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Abstract

Adaptive Machine Translation purports to dy-
namically include user feedback to improve
translation quality. In a post-editing scenario,
user corrections of machine translation output
are thus continuously incorporated into trans-
lation models, reducing or eliminating repet-
itive error editing and increasing the useful-
ness of automated translation. In neural ma-
chine translation, this goal may be achieved
via online learning approaches, where network
parameters are updated based on each new
sample. This type of adaptation typically re-
quires higher learning rates, which can affect
the quality of the models over time. Alterna-
tively, less aggressive online learning setups
may preserve model stability, at the cost of
reduced adaptation to user-generated correc-
tions. In this work, we evaluate different on-
line learning configurations over time, measur-
ing their impact on user-generated samples, as
well as separate in-domain and out-of-domain
datasets. Results in two different domains indi-
cate that mixed approaches combining online
learning with periodic batch fine-tuning might
be needed to balance the benefits of online
learning with model stability.

1 Introduction

Machine Translation (MT) quality has increased
significantly in recent years, notably with the ad-
vent of modern Neural Machine Translation (NMT)
approaches (Bahdanau et al., 2015; Vaswani et al.,
2017). Despite this progress, machine translated
output requires post-editing in many cases, a pro-
cess which is made more taxing when the same
errors are repeated by MT systems segment after
segment.

To tackle this issue, adaptive approaches to ma-
chine translation aim to incorporate user feedback,
oftentimes in post-editing scenarios (Turchi et al.,
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2017), although on-the-fly adaptation is also rele-
vant for interactive machine translation (Peris et al.,
2017). In NMT, responsive model adaptation can
be achieved via online learning approaches, where
network parameters are updated based on each new
sample of user-edited data. To perform this type of
adaption from single data points, higher optimiser
learning rates (LR) are typically required, which
can affect the quality of the models over time. Al-
ternatively, less aggressive online learning setups
may preserve model stability, at the cost of reduced
adaptation to user-generated corrections.

In this work, we study the evolution of online
learning over time in a post-editing scenario, to
determine optimal configurations in terms of both
adaptation to continuous user input and model sta-
bility. For this purpose, we examine the behaviour
of four different gradient-descent optimisers in two
different domains, with varying learning rates, and
evaluate their behaviour as the number of samples
increases over time.

To measure system responsiveness to user input
over time, we evaluate online learning on dynam-
ically increasing sets of samples formed by simu-
lated user corrections. To determine model stability
as online learning is performed, we also measure
the quality of the MT models on static test sets per-
taining to the domain at hand and on out-of-domain
datasets, as additional measures of model evolution
over time via online learning. Additionally, we
compare the best online learning variants to mod-
els trained via batch fine-tuning on accumulated
user data.

To our knowledge, this type of evaluation has
not been previously explored and our results can
support further work on online learning for NMT,
as well as help practitioners in the field determine
optimal configurations to design responsive and
balanced adaptive MT systems.
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2 Related Work

Most studies of online learning for machine trans-
lation have taken place in the context of Statis-
tical Machine Translation (SMT) (Brown et al.,
1990; Koehn, 2010). Several methods have thus
been proposed to adapt phrase tables and language
models of SMT models, in post-editing, interactive
or streaming scenarios (Hardt and Elming, 2010;
Ortiz-Martinez et al., 2010; Levenberg et al., 2010;
Bertoldi et al., 2014). Evaluations of user produc-
tivity in adaptive SMT have notably shown a sig-
nificant overall reduction of effort in post-editing
scenarios (Bentivogli et al., 2015).

In Neural Machine Translation, comparatively
fewer studies have been dedicated to online learn-
ing approaches. Turchi et al. (2017) explore differ-
ent strategies based on a posteriori integration of
human post-edits, a priori adaptation by tuning to
similar sentences in the training data, and a combi-
nation of both, showing substantial improvements
over static models. Peris et al. (2017) compared
SMT and NMT models in interactive MT scenarios,
demonstrating significant improvements in effort
reduction with the latter over strong phrase-based
systems. In Peris and Casacuberta (2019), online
training of NMT models is evaluated under both
post-editing and interactive scenarios. Similarly to
the present work, they compared different optimis-
ers with varying learning rates on datasets covering
five different domains and different scenarios, as-
suming availability or lack of in-domain data prior
to online learning. We complement their work in
the present study by measuring the precise evolu-
tion of online learning over time and comparing it
to batch fine-tuning at different time steps.'

