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Introduction

The PrivateNLP workshop aims to bring together practitioners and researchers from academia and
industry to discuss the challenges and approaches to designing, building, verifying, and testing privacy
preserving systems in the context of Natural Language Processing.

This year, the workshop accepted 7 papers and one non-archival paper. These accepted papers cover
federated learning, text perturbation mechanisms, privacy preserving language models, and secure
multiparty computation.

We have 2 invited speakers: Travis Breaux (Carnegie Mellon University) and Adam Dziedzic (Vector
Institute and The University of Toronto).

We would like to thank the Program Committee members who kindly reviewed the submissions, as
well as the invited speakers, and the workshop co-organizers, Oluwaseyi Feyisetan (Amazon, USA),
Sepideh Ghanavati (University of Maine, USA), Shervin Malmasi (Amazon, USA), and Patricia Thaine
(University of Toronto, Canada).
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Understanding Unintended Memorization in Language Models
Under Federated Learning

Om Thakkar and Swaroop Ramaswamy and Rajiv Mathews and Françoise Beaufays
Google LLC,

Mountain View, CA, U.S.A.
{omthkkr, swaroopram, mathews, fsb} @google.com

Abstract

Recent works have shown that language mod-
els (LMs), e.g., for next word prediction
(NWP), have a tendency to memorize rare or
unique sequences in the training data. Since
useful LMs are often trained on sensitive data,
it is critical to identify and mitigate such un-
intended memorization. Federated Learning
(FL) has emerged as a novel framework for
large-scale distributed learning tasks. It differs
in many aspects from the well-studied central
learning setting where all the data is stored
at the central server, and minibatch stochas-
tic gradient descent is used to conduct train-
ing. This work is motivated by our observa-
tion that NWP models trained under FL exhib-
ited remarkably less propensity to such mem-
orization compared to the central learning set-
ting. Thus, we initiate a formal study to under-
stand the effect of different components of FL
on unintended memorization in trained NWP
models. Our results show that several differing
components of FL play an important role in
reducing unintended memorization. First, we
discover that the clustering of data according
to users—which happens by design in FL—
has the most significant effect in reducing such
memorization. Using the Federated Averaging
optimizer with larger effective minibatch sizes
for training causes a further reduction. We also
demonstrate that training in FL with a user-
level differential privacy guarantee results in
models that can provide high utility while be-
ing resilient to memorizing out-of-distribution
phrases with thousands of insertions across
over a hundred users in the training set.

1 Introduction

There is a growing line of work (Fredrikson et al.,
2015; Wu et al., 2016; Shokri et al., 2017; Carlini
et al., 2018; Song and Shmatikov, 2019) demon-
strating that neural networks can leak information
about the underlying training data in unexpected
ways. Many of these works show that language

models (LMs), which include commonly-used next
word prediction (NWP) models, are prone to unin-
tentionally memorize rarely-occurring phrases in
the data. Large-scale LM training often involves
training over sensitive data, and such memorization
can result in blatant leaks of privacy (e.g., (Munroe,
2019)). Thus, it is crucial to measure such mem-
orization in trained LMs, and identify mitigation
techniques to ensure privacy of the training data.

The framework of Federated Learning
(FL) (McMahan et al., 2017a; McMahan and
Ramage, 2017) has emerged as a popular approach
for training neural networks on a large corpus
of decentralized on-device data (e.g., (Konečný
et al., 2016; Konecný et al., 2016; Bonawitz et al.,
2017; Hard et al., 2018; Bonawitz et al., 2019)).
FL operates in an iterative fashion: in each round,
sampled client devices receive the current global
model from a central server to compute an update
on their locally-stored data, and the server aggre-
gates these updates using, for e.g., the Federated
Averaging (FedAvg) algorithm (McMahan et al.,
2017a), to build a new global model. A hallmark
of FL is that each participating device only sends
model weights to the central server; raw data never
leaves the device, remaining locally-cached. This,
by itself, is not sufficient to provide formal privacy
guarantees for the training data. However, this
work is motivated by the observation (described
in detail in Section 3) that NWP models trained
under the canonical setting of FL exhibited
resilience to memorize rare phrases in spite of
hundreds of occurrences in the training data. Note
that FL does differ in many aspects from the
well-studied (Shokri et al., 2017; Carlini et al.,
2018; Song and Shmatikov, 2019) central learning
setting where all the data is stored at a central
server, and minibatch stochastic gradient descent
(SGD) is used to conduct training. While training
NWP models via central learning, we observed that
phrases with even tens of occurrences were easily
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(a) A user selected as a secret sharer
for a canary.

(b) An example in a secret sharer’s lo-
cal dataset being replaced by the ca-
nary.

Figure 1: An illustration of our federated secret-sharer framework, using the canary “My SSN is 123-45-6789".

memorized, in line with prior work (Carlini et al.,
2018) that showed the propensity of such models
to memorize phrases with even one occurrence in
the training set. Thus, we initiate a formal study to
understand the effect of the different components
of FL, compared to the central learning setting, on
unintended memorization in trained NWP models.

