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Abstract

The current natural language processing is
strongly focused on raising accuracy. The
progress comes at a cost of super-heavy mod-
els with hundreds of millions or even bil-
lions of parameters. However, simple syntac-
tic tasks such as part-of-speech (POS) tagging,
dependency parsing or named entity recogni-
tion (NER) do not require the largest models
to achieve acceptable results. In line with this
assumption we try to minimize the size of the
model that jointly performs all three tasks. We
introduce ComboNER: a lightweight tool, or-
ders of magnitude smaller than state-of-the-
art transformers. It is based on pre-trained
subword embeddings and recurrent neural net-
work architecture. ComboNER operates on
Polish language data. The model has out-
puts for POS tagging, dependency parsing and
NER. Our paper contains some insights from
fine-tuning of the model and reports its overall
results.

1 Introduction

The paradigm for automated language processing
was originally based on building dedicated tools
for every task. We illustrate it on the example of
the Polish language, but it is very likely the case
also for other languages. The dedicated tools in-
clude morphological taggers and disambiguators
(a Polish language approximation of POS tagging),
dedicated dependency parsers and named entity
recognizers. For convenience, the tools sometimes
were made available as web services and possi-
bly composed into chains. One such example is
Multiservice (Ogrodniczuk and Lenart, 2012), a
linguistic Web service for Polish, combining sev-
eral mature offline linguistic tools in a common
online platform. Multiservice offers a number of
pre-defined chains. For example, the dependency
parser requires morphological tagging and disam-

biguation as the initial step. The two tools are put
together in appropriate order in one chain.

Among universal tools (not dedicated to the Pol-
ish language) it is worth to mention:

• UDPipe, a pipeline (tool) for tokenization, tag-
ging, lemmatization and dependency parsing
(Straka et al., 2016).

• NLP-Cube which in addition to the capabil-
ities mentioned for UDPipe offers sentence
segmentation and lemmatization. The re-
ported results cover many languages but not
Polish (Boros, et al., 2018)

• Stanza, a tool for tokenization, multi-word
token (MWT) expansion, lemmatization, part-
of-speech (POS) and morphological features
tagging, dependency parsing, and named en-
tity recognition. Named entity recognition
models are separate and Polish is not avail-
able (Qi et al., 2020).

Recently, with the advances of neural networks
in natural language processing, new tools were pro-
posed that simplify the chains by doing several
tasks at once. One example is Combo (Rybak and
Wróblewska, 2018), a bi-directional recurrent neu-
ral network (RNN) using word2vec embeddings
with multiple outputs for morphological and depen-
dency analysis. The model was submitted to the
CoNLL 2018 Universal Dependency shared task.

The Combo tool, while doing certain things right,
has its own issues. The biggest problem is the fact
that it requires word-level word2vec embeddings
for every token that it encounters. Unfortunately,
the number of unique tokens in the Polish language
is rather large. For example, in the National Cor-
pus of Polish and Wikipedia, the number of unique
case-sensitive tokens exceeds 2 millions. This is
by far too many to fit into GPU memory. This
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leads to a situation where only word2vec vectors
that are used in input texts are loaded into GPU
memory (Embedding layer) and an additional pre-
processing step of data-driven word vector selec-
tion and loading. Depending on linguistic produc-
tivity, this operation has to be repeated once in a
while when processing large amounts of text. To
solve this problem, one can apply techniques of vo-
cabulary selection such as those described in (Chen
et al., 2019). Hopefully, another simple solution
exists for this issue: subword level embeddings
(Sennrich et al., 2016). This idea, successfully ap-
plied in machine translation, became popular in
multiple other scenarios and architectures, includ-
ing transformer neural networks such as BERT (De-
vlin et al., 2019). It allows to represent an unknown
word (not present in the dictionary) as a sequence
of shorter tokens or subwords. Using subword-
level tokenization and embeddings the problem of
vocabulary selection is non-existent.

The goal of ComboNER is to (1) avoid the
above issues of the initial Combo (Rybak and
Wróblewska, 2018) by introducing subword tok-
enization and (2) add named entity recognition as
another output. The overall design goal is to reduce
the size of the model where possible.

2 Datasets

This section describes the datasets used to train the
ComboNER model. It is only an overview with
basic information about data sizes, please refer the
cited papers for more details such as label descrip-
tions and annotation principles.

