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Abstract

Written communication is of utmost impor-
tance to the progress of scientific research.
The speed of such development, however, may
be affected by the scarcity of reviewers to ref-
eree the quality of research articles. In this
context, automatic approaches that are able to
query linguistic segments in written contribu-
tions by detecting the presence or absence of
common rhetorical patterns have become a ne-
cessity in the refereeing process. This paper
aims to compare supervised machine learning
techniques tested to accomplish genre analysis
in Introduction sections of software engineer-
ing articles. A semi-supervised approach to
augment the number of annotated sentences in
SciSents1 was performed. Two supervised ap-
proaches using SVM and logistic regression to
assess the F-score for genre analysis in the cor-
pus were undertaken. A technique based on
logistic regression and BERT has been found
to perform genre analysis highly satisfactorily
with an average of 88.25 on F-score when re-
trieving patterns at an overall level.

1 Introduction

Written communication plays a fundamental role
in scholarly development. Evidence for this is the
high number of estimated publications and jour-
nals (Larsen and von Ins, 2010; Björk et al., 2008;
Mabe, 2003). In this scenario, the reviewing pro-
cess is a crucial pathway for improving publication
quality, as it acts as a filter through which suitable
research papers are selected for publication (Ware
and Mabe, 2015). In principle, although academic
gatekeeping does not entail rigid language rubrics,
scientific publications on the whole present stan-
dardised conventions such as preference for passive
constructions, high nominal style, paper division

1Avaliable on: https://github.com/coling2020-
lais/SciSents

in sections, and use of lexical and phrasal struc-
tures to indicate the function and purpose of each
text portion (Seaghdha and Teufel, 2014). Dis-
seminated linguistic work aiming to systematically
describe writing organization with a focus on the In-
troduction section is the CARS (Create a Research
Space) model (Swales, 1990). CARS approaches
genre analysis by introducing two concepts, namely
Moves and Steps. Whereas a Move represents the
objectives and functions of a text segment at an
overall level, a Step further elaborates on explain-
ing how the rhetorical means are specifically used
to perform the function of a Move (Ruiying and
Allison, 2003) (see examples in Table 1). Despite
models serving as a basis for the reviewing pro-
cess (e.g. CARS), the availability of reviewers to
evaluate scientific publications does not keep pace
with the ever-growing number of papers which re-
quire gatekeeping (Fox, 2017), therefore making
computational techniques necessary.

Computational approaches may be implemented
to query linguistic segments automatically in re-
search articles by indicating the presence or ab-
sence of commonly used rhetorical patterns. Auto-
matic approaches such as Support Vector Machines
(SVM) (Bennett and Demiriz, 1999; Tang et al.,
2007) can be employed to perform genre analysis
due to its productive results regarding textual issues
(Horn et al., 2014; Fernández-Delgado et al., 2014).
Nonetheless, they require annotated data, which
are scant in the literature and not easily obtained,
with the existing ones having limited amount of in-
put (Fisas et al., 2015, 2016; Seaghdha and Teufel,
2014; Anthony and Lashkia, 2003; Pendar and Co-
tos, 2008; Cotos and Pendar, 2016; Fiacco et al.,
2019). Manual annotation is an arduous, expensive
and time-consuming task as it requires expert hu-
man annotators. To tackle this issue, SVM may be
used as a semi-supervised approach, in which con-
siderable amounts of labeled and unlabeled data are
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utilized together to form more solid classifiers (Zhu,
2005). In this context, this work aims to evaluate
supervised and semi-supervised machine learning
techniques for automatic retrieval of rhetorical pat-
terns within Swales’ CARS genre analysis schema
in research articles. This investigation was carried
out into SciSents2 corpus and, for this reason, is
restricted to the Introduction section of software
engineering articles. This paper has two main ob-
jectives: the first is to augment the number of an-
notations in SciSents corpus, and the second is to
compare and assess F-Scores generated by super-
vised approaches for genre analysis. For such, we
performed a comparison between SVMs and lo-
gistic regression techniques for the classification
task. For sentence encoding, we evaluated novel
approaches such as Universal Sentence Encoder
(Cer et al., 2018a) and BERT (Devlin et al., 2019).

