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Abstract

While COVID-19 vaccines are finally becom-
ing widely available, a second pandemic that
revolves around the circulation of anti-vaxxer
“fake news” may hinder efforts to recover from
the first one. With this in mind, we performed
an extensive analysis of Arabic and English
tweets about COVID-19 vaccines, with focus
on messages originating from Qatar. We found
that Arabic tweets contain a lot of false infor-
mation and rumors, while English tweets are
mostly factual. However, English tweets are
much more propagandistic than Arabic ones.
In terms of propaganda techniques, about half
of the Arabic tweets express doubt, and 1/5
use loaded language, while English tweets
are abundant in loaded language, exaggeration,
fear, name-calling, doubt, and flag-waving. Fi-
nally, in terms of framing, Arabic tweets adopt
a health and safety perspective, while in En-
glish economic concerns dominate.

1 Introduction

During the COVID-19 pandemic, social media
have become one of the main communication chan-
nels for information dissemination and consump-
tion, and many people rely on them as their pri-
mary source of news (Perrin, 2015), attracted by
the broader choice of information sources. Unfor-
tunately, over time, social media have also become
one of the main channels to spread disinformation.
To tackle this issue, a number of (mostly manual)
fact-checking initiatives have been launched, and
there are over 200 fact-checking organizations cur-
rently active worldwide.1 However, these efforts
are insufficient, given the scale of disinformation,
which, in the time of COVID-19, has grown into
the First Global Infodemic (according to the World
Health Organization).

1http://tiny.cc/zd1fnz

Figure 1: Tweets about COVID-19 and vaccines.

Figure 1 shows examples of how online users dis-
cuss COVID-19 and vaccines. We can see that the
problem goes beyond factuality: there are tweets
spreading rumors, discussing action taken, instill-
ing panic, making jokes, and promoting bad cure.

http://tiny.cc/zd1fnz
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For the tweets in Figure 1, we might want to
know whether they are factual, harmful, calling
for action, etc. (see Section 4.1). It is also impor-
tant to understand whether the content of the tweet
is propagandistic (Section 4.2), what propaganda
techniques are used, as well as the way the issue is
framed (Section 4.3). Doing this in a timely manner
is crucial to help organizations channel their efforts,
and to counter the spread of disinformation, which
may cause panic, mistrust, and other problems.

With this in mind, we performed an exten-
sive analysis of Arabic and English tweets about
COVID-19 and vaccines, with focus on messages
originating from Qatar. Our analysis focuses on
(i) COVID-19 disinformation, (ii) propaganda and
its techniques, and (iii) framing.

Our contributions can be summarized as follows:

• We build and release a dataset of tweets re-
lated to COVID-19 and vaccines in Arabic
and English.2

• We analyze the tweets from various perspec-
tives (factuality, harmfulness, propaganda,
and framing), and we discuss some interesting
observations from our analysis.

2 Related Work

Below, we discuss relevant research directions.

2.1 Factuality
Work on fighting disinformation and misinforma-
tion online has focused on fact-checking and fake
news detection (Li et al., 2016; Hardalov et al.,
2016; Shu et al., 2017; Karadzhov et al., 2017;
Lazer et al., 2018; Mihaylova et al., 2018; Vosoughi
et al., 2018; Vo and Lee, 2018; Atanasova et al.,
2019; Baly et al., 2019; Zlatkova et al., 2019; Baly
et al., 2020; Nguyen et al., 2020; Shaar et al.,
2020a). Research was further enabled by the emer-
gence of datasets (Wang, 2017; Augenstein et al.,
2019), often released as part of evaluation cam-
paigns (Derczynski et al., 2017; Nakov et al., 2018;
Da San Martino et al., 2019; Elsayed et al., 2019;
Gorrell et al., 2019; Mihaylova et al., 2019; Barrón-
Cedeño et al., 2020; Nakov et al., 2021c,d; Shaar
et al., 2021b). As automated systems have credibil-
ity issues (Arnold, 2020), another research direc-
tion has emerged: building tools to facilitate human
fact-checkers (Nakov et al., 2021b).

