ranks for emoji
positions to have the same size as emoji labels. The
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Figure 3: Rank-Probabilities of emoji labels and their
positions from the top 20 test dataset.

rank-probability from Joint Learning 3 shows that
the probability distribution of emoji positions is
in accordance with emoji labels, meaning that the
probability distribution is not uniform. Thus, the
emoji position is predictable because the emoji la-
bel is predictable (Barbieri et al., 2017). Moreover,
the probability distributions of emoji labels from
Joint Learning models 3 and 4 demonstrate that our
proposed CDS successfully smoothed estimated
probabilities of emoji labels, and the probabilities
of low ranked emoji labels increased.

Algorithm 1 Construction of the human evaluation
dataset.
Require:

Tweets T = {T1, T2, ..., Tn}
tweetNLP = part-of-speech tagger
Initialize the filtered tweets, F = [ ]
for i = 1 to n do

tagged← tweetNLP(Ti)
v ← tagged.count(′v′), o← tagged.count(′o′)
if v >2 and o > 2 then

F.append(Ti)
end if

end for
return F

5.2 Human Evaluation

We carried out an experiment to show that there
is a suitable emoji position for individual emojis
in tweets. Then, we conducted an experiment in
which we compared current and our proposed tasks.

To encourage and guide the human evaluation,
we applied a filtering step to harvest suitable tweets
from the SemEval2018 training dataset. Algo-
rithm 1 describes how to filter tweets. We first
applied a tweetNLP, which is a part-of-speech tag-
ger for tweets that can take into account emoji
information (Gimpel et al., 2011). It can annotate
part-of-speech tags to emojis. Specifically, emo-
jis can be tagged with “v” (Verb) when they are
used instead of a word (e.g, is frequently used

instead of a word “love”). Thus, we inserted rules
that the number of “o” (Pronoun) and “v” (Verb)
tags is greater than two to extract tweets including
an emoji used instead of a word and tweets with
multiple sentences.

To show there exist a suitable emoji position, we
constructed a dataset, Gold (Inside), by randomly
selecting 1,000 tweets that emojis are not located
at the end from the filtered dataset. We prepared
a End dataset by moving emojis to the end of the
tweet from the Gold (Inside) dataset. Because the
gold emoji position can be end of the tweet, we also
constructed a Gold (End) dataset by randomly se-
lecting 500 tweets that emojis are located at the
end from the filtered dataset. We also prepared a
Random (Inside) dataset by randomly relocating
emojis in each tweet from the Gold (End) dataset.
Then, we constructed a Current (End) and Pro-
posal datasets by applying Baseline model (See.
4.2) and our best model, Joint Learning 4, on the
modified test dataset. Because Baseline model can-
not insert an emoji in a tweet, we attached a pre-
dicted emoji at the end of a tweet. Current (End)
and Proposal datasets consist of randomly selected
500 tweets after the filtering step.

We asked humans to select better tweets to
demonstrate that there exists a suitable emoji posi-
tion and our proposed task can contribute to mak-
ing tweets more fancy and natural compared to
the current emoji prediction task. After presenting
two tweets from Gold (Inside) and End datasets,
Gold (End) and Random (Inside) datasets, and
Current (End) and Proposal datasets, we asked
two questions for the human annotators “Which
tweet is more fancy?” and “which tweet is more
natural?”. The crowd-sourcing platform, “Mechan-
ical Turk”, was used to design an experiment. The
same tweets were displayed to five human annota-
tors1 and the final decision was selected based on
majority agreement.

Table 4 shows results of human evaluations be-
tween the gold emoji position and relocated emoji
position. When the gold emoji position is inside
of tweets, it can make fancy and natural tweets
more than 90% and 87%, respectively, compared
to moving emojis to the end of tweets. In addition,
when the gold emoji position is end of tweets, it
can make fancy and natural tweets more than 73%
and 78%, respectively, compared to randomly relo-

1The annotators had their own Twitter account and they
are familiar with emoji usage on social media. Maximum one
hundred tweets were evaluated by each annotator.
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cating emoji in tweets. Thus, individual emojis are
not always located at the end of tweets and there
exists a suitable emoji position in tweets. To as-
sess the reliability of the agreement between the
human annotators and their decision, we used a
statistical measure called Fleiss’ Kappa (L. Fleiss,
1971). We obtained Kappa scores of 0.52 for Fancy
and 0.68 for Natural between Gold (Inside) and
End datasets, which indicate moderate and sub-
stantial agreement, respectively. In addition, we
obtained Kappa scores of 0.41 for Fancy and 0.26
for Natural between Random (Inside) and Gold
(End) datasets, which indicate moderate and fair
agreement, respectively. Thus, considering emoji
position is necessary to understand social media
texts. As can be seen in Table 5, our proposed task
can actually make tweets be more fancy and natural
compared to the current task.