This paper proceeds as follows: firstly, we re-
view state-of-the-art works on genre analysis au-
tomation. Next, we present and describe the cor-
pus and the semi-supervised annotation procedures.
Also, we comparatively discuss the main features
of the techniques employed in the experiments. We
then address the included implementation details
and, finally, report the results.

2 Related Work

One relevant reference for genre analysis automa-
tion is the work of Anthony and Lashkia (2003),
who proposed a computer software tool for outlin-
ing a research article’s structure. Based on Swales’
schema, the tool (named Mover) aimed at present-
ing to learners a panorama of the move structure
utilized in RA. The tool scanned 100 information
technology articles abstracts comprising 692 sen-
tences. The abstracts were manually annotated on
the grounds of a Modified Create a Research Space
(CARS) model proposed by Anthony (1999). The
model includes Swales’ (1990) 3 Moves, as well
as 12 Steps. Since this is a general and small-sized
model designed for the Introduction section, not
all Steps appeared in the dataset. A modified bag
of words was utilized to represent the text so it
could be machine manipulated. In a traditional bag
of words, dataset sentences would be tokenized in
single words. However, the authors added clusters
of sequential words in order to allow the system
to operate at the discourse level, therefore naming

2Avaliable on: https://github.com/coling2020-
lais/SciSents

the model as Bag of Clusters. As well as allowing
the system to identify steps only possible to clas-
sify if preceding or subsequent Steps are known,
an additional “location” feature was added to the
bag of clusters model. The model’s output fed
a Naive Bayes classifier which performed consis-
tently with an average Step accuracy rate of 68%
(ranging from 17% - Indicate gap - to 92% - An-
nounce research). The authors justified the poor
results by the scarce training items from these Steps.
Through error analysis, they observed that when
the software presented flaws, the incorrectly cate-
gorised Step tended to fall within the same Move.
In order to improve accuracy the two most probable
classifications were used in a second experiment.
In this turn, the user had to select the most appropri-
ate option. With this procedure, accuracy achieved
86%. However, despite the productive result, the
reduced number of articles and sentences was a
hindrance for further validation.

Pendar and Cotos (2008) attempted to devise a
pedagogical tool for automating discourse evalua-
tion. The purpose was to appraise academic writing
drafts in agreement with an adapted model based
on CARS, to compare it with other papers from the
same discipline and to provide feedback to the stu-
dent. To develop such a tool, a text-categorization
approach using Suport Vector Machine (SVM) for
sentence classification in research article introduc-
tions drawn on Swales’ rhetorical moves was em-
ployed. An experiment was conducted with a cor-
pus named Intelligent Academic Discourse Evalua-
tor (IADE) consisting of 11,149 sentences from 401
Introduction sections in 20 academic disciplines.
Each sentence was manually annotated within the
Moves from CARS schema. To execute the classi-
fication, sentences were stemmed and represented
in an n-dimensional vector (up to word trigrams).
Experiment results were encouraging (with an ac-
curacy above 70%), but the dataset was relatively
small and did not take Steps into account.

Cotos and Pendar (2016) made progress in their
own 2008 work by increasing IADE’s size to 1,020
research articles across 51 disciplines. Sentences
were also annotated according to the CARS model,
but this time including both Moves and Steps. An
SVM classifier with the previous settings achieved
a Move accuracy of 72.6% and a Step accuracy of
72.9%.

Fiacco et al. (2019) presented a neural network
architecture composed of a Bi-LSTM with CRF
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as an automated approach to examine rhetorical
structure in student writing. The embedding layer
was initialised with a pre-trained representation of
GloVe (Pennington et al., 2014) and was fine-tuned
to the dataset to produce more accurate word repre-
sentation. Two datasets were used to test the model:
IADE (Pendar and Cotos, 2008; Cotos and Pendar,
2016) and Research Writing Tutor (RWT) compris-
ing 900 full research articles (not only Introduction
sections) across 30 academic disciplines. RWT was
manually annotated and sentences with one com-
municative goal and more than one functional strat-
egy could be labeled with several steps; a sentence
could be assigned with a secondary Move/Step tag
if it had more than one communicative goal. Ex-
periments results achieved a precision and recall of
77%, and an F1-score of 76% for the classification
task in RWT dataset.