We also study the extent to which a guarantee of
Differential Privacy (DP) (Dwork et al., 2006c,a)
reduces such memorization. DP has become the
standard for performing learning tasks over sensi-
tive data, and has been adopted by companies like
Google (Erlingsson et al., 2014; Bittau et al., 2017;
Erlingsson et al., 2020), Apple (Apple, 2017), Mi-
crosoft (Ding et al., 2017), and LinkedIn (Rogers
et al., 2020), as well as the US Census Bureau (Kuo
et al., 2018). Intuitively, DP prevents an adver-
sary from confidently making conclusions about
whether any particular user’s data was used to train
a model, even while having access to the model
and arbitrary external side information.

The Federated Secret Sharer: We build on the “se-
cret sharer" framework (Carlini et al., 2018) that
was designed to measure the unintended memoriza-
tion in generative models. At a high-level, out-of-
distribution examples (called canaries) are inserted
into a training corpus, and a model trained on this
corpus is then evaluated using various techniques
to measure the extent to which the model has mem-
orized the canaries. Since datasets in FL are in-
herently partitioned according to users, we adapt
the secret sharer framework to the FL regime by
introducing two parameters to control the presence
of a canary in such settings. An illustration of our
federated secret sharer framework is shown in Fig-
ure 1. Given a canary with parameters pu and pe,
we let pu be the probability with which each user
in a dataset is selected to be a “secret sharer" of the

canary (Figure 1a), whereas pe denotes the prob-
ability with which each example in such a secret
sharer’s data is replaced by the canary (Figure 1b).
We use Poisson sampling for both user-selection
and example-replacement. The secret sharer selec-
tion phase precedes canary insertion to model real-
world settings where occurrences of user-specific
unique or rare out-of-distribution canaries are typ-
ically limited to a small group of users, but such
users can exhibit high usage for those canaries.

Contributions: Our empirical evaluations demon-
strate the following key contributions. First, we
observe that clustering training data according to
users, which happens by design in distributed learn-
ing settings like FL, has a significant effect in re-
ducing unintended memorization for NWP models.
Next, given a dataset partitioned by users, we show
that replacing the learning optimizer from SGD to
Federated Averaging and increasing the effective
minibatch size provides a further reduction in such
memorization. Lastly, we demonstrate that training
in FL with user-level differential privacy (DP) re-
sults in models that can provide comparable utility
while being resilient to memorizing canaries with
thousands of insertions spread across over a hun-
dred users in the training set. Prior work (Carlini
et al., 2018) has shown that models trained with
record-level DP do not exhibit unintended mem-
orization for a single insertion of a canary. We
provide evidence of models being resilient to mem-
orizing canaries for orders of magnitude higher
insertions, at the stronger user-level privacy.

1.1 Related Work

Apart from (Carlini et al., 2018) which this work
builds upon, other works (Song and Shmatikov,
2019) have also studied memorization in generative
text models. The FL paradigm, which is a major
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focus of this work, has been used to train mul-
tiple production scale models (Hard et al., 2018;
Ramaswamy et al., 2019; Chen et al.). Kairouz
et al. (2019) provides an excellent overview of the
state-of-the-art in the field, along with a suite of in-
teresting open problems. This work also studies the
effectiveness of a user-level DP guarantee in reduc-
ing unintended memorization. While many works
on DP focus on record-level DP guarantees (which
usually cannot be directly extended to strong user-
level DP guarantees), recent works (e.g., (McMa-
han et al., 2017b; Jain et al., 2018; Augenstein
et al., 2020; Andrew et al., 2021)) have designed
techniques tailored to user-level DP guarantees.

2 Contrasting Federated Learning with
Central Learning

Now, we take a deeper look at how the well-studied
central learning framework differs from the canoni-
cal setting of FL for LM training. We are interested
in differences that might have an effect on unin-
tended memorization. We identify three such com-
ponents: (1) Data Processed per Update: Central
learning typically ingests data as records/sentences.
On the other hand, FL operates at the granularity
of a user, with each user having their own set of
sentences locally. Typically, the amount of data pro-
cessed per model update in central learning is much
smaller in comparison to FL. (2) Learning Tech-
nique: In central learning, the model is updated via
SGD on a minibatch of records. In the canonical
setting of FL, a model update typically corresponds
to Federated Averaging over a minibatch of users:
an average of the differences between the current
model and the model obtained after several SGD
steps on the local data of a user. (3) Independent
and Identically Distributed (IID) Data: To reduce
variance in learning, the data in central learning
is shuffled before training (and/or each update in-
volves a randomly sampled minibatch). Thus, each
minibatch can be estimated to be drawn IID from
the data. Datasets in FL are naturally grouped
according to potentially heterogeneous users, re-
sulting in non-IID data even though each minibatch
of users may be randomly sampled.1

1We do not discuss unbalanced datasets, i.e., the fact that
users can have varying amounts of local data, since Federated
Averaging in FL deals with such imbalances by weighing each
client update according to the size of its local data.