Several user-centric studies have also demon-
strated the usefulness of online learning for NMT,
via analyses of user effort in static and adaptive en-
vironments (Karimova et al., 2018; Simianer et al.,
2019; Domingo et al., 2019, 2020).

3 Experimental Setup

In this section, we describe in turn the core com-
ponents of our experiments, namely the selected
corpora, the training modalities of the different
types of NMT models, and the selected optimisers.

"Peris and Casacuberta (2019) also include a scenario
where online learning is applied over models first trained
via batch fine-tuning on in-domain data, a setup which differs
from our experiments.

3.1 Corpora

We first selected four datasets to train a generic
model based on out-of-domain data.> To mimic a
typical multi-domain generic model, we selected
the following corpora: Europarl (Koehn, 2005),
MultiUN (Eisele and Chen, 2010), OpenSubs (Li-
son and Tiedemann, 2016) and CC-Align (EI-
Kishky et al., 2020). Each of the four corpora was
downsampled to the first 1M parallel sentences and
the resulting datasets merged into a unique paral-
lel corpus (Generic), from which development and
test sets were extracted via uniform sampling.

As a basis for online learning, we selected two
separate domain-specific datasets. In both cases,
we used publicly available datasets and followed a
similar methodology: the available test sets were
used as is, to measure in-domain model stability
over time, and are referred to as static in-domain
test sets; the first 100K of the training sets were se-
lected to simulate user post-editing, with the refer-
ence translations taken to be the post-edited version
of the translated source segments, following stan-
dard practices in experimental protocols to evaluate
MT adaptation and online learning (Ortiz-Martinez,
2016; Peris and Casacuberta, 2019). We refer to
these datasets as dynamic in-domain, which are
used to both perform incremental training and test
the models in an online learning scenario. Dynamic
ID datasets are further split in gradually increas-
ing subsets of order 10", withn € 0,1,2,3,4,5,
starting from the first sentence.

As our first in-domain (ID) test case, we selected
the TED corpus (Cettolo et al., 2012), using £st2015
as development set, tst2016 as test set and the first
100K pairs of the 2016 training set as dynamic
ID set for this domain.> As this corpus consists
of first-person presentations on varied scientific or
technological topics, it is markedly different from
the datasets selected to train the generic domain.

We chose NewsCommentary v16 as our sec-
ond in-domain dataset, in the concatenated version
available on OPUS, using the first 100K pairs as
online training data, the next 1522 pairs as devel-
opment data, and the last 3000 as test set. This
corpus consists of third-person news commentary
and is thus relatively closer to the generic corpora
in terms of topics and style.

2Unless otherwise specified, all datasets are those available
on the OPUS repository (Tiedemann, 2012), as of April 2021.

3We used the version of the corpus available here:
https://wit3.fbk.eu/2016-01-d
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Train Test Dev
Generic 3,726,891 2,000 1,000
TED 100,000 1,197 1,155
NewCommentary 100,000 3,000 1,522

Table 1: Corpora statistics (English-Spanish)

All corpora were tokenised and truecased with
Moses scripts (Koehn, 2005) and words segmented
via joint Byte Pair Encoding (Sennrich et al., 2016),
using 30K merge operations. Statistics of the pre-
pared corpora are summarised in Table 1.

3.2 Models

All translation models were based on the
Transformer-base architecture (Vaswani et al.,
2017) and built with the MarianNMT toolkit
(Junczys-Dowmunt et al., 2018). The models con-
sist of 6-layer encoders and decoders, feed-forward
networks of 2048 units, embeddings vectors of di-
mension 512 and 8 attention heads. The dropout
rate between layers is 0.1 and embeddings for the
source, target and output layers were tied.

For the generic static models, we used the Adam
optimiser (Kingma and Ba, 2015) with o = 0.0003,
B1 =0.9, B = 0.98 and € = 107, The learning
rate was set to increase linearly for the first 16,000
training steps and decrease thereafter proportion-
ally to the inverse square root of the corresponding
step. We set the working memory to 6000MB and
with a mini-batch set to automatically fit the speci-
fied memory. The validation data were evaluated
every 3,500 steps and patience was set to 10.