2http://gitlab.com/sshaar/a-second-pandemic.-analysis-
of-fake-news-about-covid-19-vaccines-in-qatar

2.2 Check-Worthiness Estimation

Given the volume of claims appearing in social
media posts or in political statements, a problem
that is crucial for fact-checkers is to identify which
claims should be prioritized for fact-checking. The
ClaimBuster system (Hassan et al., 2015) was a
pioneering work in that direction. It categorized
a political statement as non-factual, unimportant
factual, or check-worthy factual. Gencheva et al.
(2017) also focused on the 2016 US Presidential
debates, for which they obtained binary (check-
worthy vs. non-check-worthy) labels based on the
fact-checking decisions of nine fact-checking or-
ganizations. An extension of this work was the
ClaimRank system, which supports both English
and Arabic (Jaradat et al., 2018). Note that po-
litical debates and speeches require modeling the
context of the target sentence to classify. Indeed,
context was a major focus for most research in
the debates domain (Gencheva et al., 2017; Pat-
wari et al., 2017; Vasileva et al., 2019; Shaar et al.,
2021a). For example, Vasileva et al. (2019) mod-
eled context in a multi-task learning neural network
that predicts whether a sentence would be selected
for fact-checking by each fact-checking organiza-
tion (from a set of nine such organizations).

There has also been research on detecting check-
worthy claims in social media (as opposed to the
above research, which targeted political debates
and speeches), featuring tweets about COVID-19
or general topics in Arabic and English (Hasanain
et al., 2020; Shaar et al., 2020b, 2021c).

More directly related to our work here is the
work of Alam et al. (2021c) and Alam et al.
(2021a), who developed a multi-question annota-
tion schema of tweets about COVID-19, organized
around seven questions that aim to model the per-
spective of journalists, fact-checkers, social media
platforms, policymakers, and the society. In our
experiments, we use their schema and data to train
classifiers for part of our analysis.

2.3 Propaganda

Propaganda is a communication tool that is delib-
erately designed to influence the opinions and the
actions of other people in order to achieve a pre-
determined objective. When automatic means are
being used to spread such influencing messages
on social media platforms, this is referred to as
computational propaganda (Woolley and Howard,
2018).
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Research on propaganda detection has focused
on textual content (Barrón-Cedeno et al., 2019;
Rashkin et al., 2017; Da San Martino et al., 2019;
Da San Martino et al., 2020a). Suitable datasets
were made available by Rashkin et al. (2017) and
Barrón-Cedeno et al. (2019), where the documents
(news articles) were annotated using distant super-
vision, according to the reputation of their source,
as judged by journalists. Rashkin et al. (2017) fo-
cused on analyzing the language of propaganda (vs.
trusted, satire, and hoaxes) based on LIWC lexi-
cons, while Barrón-Cedeno et al. (2019) studied a
variety of stylistic features.

Habernal et al. (2017, 2018) developed a cor-
pus annotated with five fallacies, including ad
hominem, red herring, and irrelevant authority.
Fine-grained propaganda analysis was done by Da
San Martino et al. (2019), who developed a corpus
of news articles annotated with 18 propaganda tech-
niques. Subsequently, the Prta system was released
(Da San Martino et al., 2020b), and improved mod-
els were proposed, focusing on interpretability (Yu
et al., 2021) or addressing the limitations of trans-
formers (Chernyavskiy et al., 2021). Finally, mul-
timodal content was explored in memes using 22
propaganda techniques (Dimitrov et al., 2021a,b).

2.4 Framing
Framing refers to representing different salient as-
pects and perspectives for the purpose of conveying
the latent meaning about an issue (Entman, 1993).
Recent work on automatically identifying media
frames includes developing coding schemes and
semi-automated methods (Boydstun et al., 2013),
datasets such as the Media Frames Corpus (Card
et al., 2015), and systems to automatically de-
tect media frames (Liu et al., 2019; Zhang et al.,
2019), large-scale automatic analysis of news ar-
ticles (Kwak et al., 2020), and semi-supervised
approaches (Cheeks et al., 2020).

2.5 Fighting the COVID-19 Infodemic
Related work on fighting the COVID-19 info-
demic includes developing multi-question anno-
tation schemes of tweets about COVID-19 (Alam
et al., 2021c,a), studying credibility (Cinelli et al.,
2020; Pulido et al., 2020; Zhou et al., 2020), racial
prejudices and fear (Medford et al., 2020; Vidgen
et al., 2020), situational information, e.g., caution
and advice (Li et al., 2020), as well as detecting
mentions and stance with respect to known miscon-
ceptions (Hossain et al., 2020).

3 Dataset

We collected Arabic tweets from February 2020 till
March 2021. For the English tweets, we had two
separate time periods (before and after COVID-19
vaccines became available): (i) from February till
August 2020 (644 tweets), and (ii) from November
2020 till January 2021 (1,945 tweets). We used the
following keywords to collect the tweets:

We collected original tweets (no retweets or
replies), we removed the duplicates using the
similarity-based approach in Alam et al. (2021b),
and we filtered out tweets with less than five words.
Finally, we kept the most frequently liked and
retweeted tweets for annotation. Our final corpus
consists of 606 Arabic and 2,589 English tweets.