3 Empirical Evaluation

Experimental Setup: Our model architecture
(1.3M parameters) mirrors the one used in Hard
et al. (2018). We create a modified version of the
Stack Overflow dataset (Overflow, 2018) hosted by
TensorFlow Federated (Ingerman and Ostrowski,
2019), containing 392K users (93M records). For
an IID version of this dataset, we randomly shuf-
fle all the records, and create synthetic users hav-
ing data assigned sequentially from the shuffled
records. Since our model is a word-level language
model, we follow the methodology used by Carlini
et al. (2018) for their experiments with the GMail
Smart Compose model (Chen et al., 2019). We in-
sert random 5-word canaries with configurations in
the cross product of pu ∈ {1/50K, 3/50K, 1/5K}
and pe ∈ {1%, 10%, 100%}, with 10 different ca-
naries for each (pu, pe) configuration, resulting in
the insertion of 90 different canaries. Given a pre-
fix of a canary, we use two methods to evaluate the
unintended memorization of the suffix for a model:
Random Sampling (RS), which for a 2-word prefix
measures if the canary has the least log-perplexity
among 2M random suffixes, and Beam Search (BS),
which uses a greedy beam search to see if the ca-
nary is in its top 5 most-likely 5-word continuations
from a 1-word prefix. We measure the utility of
a model with accuracy and perplexity on the test
partition of the unmodified Stack Overflow dataset.

Empirical Results: We present the results of our
experiments on evaluating unintended memoriza-
tion under different training regimes ranging from
canonical FL to central learning. For all our ex-
periments using SGD, we train models for 37.5M
steps, whereas we train for 8000 rounds for the ex-
periments using FedAvg. For the largest minibatch
sizes used in both settings (256 records for SGD,
and 5000 users for FedAvg), these checkpoints cor-
respond to training for 100 epochs. Table 1 shows
the number of canaries (out of 90) that show up
as memorized via both the RS and BS methods.
The utility of all the evaluated models is similar;
accuracy varies from 23.7− 24.6%, and perplexity
varies from 57.3− 64.3 across all models.2

Training in FL with DP Federated Averaging
(DP-FedAvg): Next, we evaluate the extent to
which training using DP-FedAvg is resilient to such

2We defer the utility measurements to Table 3.
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Optimizer Data Batch Size RS BS

500 users 21 0
1K users 23 1

Non-IID 2K users 19 1
FedAvg 5K users 26 2

500 users 66 56
IID 1K users 69 58

2K users 67 56
5K users 65 58

32 records 37 19
64 records 49 36

Non-IID 128 records 48 34
256 records 51 39

SGD 32 records 54 42
IID 64 records 54 42

128 records 52 45
256 records 53 43

Table 1: Results for the number of inserted canaries
(out of 90) memorized via the Random Sampling (RS)
and Beam Search (BS) methods for various models
evaluated at 8000 rounds when sampling users (Fe-
dAvg), and 37.5M steps when sampling records (SGD).

memorization. To provide the strongest user-level
DP while obtaining high utility, we conduct exper-
iments only for our largest minibatch size of 5K
users. The results are presented in Table 2.

Optimizer RS BS Acc. % Perp.

FedAvg 26 2 24.5 58.2
DP-FedAvg 12 0 23.3 68.5

Table 2: Unintended memorization and utility for a
model trained with (18.8, 10−7)-DP in FL (non-IID
users) with 5k users/round for 100 epochs.

3.1 Discussion

Clustering data according to users: The results
from our experiments strongly indicate that cluster-
ing data according to users significantly reduces un-
intended memorization. This is evident by consider-
ing the measurements in Table 1 in pairs where the
only differing component among them is whether
the data is IID or not. The number of epochs taken
over the dataset to train the models on which we
measure memorization is the same for any particu-
lar minibatch size, irrespective of whether the data

is IID. Thus, the number of times the inserted ca-
naries were encountered during training is the same.
However, the amount of memorization observed
is always lower when the data is Non-IID. This
effect is more pronounced in the settings where Fe-
dAvg is used as the training method. For instance,
for a minibatch size of bu = 500 users, training
with FedAvg on IID data results in 66 (56) canaries
showing up as memorized via the RS (BS) method.
The same configuration on Non-IID data results
in the RS method classifying only 21 canaries as
memorized, and the BS method not being able to
extract any canary even after 8000 rounds of train-
ing. In addition to the data being clustered, the
inserted canaries are clustered as well, which we
conjecture to be playing a crucial role in reducing
such memorization.

Varying data per update: Fixing the optimizer to
SGD/FedAvg and the data to be IID/non-IID, we
do not see any significant effect of varying the
minibatch size on such memorization.3

Training non-IID user data with FedAvg and
larger effective minibatches: The smallest mini-
batch size for our FedAvg experiments is 500
users,4 and as each user contains ≈ 250 records,
the effective minibatch size is ≈ 125K records. In
comparison, the largest minibatch size for which
we are able to conduct SGD training is 256 records.
Focusing on the results in Table 1 using Non-IID
data, we find that using FedAvg and having larger
effective minibatches per round causes a signifi-
cant reduction in unintended memorization when
compared to training with SGD and smaller mini-
batches.5

Training with DP-FedAvg in FL: Our aim is to
test the extent to which NWP models trained with
DP-FedAvg in FL are resilient to such memoriza-
tion. By definition, a user-level DP guarantee is
intended to be resilient to changes w.r.t. any one

3For the case of SGD and Non-IID data, while unintended
memorization does seem to increase with the minibatch size,
we do not observe the increase consistently. Additional inves-
tigation for potential causes of such a trend are beyond the
scope of this work.