For the online models, trained on the dynamic
ID sets, the models were updated incrementally,
with batches of one source-reference pair and a
single update of the network based on the sample
at hand.* Each version of the model resulting from
an update as described was taken as the basis for the
next online update. We selected four representative
optimisers, described in the next section.

To measure the impact of domain variation, all
models were trained for translation from English to
Spanish. Evaluation was performed on the BLEU
metric (Papineni et al., 2002), computed with the
sacreBLEU toolkit (Post, 2018).>

*Peris (2020) evaluated the use of multiple updates on
each sample for online learning, noting that it did not lead to
significant improvements overall.

5The TER metric (Snover et al., 2006) was also used in
internal experiments as a measure of post-editing effort. As
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3.3 Optimisers

Stochastic gradient descent (SGD) (Robbins and
Monro, 1951) is one of the most common meth-
ods to estimate the parameters of a network, given
the gradient of an error function, as it computes
estimates on a per-sample basis. In NMT, SGD
usually takes the form of mini-batch SGD, where
the gradient is computed as the average gradient
of the samples in a mini-batch; we use SGD as a
shortcut for mini-batch SGD in what follows.

Several optimisations have been proposed to
address some limitations of SGD, in particular
methods that include a parameter-level update of
the learning rate. Among these approaches, Ada-
grad (Duchi et al., 2011) uses past gradients for
each parameter to compute parameter-level updates.
Adadelta (Zeiler, 2012) extends it by mainly re-
stricting the accumulation of past gradients to a
fixed window size, an approach independently pro-
posed as the basis of the RMSProp optimiser.> An-
other popular alternative is Adam (op. cit), which
includes bias-corrected estimates of the 1st and 2nd
moment, and is the default optimiser to train Trans-
former models in toolkits such as MarianNMT.

As indicated in Section 2, previous studies in
online learning for NMT have compared the afore-
mentioned parameter update methods, reaching dif-
ferent conclusions. Thus, Turchi et al. (2017) con-
cluded that vanilla SGD was the optimal optimiser
overall in their experiments, where the learning
rate was fixed to 0.001 for all optimisers, whereas
Peris and Casacuberta (2019) reached the conclu-
sion that Adadelta, and to a lesser degree, SGD,
were optimal after selecting the learning rate for
each optimiser separately via grid-search on devel-
opment sets. To gain further insights on optimal
configurations for online learning, we selected four
of the main optimisers, namely SGD, Adam, Ada-
grad and RMSProp, and measured the impact of
different learning rates at different points in time,
as described in the next section.’

the results obtained with this metric were highly correlated
with those reported in this work for BLEU, we did not include
them for clarity of presentation in the available space.

6 Adadelta can also be computed with a second type of
estimate, using past updates instead of Lasso regularisation.
To limit our experiments to the main optimiser variants, we
only considered the first update rule in Adadelta and refer to
it as RMSProp, to avoid confusion over which version of the
Adadelta updates is used.

"The implementation of RMSProp in MarianNMT is our
own; all others are based on the toolkit default implementation.
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Figure 1: BLEU scores with aggressive and conservative learning rates on the TED dynamic set
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Figure 2: BLEU scores with aggressive and conservative learning rates on the NewsCommentary dynamic set

4 Online Learning Over Time

To evaluate the impact of online learning over time,
we first evaluate the models against the references
of the dynamic in-domain training set after 10"
online learning updates with each of the selected
optimisers, with n € {0,1,2,3,4,5}.

4.1 Impact of Learning Rate

An important component of parameter update is the
learning rate, which determines the amplitude of
the updates. For online learning, a critical choice
needs to be made between aggressive and conser-
vative updates, based on high or low learning rates,
respectively. The former may provide rapid adapta-
tion, at the risk of deteriorating the network from
overfitting to the samples, whereas the latter may
delay or dilute the expected model adaptation, thus
reducing the positive impact of online learning.

To measure both extremes, we selected the best
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learning rates for each optimiser according to the
BLEU scores obtained on the dynamic datasets on
the first (best@1) and last samples (best@100K),
for each of the two selected domains. To determine
an optimal learning rate for the first update, we
randomly sampled 100 sentences and computed
the BLEU score with all learning rates variants on
the dynamic ID set, selecting the learning rate with
the best average BLEU. This was meant to limit the
impact of the characteristics of the first sentence in
these datasets, which might not be representative
of the data distribution. For the last update, all data
points were considered to determine the best BLEU
scores and associated learning rate.