Dataset Fancy Natural Dataset Fancy Natural
Gold (Inside) 920 873 Random (Inside) 135 110

End 80 127 Gold (End) 365 390
Total 1000 1000 Total 500 500

Table 4: Human evaluation between gold emoji posi-
tion and relocated emoji position.

Dataset Fancy Natural
Current (End) 191 123

Proposal 309 377
Total 500 500

Table 5: Human evaluation between current task and
proposed task.

5.3 Irony Detection

To validate the effectiveness of considering emoji
position to understand social media texts, we con-
ducted the downstream task, irony detection. We
used the 2-class (ironic or not ironic) and 3-class
(ironic by clash, other, or not ironic) raw irony
detection datasets released by the SemEval2018
Task 3A and Task 3B, respectively (Van Hee et al.,
2018). The macro-average F1 score was used to
evaluate the performance by following previous
work. Because raw datasets were provided with
training and test sets only, we randomly shuffled
and split the training dataset into two parts: training
(80%) and validation (20%). For each raw dataset,
we constructed Emoji w/o position and Emoji w/
position datasets by inserting an emoji using Base-
line and Joint Learning 4 models. Because Baseline
cannot insert an emoji, we simply attached a pre-
dicted emoji at the end of the sentence. Thus, three

Team F-1 Team F-1
THU-NGN (Wu et al., 2018) 70.5 UCDCC (Ghosh and Veale, 2018) 50.7

NTUA-SLP (Baziotis et al., 2018) 67.2 NTUA-SLP (Baziotis et al., 2018) 49.6
NTUA-SLP + raw 68.9 NTUA-SLP + raw 48.9

NTUA-SLP +
Emoji w/o position 70.1

NTUA-SLP +
Emoji w/o position 49.6

NTUA-SLP +
Emoji w/ position 70.8

NTUA-SLP +
Emoji w/ position 50.9

Table 6: The results of irony detection. The left and
right table shows the performance on the SemEval2018
task3A (2-class) and 3B (3-class), respectively.

datasets of the released raw, constructed Emoji
w/o position, and Emoji w/ position were used to
perform irony detection.

Table 6 shows the results. The first block shows
the reported scores of the top 2 previously submit-
ted systems on the SemEval2018 Task 3A and 3B.
We used the second best model, NTUA-SLP, which
used Bi-Lstm with the self-attention networks. The
second block shows the re-run performances us-
ing the NTUA-SLP model2 with raw, Emoji w/o
position, and Emoji w/ position datasets. Using
the Emoji w/o position dataset improved the per-
formance of irony detection compared to using the
raw dataset in both task3A and 3B. In addition,
using Emoji w/ position dataset on the NTUA-
SLP model outperformed using Emoji w/o posi-
tion dataset and achieved better performances com-
pared to the best models of the THU-NGN and
UCDCC in both task3A and 3B. This improvement
can be explained by the fact that social media users
put an emoji carefully to convey their meaning and
the position of emoji is effective to understand so-
cial media texts.

6 Conclusion

In this paper, we presented a novel task of jointly
predicting the emoji label and its position by using
Contextualized Dynamic-Smoothing (CDS) with
Bi-Affine layers. The experimental results showed
that the information of emoji positions is important
and can improve the performance of emoji label
prediction without external resources. Because the
original public datasets of emoji label prediction
had problems, we prepared the modified datasets.
Human evaluation validated there exists a suitable
emoji position in a tweet and our proposed task can
make tweets more fancy and natural compared to
the current emoji prediction. Moreover, consider-
ing emoji position is effective on the task of irony
detection.

2https://github.com/cbaziotis/ntua-slp-semeval2018/
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