4We do not train with smaller user minibatch sizes as we
want the number of training epochs for the lowest settings in
FedAvg and SGD to be similar at 8000 training rounds.

5Looking at the same set of results for IID data, the trend
seems to be moving in the direction of increasing memoriza-
tion. However, since the magnitude of the effect is much
smaller, we deem that further investigation is required for this
case, which we leave for future work.
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user’s data. Some of our inserted canaries are
shared by ∼100 users (with ∼24.5K occurrences
in the training data). In spite of such high levels
of canary insertion, and our FL models exhibiting
the least amount of unintended memorization (Ta-
ble 1), we see that training with DP-FedAvg results
in a significantly reduced memorization. Our re-
sults are noteworthy as, in spite of our DP model
exhibiting extremely low unintended memoriza-
tion, it also provides comparable utility as a model
trained via FedAvg, along with a user-level guar-
antee of (18.8, 10−7)-DP. While strengthening the
privacy guarantee of DP-FedAvg by increasing the
noise added to the model update in each training
round can further reduce such memorization, it can
also start significantly affecting model utility. De-
signing methods that improve the privacy-utility
trade-offs is an interesting direction, which is be-
yond the scope of this work.

4 Conclusion

In this work, we conduct a formal study to under-
stand the effect of the different components of Fed-
erated Learning (FL), on the unintended memoriza-
tion in trained next word prediction (NWP) models,
as compared to the well-studied central learning.
From our results, we observe that the components
of FL exhibit a synergy in reducing such memo-
rization. To our surprise, user-based clustering of
data (which occurs as a natural consequence in the
FL setting) has the most significant effect in the
reduction. Moreover, training using Federated Av-
eraging and larger effective minibatches reduces
such memorization further. Lastly, we observe that
training in FL with a user-level differential privacy
guarantee results in models that can provide com-
parable utility while being resilient to memorizing
canaries with thousands of insertions across over a
hundred users in the training set.

Recent work (Karimireddy et al., 2019) has
shown that, in general, such heterogeneity in the
training data can result in a slower and unstable
convergence due to factors such as “client-drift".
For all of the experiments with non-IID data, we
observe that the utility of the trained models is com-
parable to those trained on IID data, and we leave
further exploration into why client-drift may not
play a significant role in our experiments for future
work. Next, while our extensive evaluation is for a
practical NWP model on a real-world benchmark
dataset, the degree of unintended memorization in

general can depend on the model architecture and
the dataset used for training. Lastly, the secret-
sharer line of methods for measuring unintended
memorization operate at the granularity of a record.
For future work, it will be interesting to design
stronger attacks targeting data at the granularity of
a user, and measure the resilience of models trained
via FL, against such memorization.
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A Preliminaries

A.1 Measuring Unintended Memorization

Following (Carlini et al., 2018), this work assumes
a threat model of curious or malevolent users hav-
ing a black-box query access to models, in that
they see only the models’ output probabilities (or
logits). We also assume that users can adaptively
query models multiple times, thus posing a threat
of extracting uncommon word combinations.

Now, we describe the Secret Sharer framework
of (Carlini et al., 2018). First, random sequences
called canaries are inserted into the training data.
The canaries are constructed based on a prefixed
format sequence. For instance, to design the frame-
work for a character-level model, the format could
be “My SSN is xxx-xx-xxxx", where each x can
take a random value from digits 0 to 9. Next, the
target model is trained on the modified dataset con-
taining the canaries. Lastly, methods like Random
Sampling and Beam Search (both formally defined
in Section 3) are used to efficiently measure the
extent to which the model has “memorized" the in-
serted random canaries, and whether it is possible
for an adversary with partial knowledge to extract
the canary. For instance, if a canary is classified
as memorized via our Beam Search method, then
given black-box access to the trained model, an ad-
versary with the knowledge of only the first word of
the inserted canary can extract it completely with a
simple beam search.

A.2 Differential Privacy

To establish the notion of differential privacy
(Dwork et al., 2006c,b), we first define neighboring
datasets. We will refer to a pair of datasets D,D′

as neighbors if D′ can be obtained by the addition
or removal of all the examples associated with one
user from D, to be able to provide a user-level DP
guarantee.6

Definition A.1 (Differential privacy (Dwork et al.,
2006c,b)). A randomized algorithm A is (ε, δ)-
differentially private if, for any pair of neighboring

6This is in contrast to a record-level DP guarantee, where
neighboring datasets differ in the addition/removal of exactly
one example.
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datasets D and D′, and for all events S in the
output range of A, we have

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ

where the probability is taken over the random
coins of A.

For meaningful privacy guarantees, ε is assumed
to be a small constant, and δ � 1/|D|.

To train models with DP guarantees, we fol-
low the variant of DP Federated Averaging (DP-
FedAvg) (McMahan et al., 2017b) used in (Au-
genstein et al., 2020), where the only change is
sampling fixed-sized minibatches in each training
round.7

A.3 Differentially Private Federated
Averaging

We now present the technique used to train our DP
model in FL. It closely follows the DP-FedAvg
technique in (McMahan et al., 2017b), in that per-
user updates are clipped to have a bounded L2

norm, and calibrated Gaussian noise is added to the
weighted average update to be used for computing
the model to be sent in the next round. A slight
difference between the DP-FedAvg algorithm in
(McMahan et al., 2017b) and our approach is the
way in which client devices are sampled to partic-
ipate in a given federated round of computation.
DP-FedAvg uses Poisson sampling, where for each
round, each user is selected independently with a
fixed probability. In this work (also, following (Au-
genstein et al., 2020)), we instead use fixed-size
federated rounds, where a fixed number of users
is randomly sampled to participate in each round.
For reference, we provide a pseudo-code for the
technique in Algorithm 1.