Figure 1 and Figure 2 show the evolution of the
optimisers for TED and NewsCommentary, respec-
tively. We also include the evolution of the baseline
generic models and models trained via batch fine-
tuning over the available data (1 and 100K samples
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Figure 3: BLEU scores as a function of number of samples and learning rates on the TED corpus
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for figures (a) and (b), respectively); in the latter
case, the optimiser is the one used to train the base-
lines, namely Adam, with the learning rate and
moment inherited from the last baseline update.

Adam displayed a more erratic behaviour than
the other optimisers, with sharp degradation after
10K updates when selecting a conservative learn-
ing rate, and after 100 with the more aggressive
LR. Except for TED with the best@1 LR, where
all optimisers started with maximal adaptation on
the first update, Adagrad performed worse initially
but eventually converged with SGD and RMSProp,
while also obtaining the highest scores between 10
and 10K samples on TED with its most conserva-
tive LR, and between 10 and 1000 on NewsComm-
mentary. SGD and RMSProp behave similarly with
a more stable behaviour, except on NewsCommen-
tary where RMSProp performed markedly better
with a conservative LR. It is also worth noting that
the best LRs, whether aggressive or conservative,
differ in most cases depending on the domain. Al-
though this might be expected considering that the
selected domains differ in terms of proximity to the
generic data, as previously noted, these differences
illustrate the delicate task of determining optimal
online learning setups across the board.

The baseline evolved as expected, with lower
scores than models benefitting from in-domain data.
For batch fine-tuning, the evolution featured in-
creasing scores as more data are available, even-
tually converging with the best optimiser variants.
Overall, all variants of online learning tended to-
wards degraded performance as the number of sam-
ples and subsequent updates increased, particularly
with high learning rates. This is not unexpected
given the overfitting associated with network adap-
tation over minimal samples, but both SGD and
RMSProp appeared beneficial at least up to the
100K mark on the dynamic in-domain sets. We
will examine the behaviour of all models on the
static and out-of-domain test sets in Section 5.

4.2 Optimal Optimiser Setup

So far we have examined the behaviour of the dif-
ferent optimisers over time with the best LR at the
two extremes, i.e. for 1 and 100K samples. To
determine whether other learning rates might be
optimal at other time steps, we computed BLEU
scores on the dynamic in-domain set as a function
of both learning rates and number of samples. Fig-
ure 3 and Figure 4 show the results on TED and
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NewsCommentary, respectively.

With Adam, other learning rates are more stable
over time than the best performing one selected on
the basis of a single (averaged) sample, with higher
scores and less erratic behaviour, in particular on
NewsCommentary. Nonetheless, even these more
balanced learning rates achieve poorer scores than
the other three optimisers overall, for both initial
and final updates.

For Adagrad, other values than the ones based
on the extremes performed better for some interme-
diate sample subsets on the TED dataset, but the
more aggressive LR was optimal overall on News-
Commentary, achieving better scores than all other
optimisers as the number of samples increased.

RMSProp also achieved an overall better distri-
bution of scores when selecting the most aggressive
LR on TED. On NewsCommentary, the selected
best LR for the initial sample (0.1) was not the
optimal choice, although it performed closely to
the optimal 0.05. Note that both LRs achieve an
identical score on the first sample, but on the aver-
age score obtained on the 100 randomly selected
sentences used to to select the most aggressive LR,
the previously selected LR of 0.1 was markedly
better.

Similarly, for SGD on NewsCommentary, the
best LR option over the averaged 100 unique sam-
ples (0.1) performed slightly worse overall than an
LR of 0.05 as the number of samples increased; on
TED, the most aggressive SGD LR performed bet-
ter than the alternatives, except when the number
of samples reached the 100K mark.

Although these results show that selecting an
optimal learning rate for either optimiser is bound
to be less than optimal at a given point in time, both
SGD and RMSProp with an LR of 0.05 appear to
be reasonable choices that provide overall benefits
on the two selected datasets. Interestingly, this
value differs from the optimal ones established for
SGD in separate experiments by Turchi et al. (2017)
and Peris and Casacuberta (2019) (see Section 3.3),
showing that LR selection for online learning might
be dependent on domains and datasets.