4 Method

Figure 2 shows the architecture of our system. Be-
low, we discuss each analysis step in detail.

4.1 Disinformation Analysis

For disinformation analysis, we used the dataset
from (Alam et al., 2021c,a), which is organized
around seven questions: asking whether the tweet
(Q1) contains a verifiable factual claim, (Q2) is
likely to contain false information, (Q3) is of inter-
est to the general public, (Q4) is potentially harm-
ful to a person, a company, a product, or the so-
ciety, (Q5) requires verification by a fact-checker,
(Q6) poses harm to society, or (Q7) requires the
attention of policy makers. The dataset consist of
504 English and 218 Arabic tweets, and we used it
to train an SVM classifier, whose hyper-parameters
we optimized using 10-fold cross-validation. Ta-
ble 1 shows the performance of the classifier for
English and Arabic for all questions. Note the mul-
ticlass nature of the tasks and the skewed class
distribution for Q2 to Q6 (Alam et al., 2021a).
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Figure 2: The architecture of our system for tweet anal-
ysis. The arrows show the information flow.

Q (# Cl.) English Arabic

Acc W-F1 Acc W-F1

Q1 (2) 64.5 64.8 72.5 72.9
Q2 (5) 40.0 41.1 44.3 43.3
Q3 (5) 42.0 41.7 51.4 49.1
Q4 (5) 41.6 41.5 57.1 56.4
Q5 (5) 37.0 37.6 57.1 57.4
Q6 (8) 50.0 50.4 69.7 68.6
Q7 (10) 60.7 58.6 68.8 69.1

Table 1: Performance of our models for disinformation
analysis. Here, # Cl. shows the number of classes for
the corresponding question.

4.2 Propaganda Analysis

For the propaganda analysis, we used two sys-
tems: Proppy (Barrón-Cedeño et al., 2019) and
Prta (Da San Martino et al., 2020b).

Proppy uses a maximum entropy classifier
trained on 51k articles, represented with various
style-related features, such as character n-grams
and a number of vocabulary richness and readabil-
ity measures. The performance of the model is
82.89 in terms of F1 score, as evaluated on a sep-
arate test set of 10k articles. It outputs the follow-
ing propaganda labels based on the output score
p ∈ [0, 1]: very unlikely (0.0 ≤ p < 0.2), unlikely
(0.2 ≤ p < 0.4), somehow (0.4 ≤ p < 0.6), likely
(0.6 ≤ p < 0.8), and very likely (0.8 ≤ p ≤ 1.0).

The Prta system offers a fragment-level and a
sentence-level classifiers. They were trained on a
corpus of 350K tokens. The performance of the
sentence-level classifier is 60.71 in terms of F1
score. The fragment-level classifier identifies the
text fragments and the propaganda techniques that
occur in them. They consider the following 18 tech-
niques: (i) Loaded language, (ii) Name calling or
labeling, (iii) Repetition, (iv) Exaggeration or mini-
mization, (v) Doubt, (vi) Appeal to fear/prejudice,
(vii) Flag-waving, (viii) Causal oversimplification,
(ix) Slogans, (x) Appeal to authority, (xi) Black-
and-white fallacy, dictatorship, (xii) Thought-
terminating cliché, (xiii) Whataboutism, (xiv) Re-
ductio ad Hitlerum, (xv) Red herring, (xvi) Band-
wagon, (xvii) Obfuscation, intentional vagueness,
confusion, and (xviii) Straw man.

Note that both Proppy and Prta were developed
for English. Thus, for the classification of Arabic
content, we first translated it to English using the
Google translation API, and then we ran the tools.

4.3 Framing

We used the Tanbih Framing Bias Detection sys-
tem (Zhang et al., 2019), trained on the Media
Frames Corpus (11k training news articles) by fine-
tuning BERT to detect topic-agnostic media frames,
achieving accuracy of 66.7% on the test set (1,138
news articles). It can predict the following 15
frames: (i) Economy, (ii) Capacity and resources,
(iii) Morality, (iv) Fairness and equality, (v) Legal-
ity, constitutionality and jurisprudence, (vi) Policy
prescription and evaluation, (vii) Crime and pun-
ishment, (viii) Security and defense, (ix) Health
and safety, (x) Quality of life, (xi) Cultural identity,
(xii) Public opinion, (xiii) Politics, (xiv) External
regulation and reputation, and (xv) Other.