Privacy analysis: Following the analysis of this
technique in (Augenstein et al., 2020), we obtain
our DP guarantees by using the following:

1. the analytical moments accountant (Wang
et al., 2019) to obtain the Rényi differential
privacy (RDP) guarantee for a federated round
of computation that is based on the subsam-
pled Gaussian mechanism,

2. Proposition 1 (Mironov, 2017) for computing
the RDP guarantee of the composition involv-
ing all the rounds, and

7Due to a technical limitation of the simulation framework,
our experiments use sampling with replacement instead of
without replacement; this should have negligible impact on
the metrics of the trained models.

Main training loop:
parameters: round participation fraction q ∈ (0, 1], total
user population N ∈ N, noise scale z ∈ R+, clip parame-
ter S ∈ R+

Initialize model θ0, moments accountantM
Set σ = zS

qW
for each round t = 0, 1, 2, . . . do
Ct ← (sample without replacement qN users from pop-
ulation)
for each user k ∈ Ct in parallel do

∆t+1
k ← UserUpdate(k, θt)

∆t+1 = 1
qN

∑
k∈Ct

∆t+1
k

θt+1 ← θt + ∆t+1 +N (0, Iσ2)
M.accum_priv_spending(z)

printM.get_privacy_spent()

UserUpdate(k, θ0):
parameters: number of local epochs E ∈ N, batch size
B ∈ N, learning rate η ∈ R+, clip parameter S ∈ R+,
loss function `(θ; b)

θ ← θ0

for each local epoch i from 1 to E do
B ← (k’s data split into size B batches)
for each batch b ∈ B do
θ ← θ − η5 `(θ; b)

∆ = θ − θ0

return update ∆k = ∆ ·min
(

1, S
‖∆‖

)
// Clip

Algorithm 1: Differentially Private Federated Aver-
aging (DP-FedAvg) with fixed-size federated rounds,
used to train our DP NWP model.

3. Proposition 3 (Mironov, 2017) to obtain a DP
guarantee from the composed RDP guarantee.

B Additional Empirical Evaluation

In this section, we present the results of our addi-
tional empirical evaluation that was omitted from
the main body.

Utility Metrics: Here, we present the utility metrics
for all the models for which the unintended memo-
rization results were presented in Table 1. It is easy
to see that the utility of all the evaluated models
is similar; the accuracy varies from 23.7− 24.6%,
and the perplexity varies from 57.3− 64.3 across
all the models.

Using Different Optimizers: In Table 4, we pro-
vide the results for using different optimizers like
Momentum (Qian, 1999) and Adam (Kingma and
Ba, 2015) for training. We conduct experiments
using only the smallest batch size in both the granu-
larities (32 records, or 500 users). For Momentum,
we set the momentum parameter to 0.9, and for
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Optimizer Data Batch size Acc. Perp.

500 users 24.4 58.8
Non- 1K users 24.3 59.5
IID 2K users 24.5 58.3

FedAvg 5K users 24.5 58.2

500 users 24.6 57.5
IID 1K users 24.6 57.3

2K users 24.6 57.4
5K users 24.6 57.3

32 records 23.7 64.3
Non- 64 records 24.1 61.8
IID 128 records 24.1 61.5

256 records 24.1 61.3

SGD 32 records 24 62.2
IID 64 records 24.1 61.5

128 records 24 62
256 records 24.1 61.1

Table 3: Results for the utility metrics for various mod-
els evaluated at 8000 rounds when sampling users (Fe-
dAvg), and 37.5M steps when sampling records (SGD).
Acc. denotes test accuracy (in %), and Perp. denotes
test perplexity.

Adam, we set the learning rate to 10−4. First, we
observe that using Momentum increases the ob-
served unintended memorization but has a similar
utility as SGD. On the other hand, we see that using
Adam decreases such memorization, but the utility
of the models is also noticeably reduced as com-
pared to SGD. We observe a similar trend when
Adam is combined with FedAvg.

Training with DP-FedAvg on IID data: Now, we
present in Table 5 the results of using DP-FedAvg
as the optimizer on IID data consisting of synthetic
users. We observe that using DP-FedAvg provides
a significant reduction in unintended memorization
compared to using FedAvg.

Only Clipping: To bound the contribution by each
participating user, DP-FedAvg clips each user up-
date before aggregating them from a minibatch of
users and adding calibrated noise to guarantee DP.
Following (Carlini et al., 2018), we present results
(rows containing “FedAvg+Clip" in Table 6) for the
case when user updates are clipped to a value of
0.2, but no noise is added. This results in an (∞, δ)-
DP guarantee for any δ ∈ (0, 1), which is vacuous
as a privacy guarantee. However, this experiment

Data Batch Opt. RS, Acc. (%),
Size BS Perp.