2.1 POS and Dependency

We trained the POS and dependency outputs of
the ComboNER model using the Polish language
subset of the Universal Dependencies (UD) tree-
bank (Nivre et al., 2020). It contains 17723 sen-
tences in the train set and 2215 sentences in the test
and dev sets. Sentences are annotated for part-of-
speech, morphological information and dependen-
cies (heads and labels).

2.2 Named Entity

To train the named entity output of ComboNER,
we used the relevant subset of the National Corpus
of Polish (Przepiórkowski et al., 2012). For label
descriptions and annotation principles for named
entities refer to the chapter 9.

Overall, the dataset contains 39534 texts and

85816 sentences. Since ComboNER requires ex-
actly one sentence as its input (a limit imposed by
the dependency structure defined for a single sen-
tence only), we splitted the named entity data into
single sentences using the Polish language model
of the spacy.io1. We then randomly divided the
data into train and test part. This resulted in 81470
sentences (95%) in the train set and 4346 (5%) in
the test set2.

3 Hyperparameter Tuning

To tune the parameters we used only POS accu-
racy and one measure from the dependency pars-
ing: UAS score (unlabeled attachment score). This
was in order to simplify the analysis and check the
balance between types of outputs. Therefore, the
hyperparameter tuning was carried out only on the
Universal Dependencies dataset.

Hyper-parameter tuning was done using the
HParams API in TensorFlow3 and grid-search ap-
proach.

Tuning was subjected to the following hyperpa-
rameters:

• Length of the subword embedding vector
(emb dim). Values tested: 25, 100, 200.

• The number of subwords for which we have
vectors, i.e. the size of the vocabulary (vocab):
10,000 (10k), 100,000 (100k).

• The size of the Bi-LSTM cell output assuming
a single layer model (rnn). Tested values: 100,
200.

ComboNER uses pre-trained Polish language
subword embedding vectors from the BPEmb li-
brary (Heinzerling and Strube, 2018). Therefore,
vocabulary and vector sizes are determined by avail-
ability in BPEmb.

For initial parameter selection only the results of
the first training epoch were taken into account.

The Table 1 shows tuning results of the selected
output as the accuracy of the POS tagger and de-
pendency parser - where the UAS measure was
selected. It also shows the mean of both measures
in the AVG column.

1https://github.com/ipipan/spacy-pl
2We did not use a validation split because hyperparameter

selection was focused on UD part of the data.
3https://www.tensorflow.org/

tensorboard/hyperparameter_tuning_with_
hparams

https://github.com/ipipan/spacy-pl
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
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Settings Results
emb dim vocab RNN POS Acc UAS AVG
25 10k 100 0.704 0.53 0.617
25 10k 200 0.706 0.572 0.639
25 100k 100 0.706 0.545 0.6255
25 100k 200 0.713 0.547 0.36
100 10k 100 0.719 0.55 0.6345
100 10k 200 0.725 0.562 0.6435
100 100k 100 0.725 0.474 0.5995
100 100k 200 0.735 0.558 0.6465
200 10k 100 0.726 0.556 0.641
200 10k 200 0.737 0.567 0.652
200 100k 100 0.732 0.529 0.6305
200 100k 200 0.749 0.555 0.652

Table 1: Hyperparameter optimization. Settings: embedding vector size (emb dim), size of the vocabulary (vocab),
dimensionality of the output space from Bi-LSTM (RNN). Results: POS tagger accuracy (POS Acc), unlabeled
attachment score (UAS) and mean value of both former scores (AVG). Results are measured after training each
model for one epoch only.

The largest embeddings (emb dim equal to 200)
work best in combination with size-corresponding
Bi-LSTM cells (rnn equal to 200). This observation
concerns both the accuracy of POS tagging and the
UAS measure of the dependency parser.

Interestingly, the number of subwords, i.e. vo-
cabulary size (vocab), turned out to be a non-
obvious measure. The POS tagger performed bet-
ter with a large number of subwords (100k vocab),
while a dependency parser preferred a smaller num-
ber (10k vocab). This effect was present regardless
of RNN cell size.

We also tested the configuration of the model
with two Bi-LSTM layers. We tested two values
of LSTM cell sizes for the first layer (100, 200)
and two (25, 50) for the second layer. When mea-
suring performance for the first training epoch, a
model with a two-layer Bi-LSTM performs gener-
ally worse than a single-layer model with similar
settings. As a result, the addition of a second Bi-
LSTM layer does not seem to be advisable.