5 Results and Discussion

5.1 Disinformation Analysis

Arabic: Figure 3 shows the distribution for the
questions for Arabic. We can see that (i) most
tweets contain a verifiable factual claim, (ii) about
half of the tweets contain false information,
(iii) most tweets are of general interest to the pub-
lic, (iv) about half of the tweets are harmful to the
society, a person, a company, or a product (Ques-
tion 6), (v) many tweets are worth fact-checking,
(vi) most tweets are not harmful to the society, and
many spread rumors, and (vii) some tweets discuss
possible cure, and very few spread panic.
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(a) Questions Q1-Q5.

(b) Questions Q6-Q7.

Figure 3: Statistics about the distribution of the Arabic tweets from February 2020 till March 2021.

English: Figure 4 shows the distribution for the
English tweets from February till August 2020. We
can see that most tweets contain a verifiable factual
claim, contain no false information, are of gen-
eral interest to the public, are not harmful, and are
worth fact-checking. Moreover, many tweets con-
tain jokes, some contain rumors, and some blame
the authorities.

We also analyzed the English tweets from
November 2020 till January 2021. The results are
shown in Figure 5, and follow a very similar trend.

Summary: Arabic tweets contain relatively
more false information and rumors, some discuss
possible cure, and very rarely spread panic. English
tweets contain mostly factual statements, many
make jokes, and rarely spread rumors.

5.2 Propaganda Analysis

Figure 6 shows the propaganda analysis in Arabic
vs. English tweets. We can see that Arabic pro-
pagandistic tweets are extremely rare, while for
English they about 33% of all tweets.
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(a) Questions Q1-Q5.

(b) Questions Q6-Q7.

Figure 4: Statistics about the distribution of the English tweets collected from February 2020 till August 2020.

We also analyzed English tweets collected from
November 2020 till January 2021, to cover tweets
about COVID-19 vaccines, and we found that there
were fewer propagandistic tweets: about 25%.

Fine-Grained Propaganda Analysis Next, we
aimed to detect the specific propaganda techniques
used in the tweets. Figure 7 shows the top propa-
ganda techniques for Arabic and English.

We can see that, for Arabic, 50% of the tweets
express doubt, and 20% use loaded language.

For English, we see a different distribution:
about 33% of the tweets use loaded language,
while each of the following techniques appears
in about 10% of the tweets: exaggeration, fear,
name-calling, doubt, and flag-waving.

Yet another trend is observed for English tweets
collected from November 2020 till January 2021
(discussing vaccines): 50% of the tweets use
loaded language, and each of the following four
techniques appears in about 10% of the tweets:
flag-waving, name-calling, and exaggeration.
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(a) Questions Q1-Q5.

(b) Questions Q6-Q7.

Figure 5: Statistics about the distribution of the English tweets collected from November 2020 till January 2021.

5.3 Framing

Finally, we performed analysis in terms of framing,
which reflects the perspective taken in the COVID-
19 related tweets we analyzed. The results are
shown on Figure 8.

We can see that in the Arabic tweets health and
safety is the dominant frame, with economy coming
second, and cultural identity being third.

For English, in both studied time periods, econ-
omy is the primary frame, and health and safety
comes second.

We speculate that the difference in framing be-
tween Arabic and English tweets reflects the per-
spective of Qatari locals (who tweet primarily in
Arabic) vs. that of expats (who tweet primarily in
English). Thus, it is to be expected that the for-
mer are concerned primarily with health aspects
(e.g., COVID-19 vaccination, social distancing, and
other measures to keep one safe during the pan-
demic), while the latter worry more about the eco-
nomic consequences of the pandemic (and respec-
tively, about the security of their jobs).
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(a) Arabic: February till August 2020

(b) English: February till August 2020

(c) English: November 2020 till Jan-
uary 2021

Figure 6: Analysis: use of propaganda.

6 Conclusion and Future Work

We have presented our analysis of COVID-19
tweets in Arabic and English aiming to help in the
fight against the global infodemic, which emerged
as a result of the COVID-19 pandemic. In partic-
ular, we collected tweets in different time frames
starting from February 2020 till January 2021, and
we analyzed them using different aspects of disin-
formation, propaganda, and framing. We believe
that such analysis should help in better understand-
ing the trends over time and across languages.

Many interesting directions could be pursued in
future work. For example, the analysis could be
applied to other languages; in fact, we already did
a related study for Bulgarian (Nakov et al., 2021a).
Moreover, while here we focused on tweets, the ap-
proach is applicable to other social media platforms
such as Facebook and WhatsApp.
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(a) Arabic: February till August 2020

(b) English: February till August 2020

(c) English: November 2020 till January 2021.

Figure 7: Analysis: propaganda techniques.

(a) Arabic: February till August 2020.

(b) English: February till August 2020.

(c) English: November 2020 till January 2021.

Figure 8: Analysis: framing.
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