SGD 54, 42 24, 62.2
32 Mom. 64, 50 24.2, 60.6

IID rec. Adam 56, 42 22.7, 70.8

FedAvg 66, 56 24.6, 57.5

500 FedAvg 60, 46 23.7, 63.7
users + Adam

SGD 37, 19 23.7, 64.3
32 Mom. 48, 36 24.3, 59.9

Non- rec. Adam 21, 13 21.5, 84.1

IID FedAvg 21, 0 24.4, 58.8

500 FedAvg 8, 0 23.3, 66.5
users + Adam

Table 4: Unintended memorization, and utility met-
rics for models using different optimizers evaluated
at 37.5M steps when sampling records (e.g., SGD),
and 8000 rounds when sampling users (e.g., FedAvg).
Mom. denotes the Momentum optimizer.

Optimizer RS BS Acc. % Perp.

FedAvg 65 58 24.6 57.3
DP-FedAvg 48 42 23.9 63

Table 5: Unintended memorization and utility for mod-
els trained with (18.8, 10−7)-DP using DP-FedAvg on
IID data and 5K users/round for 100 epochs.

helps us observe the extent to which only clipping
reduces the propensity of unintended memorization
exhibited by trained models. With IID data, for the
setting evaluated in Section 3 (8000 rounds, i.e.,
100 epochs for minibatch size of 5000 users), we
observe that the RS method extracts 58 canaries
with clipping, which is 7 fewer canaries when com-
pared to without clipping. The BS method extracts
49, which is 9 fewer than without clipping. For
Non-IID data, we observe a similar trend but it is
more pronounced: the RS method extracts 11 ca-
naries with clipping, which is 15 fewer canaries
when compared to without clipping, whereas the
BS method is not able to extract any of the inserted
canaries.

Evaluating for Same Training Epochs: In Ta-
ble 7, we provide the results for evaluating models
trained for the same number of epochs over the
training data. For the runs using SGD, we start
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Data Optimizer RS, Acc. (%),
BS Perp.

IID FedAvg 65, 58 24.6, 57.3
FedAvg+Clip 58, 49 24.2, 60

Non-IID FedAvg 26, 2 24.5, 58.2
FedAvg+Clip 11, 0 24, 61.5

Table 6: Unintended memorization, lowest (by inser-
tion frequency) canary configuration memorized, and
utility for models trained with Clipping/DP and 5000
users/round for 100 epochs. The models trained with
DP-FedAvg satisfy (18.8, 10−7)-DP.

with a batch size of 32 records and a tuned learning
rate of 0.005, and we increase the learning rate by
≈
√
2 for every 2x increase in the batch size. For

all the experiments with FedAvg, we find that us-
ing a constant learning rate provides the best utility
across the different batch sizes, and thus, we keep
it fixed.

Opt. Data Batch RS, Acc. (%),
Size BS Perp.

32 rec. 49, 43 23.9, 63
IID 64 rec. 51, 39 23.5, 65.1

128 rec. 46, 36 23.2, 67.6
SGD 256 rec. 46, 32 23, 69.7

32 rec. 40, 29 23.7, 64.2
Non- 64 rec. 38, 32 23.6, 65.6
IID 128 rec. 35, 26 23.2, 68.2

256 rec. 40, 31 23, 69.8

500 users 66, 56 24.6, 57.5
IID 1k users 27, 18 24.5, 58

2k users 28, 18 24.4, 59.3
Fed- 5k users 28, 18 24, 62.5

Avg 500 users 21, 0 24.4, 58.8
Non- 1k users 10, 0 24, 61.2
IID 2k users 0, 0 24, 61.9

5k users 0, 0 23.3, 67.9

Table 7: Results for the number of inserted canaries
(out of 90) memorized via the RS and BS methods,
and utility metrics for various models evaluated at ≈10
epochs of training.

For the models trained with SGD, for both IID
and non-IID data we observe that unintended mem-
orization remains comparable for models trained
with different batch sizes. However, we see a de-
crease in the utility as the batch size increases. The

decrease in utility is observed for models trained
using FedAvg as well, but we also observe a signif-
icant drop in the such memorization when training
is performed with at least 1000 users per round.
Moreover, once the training involves at least 2000
users on non-IID data, both the RS and BS meth-
ods are unsuccessful in classifying any of the 90
inserted canaries as memorized.

10



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 11–20
July 5–10, 2020. ©2020 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_002