Due to the data paucity problem present in the
aforementioned works, this study proposes a semi-
supervised approach as a contribution towards
genre analysis automation as far as the CARS
framework is concerned. A detailed explanation
of the procedures can be found in the following
sections.

3 Semi-Supervised Approach

3.1 Data

We used SciSents, a dataset of software engineer-
ing research article sentences. This data resource is
based on 9,193 software engineering articles pub-
lished between the years 2000 and 2018 in highly-
cited journals and conference proceedings. The
corpus consists of 322,630 sentences from Intro-
duction sections. From this amount we randomly
extracted 595 sentences as our dataset, which was
then manually annotated across 13 Steps within 3
Moves as shown in Table 1.

3.2 Models

We automatically performed the genre analysis clas-
sification task comparing SVMs and logistic regres-
sion as classifiers as well as BERT (Devlin et al.,
2019) and Universal Sentence Encoder (Cer et al.,
2018a) as sentence embeddings.

3.2.1 Classifiers
SVM: Support Vector Machines are non-
parametric and deterministic algorithms based
on statistical learning. They have been used
specially in NLP (Joachims, 1998; Yang, 1999;

Goudjil et al., 2018). SVM builds a hyperplane
in a multi-dimensional space with the aim of
training a set of labeled instances which create a
boundary between distinct classes (Hearst et al.,
1998; Joachims, 1998).

Logistic Regression: Logistic regression is a sta-
tistical technique for binary classification that can
also be applied to multi-class classification by treat-
ing genre analysis issues as a binary classification
problem (Ifrim et al., 2008). It computes prob-
abilities of classes using a logistic function and
then constructs a linear hyperplane separating those
classes.

3.2.2 Features
Universal Sentence Encoder: Universal sen-
tence encoding (Cer et al., 2018a) generates embed-
ding vectors by encoding greater-than-word length
text using two models: transformer architecture
(Vaswani et al., 2017) and Deep Averaging Net-
work (DAN) (Iyyer et al., 2015). Transformer ar-
chitecture encoder consumes substantial resources
and imposes complexity to the model aiming at
high accuracy. It is context-aware and takes into
account the ordering and the identity of all words
in context. It also uses attention to compute the
representations of words in a sentence. The sec-
ond encoding model (i.e. DAN) assumes lightly
reduced accuracy aiming at efficient inference. It
receives embeddings for words and bi-grams as
input, computes its average and inserts it into a
feedforward Deep Neural Network (DNN) to create
sentence embeddings. The output of both models
is a 512-dimensional sentence embedding.

BERT: Bidirectional Encoder Representations
from Transformers or BERT (Devlin et al., 2019) is
a masked-language model for representing text and
comprises a multi-layered bidirectional transformer
encoder used for pre-training on a large unlabeled
text corpus. It aims at modelling masked-language
as well as predicting the next sentence. A random
sample of the tokens is masked (replaced with the
special token), the next sentence is predicted and
BERT proceeds with training and optimization un-
til it obtains satisfactory results (Liu et al., 2019).

3.3 Method
3.3.1 Semi Supervision
To increase the number of annotated sentences in
SciSents, we employed a semi supervised strategy,
training an SVM in the labeled part of corpus to
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Move SS R1 R2Step
Establishing the territory 187 257 444

M1-S01 - Establishing the importance of the topic for the disci-
pline

37 57 94

M1-S02 - Establishing the importance of the topic for the world
or society

45 65 98

M1-S03 - Establishing the importance of the topic as a problem
to be addressed

45 63 116

M1-S04 - Referring to previous work to establish what is already
known

60 72 136

Establishing a niche 98 136 199
M2-S05 - Identifying and highlighting inadequacies, weaknesses,
controversies and negative outcomes within the field of study