For the named entity recognition, two variants of
the model architecture were tried. In the Multiser-
vice (Ogrodniczuk and Lenart, 2012) (and in many
older generation NLP tools), named entity recogni-
tion model uses POS tags as an input feature and
is therefore located after POS tagging. This obser-
vation leads to testing two design choices for the
named entity recognition part of ComboNER. The
first one is two independent outputs for NER and
POS / dependency: the outputs share only the word

embedding layer. The second assumes dependence:
named entity branch takes as an input not only em-
beddings but also hidden states from the LSTM
in POS / dependency branch. This setting allows
named entity recognition to take into account in-
formation from layers trained on syntactic data, in
manner somewhat similar to using POS features in
older NLP models.

The results in terms of F1 scores of both variants
are presented in Table 2. They clearly indicate that
syntactic information helps in named entity recog-
nition as the overall gain computed as an average
for all entity categories is 12,8%.

Dep. Indep. Gain
Date 0.797 0.702 +0.095
OrgName 0.427 0.213 +0.214
PersName 0.683 0.634 +0.049
PlaceName 0.564 0.410 +0.154
average +0.128

Table 2: F1 score of two variants of the NER output:
(Inep.) independent outputs for NER and POS / depen-
dency parsing, (Dep.) named entity branch takes as an
input not only embeddings but also hidden states from
the LSTM in POS / dependency.

4 ComboNER Architecture

Figure 1 illustrates the design of ComboNER.
Data processing starts with subword tokenization
and embedding layer. Here, pre-trained subword
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Figure 1: Diagram of ComboNER. UD Treebank and NKJP (The National Corpus of Polish) NER are datasets
used to train each of the outputs. Heads/Dep are the two dependency parser outputs, one for heads and one for
dependency labels.

embedding vectors are used (along with the to-
kenizer), namely monolingual Polish language
BPEmb (Heinzerling and Strube, 2018) trained
on Wikipedia. This part is common to all out-
puts. Then, computation is split into two branches:
one for POS and dependency, the other for named
entities. Each of the two branches begins with a
bi-directional LSTM layer. Named entity branch
takes as input not only embeddings but also hid-
den states from the LSTM in POS / dependency
branch. Architecture of this type was selected on
the basis of experiments described in Table 2. Intu-
itively, part-of-speech information is often useful
for named entity recognition; in certain natural
language processing pipelines such as Multiser-
vice (Ogrodniczuk and Lenart, 2012) named entity
recognition (NER) uses part-of-speech (POS) fea-
tures and therefore is executed downstream (after)
POS.

Activations inside the network are tanh and soft-
max is used in the final layers. For details of imple-
mentation see (Rybak and Wróblewska, 2018); in
particular, dependency parser outputs with the dot
product solution follow closely the initial model.

5 Final Model

5.1 Model Parameters

For the final model, we selected following hyper-
parameters:

• 100 output units in the POS and dependency

LSTM,

• 50 output units in the named entity LSTM,

• dropout rate of 0.2,

• learning rate of 3e-4,

• 100 output units of the Dense layer for POS
output,

• 100 output units of the Dense layer for depen-
dency output,

• vocabulary size of 50.000 (50k),

• embedding size of 100.

The selection of embedding size 100 and 50k vo-
cabulary is a compromise between the quality of
POS and dependency outputs.

The number of parameters of the ComboNER
is 5.3 millions. The size of the embedding layer
alone is 5 millions (embedding size times vocab-
ulary) and we make it trainable for both training
tasks as it improves the overall results marginally.
The remaining parts of the model are rather mod-
est with named entity part contributing over 100k
parameters. The disk size of the model slightly
exceeds 200 MB.

The model handles sentences up to 67 subword
tokens long as this was the maximum sentence
length encountered in the UD dataset. It assumes
that the input consists of a single sentence. No
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special tokens are needed to indicate beginning or
end of sentence.

5.2 Evaluations

We trained the model 45 epochs on the Polish lan-
guage UD dataset (POS and dependency part) and
20 epochs on the subset NKJP (the National Cor-
pus of Polish, named entity labels) as described in
Section 2. The execution time of a single training
epoch was 3 minutes on the UD treebank (POS and
dependency) and about 10 minutes on the named
entity data on a Tesla V100-SXM2-16GB GPU
card.

Table 3 contains the POS results of the final fully
trained output of ComboNER. The overall accuracy
(not reported in the Table) is 0.933. The perfor-
mance is satisfactory for most parts-of-speech. The
worst performing one is PROPN (proper names),
due to high lexical variation and relatively low fre-
quency in the UD corpus.