On a Utilitarian Approach to Privacy Preserving Text Generation

Zekun Xu
Amazon

Seattle, WA USA
zeku@amazon.com

Abhinav Aggarwal
Amazon

Seattle, WA USA
aggabhin@amazon.com

Oluwaseyi Feyisetan
Amazon

Seattle, WA USA
sey@amazon.com

Nathanael Teissier
Amazon

Arlington, VA USA
natteis@amazon.com

Abstract

Differentially-private mechanisms for text gen-
eration typically add carefully calibrated noise
to input words and use the nearest neighbor
to the noised input as the output word. When
the noise is small in magnitude, these mecha-
nisms are susceptible to reconstruction of the
original sensitive text. This is because the near-
est neighbor to the noised input is likely to be
the original input. To mitigate this empirical
privacy risk, we propose a novel class of dif-
ferentially private mechanisms that parameter-
izes the nearest neighbor selection criterion in
traditional mechanisms. Motivated by Vickrey
auction, where only the second highest price
is revealed and the highest price is kept private,
we balance the choice between the first and the
second nearest neighbors in the proposed class
of mechanisms using a tuning parameter. This
parameter is selected by empirically solving
a constrained optimization problem for maxi-
mizing utility, while maintaining the desired
privacy guarantees. We argue that this em-
pirical measurement framework can be used
to align different mechanisms along a com-
mon benchmark for their privacy-utility trade-
off, particularly when different distance met-
rics are used to calibrate the amount of noise
added. Our experiments on real text classifica-
tion datasets show up to 50% improvement in
utility compared to the existing state-of-the-art
with the same empirical privacy guarantee.

1 Introduction

Over the past decade, privacy-preserving machine
learning has emerged as a hot topic in a variety
of real world speech and language applications.
In natural language processing (NLP), ensuring
data privacy in machine learning tasks is especially
challenging because text data tends to be rich in
sensitive and potentially identifiable information
about the users that contributed to these datasets.

The literature is replete with approaches pro-
posed for privacy-preserving text analysis, such

as replacing sensitive information with general
terms (Cumby and Ghani, 2011; Anandan et al.,
2012; Sánchez and Batet, 2016), injecting addi-
tional words into original texts (Domingo-Ferrer
et al., 2009; Pang et al., 2010; Sánchez et al.,
2013), as well as k-anonymity and its variants
(Sweeney, 2002; Machanavajjhala et al., 2007; Li
et al., 2007). However, these methods are provably
non-private and have been shown to be vulnerable
to re-identification attacks (Korolova et al., 2009;
Petit et al., 2015). To ensure a quantifiable privacy
guarantee, differential privacy (DP) has become the
de facto standard for privacy-preserving statistical
analysis (Dwork et al., 2006; Dwork, 2008; Dwork
et al., 2014), with applications to text analysis.

At a high level, a randomized algorithm is differ-
entially private if the output distributions from any
two neighboring databases are (near) indistinguish-
able. This indistinguishability is controlled by a pri-
vacy parameter, which, in the case of text analysis,
is often scaled by the distance between neighboring
datasets to capture the semantic similarity between
different words (Feyisetan et al., 2019; Fernandes
et al., 2019; Feyisetan et al., 2020; Xu et al., 2020).
This calibration enables the mechanisms to enjoy
metric-DP (Andrés et al., 2013; Chatzikokolakis
et al., 2013), which was first introduced as a gener-
alization of local DP (Kasiviswanathan et al., 2011)
for protecting location privacy. Observe that a di-
rect application of local DP mechanisms will be too
restrictive because it requires that the probability
ratio between the output distributions of any two
words in the vocabulary be bounded by some fixed
constant. Due to the high dimensional nature of
textual tasks and very large vocabulary sizes (e.g.
2.2M words for GLOVE common crawl (Penning-
ton et al., 2014)), this can lead to adding a lot of
noise for achieving the desired privacy guarantees,
severely impacting the utility of the NLP task.
Comparing Metric-DP Mechanisms. In the con-
text of text analysis, we are given a vocabulary
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setW and an embedding function φ : W → Rp,
where p is the dimensionality of the embedding
model. For any ε > 0, a mechanism M :W →W
is said to be ε differentially private with respect to
a given metric d : Rp × Rp → [0,∞) if for any
w,w′, ŵ ∈ W , the following holds:

Pr{M(w) = ŵ}
Pr{M(w′) = ŵ} ≤ e

εd{φ(w),φ(w′)}. (1)

The probabilistic guarantee in (1) ensures that
the log probability ratio of observing any out-
put ŵ given two inputs w and w′ is bounded by
εd{φ(w), φ(w′)}. This makes metric-DP less re-
strictive in that the indistinguishability of the output
distributions is scaled by the distance between the
inputs. If d{φ(w), φ(w′)} = 1(w 6= w′), then
metric-DP reduces to standard DP.

Note that while metric-DP allows for a flexible
privacy budget calibrated by not only ε but also
the distance metric, this flexibility makes it harder
to interpret the privacy parameter ε. For example,
in standard DP, ε = 30 essentially means negli-
gible privacy guarantee since e30 is an astronom-
ically large probability ratio; however, ε = 30 is
common in the metric-DP literature (Fernandes
et al., 2019; Feyisetan et al., 2020; Xu et al., 2020)
and still provides meaningful privacy guarantees.
This is because the pairwise distance in the word
embedding space can be small floating numbers,
which brings exp (30d{φ(w), φ(w′)}) to a reason-
able scale. Thus, ε alone cannot fully characterize
the privacy guarantee without the knowledge of
the underlying metric space. More importantly,
this indicates that the privacy guarantees from DP
mechanisms with respect to different metrics are
not directly comparable using only their ε values.

Our Contributions. A common feature in the
existing metric-DP text generation mechanisms is
to add a calibrate noise to the input word embed-
ding and then output the nearest neighbor to the
noisy embedding as the output. However, when
the additive noise is small in magnitude, the input
word is likely to remain unchanged, which may
constitute an empirical privacy risk because it is
trivial for the adversary to reconstruct the original
word. To mitigate this issue, we present a novel
class of metric-DP text generation mechanisms in
this paper. Motivated by the Vickrey auction (Vick-
rey, 1961) scheme, also known as the second-price
auction, we refer to this class of mechanisms as
Vickrey mechanisms.