45 63 113

M2-S06 - Identifying a knowledge gap, a lack of or paucity of
previous research in the field of study

53 73 86

Occupying the niche 310 435 666
M3-S07 - Stating the focus, aim, purpose or argument of the
current research

44 64 97

M3-S08 - Setting out the research questions or hypotheses 36 56 73
M3-S09 - Describing the research design and the methods used 47 67 122
M3-S10 - Explaining the significance or give reasons for per-
sonal interest in the current study

33 42 100

M3-S11 - Describing the limitations of the current study 31 50 72
M3-S12 - Outlining the structure of a chapter, paper, thesis or
dissertation

80 99 117

M3-S13 - Explaining Keywords (also refer to Defining Terms) 39 57 85
TOTAL 595 828 1,309

Table 1: Number of manually annotated sentences by Move and by Step in SciSents (SS), in semi supervised
Round 1 (R1) and Round 2 (R2).

classify the unlabeled part. For such, the corpus
phrases were represented in a 1024-position vec-
tor using BERT (Devlin et al., 2019), following
the implementation of Xiao (2018) as described in
section 3.2.2.

Following the annotation stage, the probability
of the corpus sentences falling into each of the
13 Steps in SciSents was computed. The 20 most
likely sentences for each Step (260 in total) were
manually checked by a human linguistic expert
with considerable knowledge on Swales’ CARS
model. Through this analysis we identified 228
correctly classified sentences against 5 wrongly
classified ones. 27 sentences could not be catego-
rized because of a few tokenization glitches. At the
end of this stage, 233 sentences were added to the
annotated set (including the former 5 incorrectly
classified ones which were later corrected), amount-
ing to a total of 828 manually annotated sentences.
A new SVM training was then administered with
this annotated set.

A second round of semi-supervised annotation
followed, in which the linguistic expert analysed
random sentences with different probabilities for
Steps calculated by the second SVM training. A
total of 481 random sentences were manually

checked, of which 308 were marked as correctly
classified and 173 marked as incorrectly classified.
The misclassified sentences were manually reclas-
sified so they could be added to the correct ones
within the annotated set. Sentences with tokeniza-
tion problems were discarded. At the end of this
stage, 1,309 sentences were part of the manually
annotated set (see Table 1). This corpus was used
in the experiments, which are presented in the fol-
lowing section.

3.3.2 Evaluation
We used three measures to assess model perfor-
mance: Precision, Recall, and F-score. Precision
measures the proportion of correctly classified sen-
tences out of the total number of annotated sen-
tences, while Recall estimates the proportion of
correctly annotated sentences out of the incorrectly
predicted sentences plus the correctly classified
sentences. F-Score in turn is the harmonic mean
of both Precision and Recall (Goutte and Gaussier,
2005). Each technique was trained using 5 fold
cross-validation and averages across F-Score re-
sults on test folds were reported.

Two embeddings were generated for the exper-
iments. The first consisted of generating corpus
sentence representation individually and the second
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a representation in co-occurrence with the previous
sentence. The purpose of this second approach was
to investigate whether the previous sentence had an
influence on the subsequent one in terms of genre
analysis. In cases where the sentence was not pre-
ceded by any other, representation was calculated
with that sentence solely. We highlight that the
previous sentences were not necessarily the imme-
diately preceding ones since invalid sentences were
removed from SciSents during the preprocessing
stage. The embedded sentences and phrase labels
were the input for SVM training.

3.4 Baselines

The SVM-BERT pair, availed as the basis for the
semi-supervised annotation (considering the em-
beddings generated from individual corpus sen-
tences), was used for comparison with the rest of
the experiment. For each technique, we explored
two combinations of sentence embedding features:
Universal Sentence Encoder and BERT. As to the
former, a TensorFlow implementation3 (Cer et al.,
2018b) was used and generated a 512-dimensional
sentence embedding vector. Regarding the latter,
BERT as a Service (Xiao, 2018) was employed and
generated a 1024-position vector.