In the case of dependency parser outputs, the
two relevant measures are unlabelled attachment
score (UAS) and labelled attachment score (UAS).
The values measured are 0.71 for UAS and 0.858
for LAS score.

Table 4 contains the results of named entity eval-
uation. Two categories, present in the data, did not
provide reasonable results: GeogName and Time.
This is due to low counts, as these categories were
the least frequent in the dataset. In the case of cate-
gories: Date, OrgName, PersName and PlaceName
ComboNER performed with reasonable precision
and recall.

6 Conclusions

This paper describes ComboNER: a new version
of the Combo tool (Rybak and Wróblewska, 2018),
developed with following assumptions in mind: (1)
use subwords to avoid out-of-vocabulary issues
(words in model’s input not present in memory /
the embedding layer), (2) add named entity recog-
nition output, (3) lightweight in terms of memory
footprint, as of today’s standards. The tool was
implemented in TensorFlow 2.

ComboNER follows many design choices of the
original Combo (Rybak and Wróblewska, 2018),
but introduces some new solutions.

Training multi-output models on multiple
datasets is a challenging task. Technically, it was
solved by freezing appropriate part (layers) of the

model while training another part, using a dedi-
cated TensorFlow data loader class for each corpus.

The paper contains the results of hyperparameter
optimization, which dictate the final hyperparam-
eter choice for the ComboNER model. There are
several interesting findings. First, the number of
subwords (vocabulary size): the POS tagger per-
formed better with a large number of subwords
(100k vocab), while dependency parser preferred a
smaller number (10k vocab). Second, named entity
layers greatly benefit from accessing layers pre-
trained for POS and dependency. This architecture
improves the F1 score of named entity recognition
by 12,8% on average compared to the variant with
fully independent training of both tasks.

The results of PolEval competition in 2018 are
an interesting reference for comparisons regard-
ing dependency parser and named entity recogni-
tion quality (Ogrodniczuk and Kobyliński, 2018)4.
It appears that LAS score achieved by the Com-
boNER is competitive and easily on-par with par-
ticipating systems. Unfortunately, the solutions for
named entity recognition outperform the output of
ComboNER in a significant manner. One explana-
tion of this fact is context: effective named entity
recognition requires context wider than just the in-
put sentence. Most of the corpora and tools assume
the supra-sentence level. Important clues for iden-
tyfing named entities are often a part of preceding
sentences.

In order to evaluate the POS tagger, one can
compare the results of the PoleEval competition
in 2017(Kobyliński and Ogrodniczuk, 2017)5. In
this context, the accuracy of 0.933 is very compet-
itive and on-par with the best of the participating
systems.

To recap, this paper describes a relatively
straightforward yet important modifications over
previous work (Rybak and Wróblewska, 2018).
Our goals were to develop a small system and avoid
large scale transformer, at the same time solving
out-of-vocabulary problems posed by word-level
embeddings. In the future it may be advisable to
compare with small transformer models like Dis-
tilBERT (Sanh et al., 2020) (40% less parameters
than the BERT base model).

4http://2018.poleval.pl/index.php/
results/

5http://2017.poleval.pl/index.php/
results/

http://2018.poleval.pl/index.php/results/
http://2018.poleval.pl/index.php/results/
http://2017.poleval.pl/index.php/results/
http://2017.poleval.pl/index.php/results/
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prec recall F1
ADJ 0.983 0.968 0.975
ADP 0.935 0.979 0.957
ADV 0.788 0.630 0.700
AUX 0.812 0.904 0.856
CCONJ 0.929 0.892 0.910
DET 0.882 0.772 0.823
NOUN 0.750 0.859 0.801
NUM 0.783 0.757 0.770
PART 0.857 0.742 0.795
PRON 0.905 0.948 0.926
PROPN 0.754 0.602 0.670
PUNCT 0.997 9.996 0.997
SCONJ 0.876 0.911 0.893
VERB 0.876 0.911 0.893

Table 3: Part-of-speech evaluation of the fully trained model. Precision (prec), recall and F1 measured on the test
set.

prec recall F1
Date 0.891 0.721 0.797
OrgName 0.640 0.320 0.427
PersName 0.747 0.629 0.683
PlaceName 0.653 0.496 0.564

Table 4: Named entity recognition evaluation of the fully trained model. Precision (prec), recall and F1 measured
on the test set. GeogName was skipped due to low results.

6.1 Software and Data

Source codes and serialized models are available
at https://github.com/CLARIN-PL/ComboNER/

and https://github.com/alexwz/ComboNER.
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