5 Model Stability Over Time

As described in the previous sections, online learn-
ing can support post-editing by adapting to user
corrections incrementally. This is obtained via rela-
tively aggressive learning rates that enable updates
to be significant on the basis of unique training
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Figure 5: Results on all datasets after 100K samples with best@1 learning rates

samples at each update point. This runs the risk
of overfitting the model to the online training data,
with incurred loss of quality on out-of-domain data,
and crucially, on other portions of the in-domain
data that did not undergo online training. To mea-
sure whether this is the case, we compared online
learning with batch fine-tuning and the baselines,
on all three types of datasets. For batch fine-tuning,
the models were updated with batches that include
all the online training pairs accumulated up to the
current time step.

Figure 5 shows the results for TED and News-
Commentary at the 100K mark, when selecting the
best learning rate for each optimiser based on the
best BLEU scores for the initial updates, which, as
a reminder, were computed over random samples
of 100 sentences. On TED, batch fine-tuning out-
performed all variants of online learning on the in-
domain datasets, both static and dynamic, although
only slightly over Adagrad on the static ID test
set. On NewsCommentary, Adagrad outperformed
all variants on the dynamic ID dataset, while also
being only slightly under batch fine-tuning on the
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static ID test set. However, as described in previous
sections, this optimiser also performed significantly
worse than SGD and RMSProp for initial updates,
thus being less beneficial for initial stages of online
learning. When compared to the most efficient opti-
misers for earlier online learning, namely SGD and
RMSProp, batch fine-tuning would be the favoured
option when reaching at least 100K data points.

Figure 6 presents the results after the final up-
date stage when taking the best learning rates at
the 100K mark for all optimisers. In this scenario,
on the TED datasets all optimisers except Adam
feature results that are closer to those achieved via
batch fine-tuning, although the latter obtained bet-
ter results overall on both the dynamic and the static
in-domain datasets. On NewsCommentary, SGD,
RMSProp and Adagrad significantly outperformed
batch fine-tuning on the dynamic data, while the
latter performed slightly better on the static ID test
set but with minor differences. Among optimis-
ers in online learning scenarios, SGD would be
favoured when selecting more conservative learn-
ing rates, although both RMSProp and SGD would
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Figure 6: Results on all datasets after 100K samples with best@ 100K learning rates

also be favoured over batch fine-tuning in such a
scenario for NewsCommentary. However, a more
conservative learning rate also reduces its benefits
at earlier stages, and the single case where online
learning optimisers outperform batch fine-tuning at
later stages might not be relevant in actual usage.

In terms of out-of-domain data, batch fine-tuning
performed better in all but one case, namely TED
with the best learning rate for initial updates, where
Adagrad performed better. Batch fine-tuning per-
formed similarly to the baseline on NewsCommen-
tary, which may be attributed to the relative proxim-
ity of NewsCommentary data to the generic train-
ing data, and conversely to the higher data differ-
ence between TED and the datasets that compose
the generic training sets.

6 Conclusions

In this paper, we explored the behaviour of online
learning for Neural Machine Translation over time,
examining the results obtained with four differ-
ent optimisers as the number of samples increases
and evaluating translation model evolution after
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repeated network updates with different types of
learning rates, from most aggressive to most con-
servative. We also compared online learning with
batch fine-tuning on dynamic and static datasets, as
well as out-of-domain test sets, to measure overall
model stability.

On the two domains we explored, based on TED
and NewsCommentary data, there does not appear
to be an optimal configuration, where online learn-
ing would be optimal in both the short and long
term. SGD and RMSProp both feature a learn-
ing rate value which provides early benefits of on-
line learning with relatively minor degradation over
time, and might be viewed as the most balanced
configuration in our experiments.

However, at least in the domains we explored,
batch fine-tuning was shown to be preferable at
later stages in terms of model stability across dy-
namic, static and out-of-domain datasets. For prac-
tical adaptive NMT, it might thus be preferable to
combine online learning, over limited time steps,
with periodic batch fine-tuning over previous model
checkpoints on the data accumulated over time.
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