4 Results

We report the F-score averaged over the folds of
our techniques in Tables 2, 3, 4 and 5. Each
table column shows the result of an experiment
type comprising a technique (SVM or logistic re-
gression), a sentence embedding technique (BERT
or universal sentence encoder), and an annotated
set (SciSents, semi-supervised Round 1 and semi-
supervised Round 2).

Table 2 summarizes the results of experiments
on the Steps categories when using one sentence
alone to generate the embeddings4. Except for 2
Steps (M1-S03- Establishing the importance of the
topic as a problem to be addressed and M3-S11-
Describing the limitations of the current study),
logistic regression technique with BERT presented
higher scores overall. In 6 times out of these the
highest results in the semi-supervised annotation
Round 2 were achieved for the following Steps:
M1-S01-Establishing the importance of the topic
for the discipline; M1-S02-Establishing the impor-
tance of the topic for the world or society; M1-

3https://tfhub.dev/google/universal-sentence-encoder/4
4The strongest F-score in each row is in bold.

S04-Referring to previous work to establish what
is already known; M2-S05-Identifying and high-
lighting inadequacies, weaknesses, controversies
and negative outcomes within the field of study;
M3-S09-Describing the research design and the
methods used; M3-S10-Explaining the significance
or give reasons for personal interest in the current
study. In the remaining 5 Steps (i.e. M2-S06-
Identifying a knowledge gap, a lack of or paucity
of previous research in the field of study; M3-S07-
Stating the focus, aim, purpose or argument of
the current research; M3-S08-Setting out the re-
search questions or hypotheses; M3-S12-Outlining
the structure of a chapter, paper, thesis or disserta-
tion; M3-S13-Explaining Keywords (also refer to
Defining Terms)), better scores were obtained in
the semi-supervised annotation Round 1.

The best performance among all results was
achieved for Step M3-S12 (Outlining the struc-
ture of a chapter, paper, thesis or dissertation) in
semi-supervised annotation Round 2 using logis-
tic regression and BERT, which showed a 0.8856
F-Score. The results in Table 2 for M3-S12 were
higher than 0.84. This result can be explained by
the fact that sentences within this Step are pro-
totypical (e.g. ”The paper is structured as fol-
lows”,”Finally, Section 6 concludes the paper and
discusses its implications.”, and ”The remainder
of this paper begins with a comparison to related
work (Section 2), followed by an overview of the
approach used to create a corpus, perform change
classification, and evaluate its performance (Sec-
tion 3).”).

The worst performance among all results in Ta-
ble 2 was a 0.1152 F-Score produced in M3-S10
(Explaining the significance or give reasons for
personal interest in the current study) when using
logistic regression and universal sentence encoder
in SciSents annotated sentences. One possible ex-
planation for this low performance is that the num-
ber of annotations is one of the smallest among
all Steps (33 sentences). In addition, this result
can be justified by the fact that sentence type used
in this Step is quite varied such as ”Our experi-
ments, backed by a human study, suggest Delta-
Doc could replace over 89% of human-generated
What log messages.”, ”This combines visualiza-
tions, providing a high level overview, and wiki
pages, providing detailed information juxtaposed
in a focus-plus-context oriented format.”, and ”The
backward analysis computes an over approxima-
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tion of all possible inputs that can generate those
attack strings.”. Throughout annotations rounds,
M3-S10 improved its results and reached a perfor-
mance of 0.4092. The best performance in Table
2 for M3-S10 scored 0.5081 when using the SVM-
BERT pair.

Table 3 shows the performance of the experi-
ments on Steps when using both actual and previous
sentences to generate vector representation5. The
pair logistic regression with BERT surpassed other
pairs in 7 (M1-S02, M1-S03, M2-S05, M2-S06,
M3-S08, M3-S09, and M3-S10) out of the 13 Steps.
As to the results regarding sole sentence embed-
ding, the best performance among all was achieved
in M3-S12 but this time in SciSents annotations
using SVM and BERT with a 0.8932 F-Score. One
of the reasons that may have contributed to this
result even before semi-supervised rounds is the
annotated sentence number (80) being the highest
among all Steps. The worst performance in this
type of experiment was a 0.1152 F-Score output
for M3-S10.

We notice that results shown in Table 2 are more
productive than the ones from Table 3 in 44 (or
56.41%) out of 78 when considering experiments
that used BERT in isolation. When analysing only
the best scores for each Step, Table 2 presents best
results in 8 (61.53%), whereas Table 3 shows the
most productive scores in 4 (30.77%) out of 13
cases. There was a draw in one case. Performance
with universal sentence encoding was the same on
both tables.

Table 4 summarizes the results of experiments on
Moves when using one sentence solely to generate
the embeddings6. The best F-score for each Move
was achieved with logistic regression and BERT
in semi-supervised annotation Round 1 with an av-
erage of 0.8569 against an average of 0.8422 for
Round 2. The lowest score in Round 2 was 0.7867
for M1 (Establishing the territory) whereas M2 (Es-
tablishing a niche) scored 0.8564. M3 (Occupying
the niche) outperformed all other results with a
score of 0.9275. When we compare these results
with their respective scores in semi-supervised an-
notation (Round 2), there is a difference of 0.0126,
0.0129, and of 0.0187 between Moves M1, M2 and
M3 respectively.

Table 5 presents results on Moves when the vec-
tor representation is created using the actual sen-

5The strongest F-score in each row is in bold.
6The strongest F-score in each row is in bold.

tence in conjunction with the previous sentence 7.
Similar to the technique with sole sentence embed-
dings for Moves, the best F-Score was reached with
logistic regression and BERT. But this time M1 and
M2 were reached in semi-supervised annotation in
Round 2 and M3 in semi-supervised annotation in
Round 1. When we compare scores from Table
4 with those from Table 5 we can notice that the
figures on the former surpass all respective results
on the latter when considering BERT alone. Again,
when Universal Sentence Encoder was used there
was no difference between the embedding from one
sentence alone and from a sentence co-occurring
with its previous one. 8

5 Discussion

The present study was designed to augment the
number of annotations in SciSents corpus and to
compare results in supervised machine learning
techniques for genre analysis in software engineer-
ing research articles. The number of annotated sen-
tences was increased from the 595 ones in SciSents
to 1309 through two semi-supervised rounds using
SVM.

SVM versus Logistic Regression: Logistic re-
gression produced higher outcomes than SVM in
64% of the experiments. When associated with
BERT, logistic regression beats SVM in 85% of
cases, but when in conjunction with USE, SVM
outperformed logistic regression in 57% of experi-
ments.

Universal Sentence Encoder versus BERT:
Vector representation provided by BERT delivered
higher scores than Universal Sentence Encoder did
in 75,5% of the tested sets. When BERT was em-
ployed with logistic regression, the results over-
came other experiments in 81% of cases. Thus,
from the pairs of techniques tested, the indicated
one for genre analysis is logistic regression with
BERT.

Vector representation - sentence alone versus
co-occurring sentences: One finding in the ex-
periments in supervised machine learning tech-
niques is that, in most cases, the use of sentence
embedding generated from the sentence alone pro-
vided more productive results than those with the
use of the actual sentence together with its preced-
ing one.

8The strongest F-score in each row is in bold.
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SVM-BERT SVM-USE LR-BERT LR-USE
Step SS R1 R2 SS R1 R2 SS R1 R2 SS R1 R2

M1-S01 34.00 53.28 65.05 34.5 54.02 65.71 39.52 59.24 65.80 35.82 61.59 62.56
M1-S02 31.87 52.10 61.56 47.33 58.46 56.31 38.52 53.05 64.32 40.24 60.76 55.31
M1-S03 47.51 62.80 63.54 49.44 55.11 58.73 45.97 63.26 62.91 52.02 51.91 55.18
M1-S04 33.14 44.57 54.47 32.10 49.12 50.44 41.26 51.93 60.98 34.92 47.55 51.00
M2-S05 41.8 50.43 55.88 40.84 53.07 51.24 37.99 51.6 58.42 35.65 53.97 52.17
M2-S06 69.09 80.46 78.00 62.54 74.45 70.45 73.33 81.60 79.81 55.59 69.72 65.92
M3-S07 50.75 68.65 70.30 49.99 68.97 64.18 58.18 77.04 74.03 53.60 67.57 66.18
M3-S08 58.56 75.33 63.19 62.83 66.64 53.22 60.66 76.03 69.59 60.11 61.44 55.22
M3-S09 27.92 46.02 63.38 29.86 42.09 55.07 24.03 51.20 64.58 26.28 43.74 51.58
M3-S10 31.98 34.30 50.81 19.50 25.76 42.98 36.79 38.29 56.82 11.52 18.43 40.92
M3-S11 78.97 86.12 76.75 75.84 78.79 75.26 81.38 86.92 80.44 83.70 87.66 75.55
M3-S12 82.94 85.71 85.37 75.45 81.32 74.64 86.43 88.55 84.74 71.47 81.01 74.90
M3-S13 81.69 85.42 81.45 69.94 74.65 73.68 84.29 88.13 79.72 71.12 75.07 69.46
Overall 53.93 65.84 66.71 52.27 62.46 60.68 56.54 68.44 69.16 50.14 61.85 59.54

Table 2: Experiment results per Step on SciSents (SS), semi supervised Round 1 (R1) and Round 2 (R2) anno-
tated sentences sets using one sentence solely to create vector representation (LR = Logistic Regression; USE =
Universal Sentence Encoder).

SVM-BERT SVM-USE LR-BERT LR-USE
Step SS R1 R2 SS R1 R2 SS R1 R2 SS R1 R2

M1-S01 27.22 47.55 56.63 34.5 54.02 65.71 32.34 52.67 62.11 35.82 61.59 62.56
M1-S02 60.5 64.50 70.50 47.33 58.46 56.31 58.99 67.35 75.92 40.24 60.76 55.31
M1-S03 41.16 53.64 58.58 49.44 55.11 58.73 48.25 54.81 58.79 52.02 51.91 55.18
M1-S04 44.42 52.09 60.84 32.10 49.12 50.44 50.14 56.79 58.09 34.92 47.55 51.00
M2-S05 47.59 52.68 61.10 40.84 53.07 51.24 48.60 54.60 62.42 35.65 53.97 52.17
M2-S06 56.02 74.03 71.44 62.54 74.45 70.45 62.12 79.07 75.12 55.59 69.72 65.92
M3-S07 29.63 55.37 53.37 49.99 68.97 64.18 33.65 54.50 59.49 53.60 67.57 66.18
M3-S08 47.48 64.74 52.68 62.83 66.64 53.22 57.30 68.57 58.79 60.11 61.44 55.22
M3-S09 40.29 52.12 61.83 29.86 42.09 55.07 41.19 59.27 66.49 26.28 43.74 51.58
M3-S10 50.5 39.77 58.66 19.50 25.76 42.98 55.03 55.37 62.91 11.52 18.43 40.92
M3-S11 69.51 72.71 71.02 75.84 78.79 75.26 68.43 76.55 70.77 83.70 87.66 75.55
M3-S12 89.31 87.84 84.65 75.45 81.32 74.64 87.10 86.59 83.27 71.47 81.01 74.90
M3-S13 78.60 77.56 82.51 69.94 74.65 73.68 79.55 81.23 80.61 71.12 75.07 69.46
Overall 55.37 63.72 65.37 52.27 62.46 60.68 58.74 66.50 67.50 50.14 61.85 59.54

Table 3: Experiment results by Steps on SciSents (SS), semi supervised Round 1 (R1) and Round 2 (R2) annotated
sentences sets using a sentence in co-occurrence with its immediately preceding one to create vector representation
(LR = Logistic Regression; USE = Universal Sentence Encoder).

SVM-BERT SVM-USE LR-BERT LR-USE
Move SS R1 R2 SS R1 R2 SS R1 R2 SS R1 R2
M1 72.22 75.91 72.68 60.98 69.65 63.53 72.20 78.67 77.41 46.79 65.79 61.70
M2 79.30 84.01 79.71 75.70 79.70 78.58 80.39 85.64 84.35 78.48 80.84 78.70
M3 88.17 91.99 88.17 85.61 88.54 85.35 89.23 92.74 90.87 84.87 88.48 85.86

Overall 82.78 86.86 82.98 78.57 82.68 79.81 83.72 88.25 86.66 76.87 82.40 79.88

Table 4: Experiment results by Moves on SciSents (SS), semi supervised Round 1 (R1) and Round 2 (R2) anno-
tated sentences sets using one sentence solely to create vector representation (LR = Logistic Regression; USE =
Universal Sentence Encoder).

SVM-BERT SVM-USE LR-BERT LR-USE
Move SS R1 R2 SS R1 R2 SS R1 R2 SS R1 R2
M1 63.42 65.99 69.06 60.98 69.65 63.53 64.70 72.01 73.91 46.79 65.79 61.70
M2 76.88 77.80 78.19 75.70 79.70 78.58 77.78 80.93 82.45 78.48 80.84 78.70
M3 86.18 88.60 86.69 85.61 88.54 85.35 87.09 90.47 89.4 84.87 88.48 85.86

Overall 79.74 81.53 81.20 78.57 82.68 79.81 80.81 84.51 84.70 76.87 82.40 79.88

Table 5: Experiment results by Move on SciSents (SS), semi supervised Round 1 (R1) and Round 2 (R2) annotated
sentences sets using the sentence co-occurring with its previous one to create the vector representation (LR =
Logistic Regression; USE = Universal Sentence Encoder).
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Semi-Supervised Approach: When analysing
the evolution of results throughout the annotation
process within each experiment type we can notice
that they did not always improve accordingly. In Ta-
ble 2, when we compare SciSents with annotations
from Round 1, there was no increase in the F-score
(despite one situation only representing 1.92% out
of the total). When comparing annotations from
Round 1 with Round 2, the latter outperformed the
former in 46.15% of the cases. A possible explana-
tion is that in Round 1 highest-ranked sentences by
SVM were annotated while in Round 2 sentences
with random probabilities were annotated. Thus, in
Round 1, similar sentences to those the techniques
already knew were included, whereas in Round
2 sentences which were different from those the
techniques knew (but still fell into that Step) were
included.

When approaching annotation evolution through-
out Table 3 we observe that experiments within
Round 1 annotations outperformed experiments in
SciSents in 90.38% of the results. When compar-
ing experiments in annotations between Round 1
and Round 2 there is a 50% (26 times) draw in
which Round 2 showed better results than Round
1. The same analysis in Tables 4 and 5 shows that
experiments in Round 1 annotations outperformed
experiments in SciSents. When comparing annota-
tions between Round 1 and Round 2 we observe no
improvement in the latter (as shown in Table 4), but
some improvement in 33,33% of the overall cases,
as we see in Table 5. These results indicate that
the second round of annotation may have included
sentence types unknown to the technique.

Although most of the best results for Steps were
achieved with a second round annotation set, set-
backs were also present, thus indicating the need
for more annotations for probabilities potentially
corresponding to the categories set for Steps. These
annotations may also contribute to genre analy-
sis regarding Moves, despite results presenting in-
significant improvements with a second round of
annotations.

6 Conclusion

The present study compared supervised machine
learning techniques which automatically retrieved
linguistic segments from research articles. Firstly,
we used a semi-supervised approach to increase the
number of annotated sentences in SciSents corpus.
Next, we used two supervised and two sentence

embedding techniques to carry out genre analysis
on the dataset. The results suggest that an approach
based on logistic regression and BERT presents
higher scores for genre analysis. In addition, al-
though a semi-supervised annotation process has
proven to contribute to the overall procedure, it
lacks elements with random probabilities for sub-
stantial improvement.

As future work, the semi-supervised annotation
process and the techniques hereby described can be
used for annotating other sections of software engi-
neering research articles. Also, the same analyses
could be applied to articles from other domains so
that cross-disciplinary rhetorical differences could
be identified.
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