Just as in a Vickrey auction, where only the sec-
ond highest price is revealed1 and the highest price
is kept private, the proposed Vickrey mechanisms
generalize the noisy nearest neighbor selection by
including the second nearest neighbor in the selec-
tion pool using a tuning parameter. The inclusion
of the second nearest neighbor greatly reduces the
empirical reconstruction risk on the original word.

To select the tuning parameter above, we present
a strategy based on optimizing the empirical
privacy-utility tradeoff. The empirical privacy mea-
surement is constructed in the context of analysis
on de-identified text, which quantifies the risk on
how well an adversary can reconstruct the original
text based on the observed (possibly perturbed) text.
The better the reconstruction, the lower the empir-
ical privacy guarantee. This general framework
allows comparing text generation mechanisms that
use different distance metrics (see Section 3).

We emphasize that our empirical privacy metric
does not supersede the metric-DP guarantee; in-
stead, it provides a new dimension along which dif-
ferent metric-DP mechanisms can be aligned. We
say that, within the class of metric-DP mechanisms,
an optimal mechanism is the one that maximizes
the empirical privacy guarantee while keeping the
utility loss of the downstream task under some max-
imum tolerable budget. This definition for privacy-
utility tradeoff, modeled as a constrained optimiza-
tion problem, resembles the literature on protecting
privacy for location data (Shokri et al., 2011, 2012;
Clark et al., 2019). We extend the analysis for the
broader class of metric-DP mechanisms. Addition-
ally, in our experiments, we demonstrate that our
proposed Vickrey mechanisms outperform existing
mechanisms with respect to the empirical privacy-
utility tradeoff on real text classification datasets.

Related Work. Metric-DP (Andrés et al., 2013;
Chatzikokolakis et al., 2013; Laud et al., 2020),
an extended notion of local DP (Kasiviswanathan
et al., 2011), is a popular tool for privacy-
preserving text analysis. A text generation mecha-
nism that satisfies DP with respect to the hyperbolic
distance metric was proposed in (Feyisetan et al.,
2019). This mechanism requires specialized train-
ing of word embeddings in the high-dimensional
hyperbolic space. For word embeddings in the
Euclidean space, like GLOVE (Pennington et al.,
2014) or FASTTEXT (Bojanowski et al., 2017),
mechanisms like the Laplace mechanism (L2 met-

1to ensure incentive-compatibility
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ric) (Fernandes et al., 2019; Feyisetan et al., 2020)
and the Mahalanobis mechanism (using a regular-
ized Mahalanobis metric) (Xu et al., 2020) have
been proposed. However, a structured comparison
of these different mechanisms remains unclear.

Empirical privacy measurements. A variety of
empirical techniques for privacy measurement have
been proposed for many different applications. In
the membership inference attack literature (Shokri
et al., 2017; Yeom et al., 2018; Salem et al., 2018;
Song and Shmatikov, 2019), an AUC based de-
tectability metric is commonly used to quantify the
information leakage from machine learning mod-
els about their training data. However, the model
trained on a given dataset can only serve as a proxy
to estimate its privacy guarantee. Moreover, the
detectability metric can vary across different ma-
chine learning models and implementations of the
inference attack based auditors.

Hypothesis testing based approaches have also
been proposed to empirically estimate ε (Ding et al.,
2018; Gilbert and McMillan, 2018; Liu and Oh,
2019). However, the assumptions in these methods
constrain their general applicability. In a recent line
of work on privacy-preserving text analysis (Feyise-
tan et al., 2020; Xu et al., 2020), privacy statis-
tics defined as (i) probability of inputs not being
redacted, and (ii) number of distinct outputs given
a fixed input, have been used to characterize the
empirical privacy of a text generation mechanisms.
While those metrics are intuitive and descriptive,
there is not a direct association that relates them
to the privacy leakage. Within the class of metric-
DP text generation mechanisms, the corresponding
definition of empirical privacy-utility tradeoff is a
constrained optimization to maximize the empir-
ical privacy while keeping the utility loss under
a preset budget. This constrained setup can find
its precedent in the location data privacy literature
(Shokri et al., 2011, 2012; Clark et al., 2019). We
differ in their approach as we require the optimal
mechanism to also satisfy metric-DP.

2 The Class of Vickrey Mechanisms

To motivate our construction of the Vickrey mech-
anisms, we begin by discussing the limitations
of a general approach in the existing metric DP
text generation mechanisms. We denote byW =
{w1, . . . , wn} the vocabulary set containing n dis-
tinct words, and by φ : W → Rp a fixed embed-
ding function that maps each word in the vocabu-

lary set to a p−dimensional real vector (referred to
as the embedding for the word).

A common first step is to sample an addi-
tive noise Z from a density function p(z) ∝
exp{−d(z, 0)}, where d is the distance metric used
in the mechanism2. For example, the Laplace mech-
anism uses d(x, y) = ‖x − y‖2 (also known as
Euclidean or L2 distance), and the Mahalanobis
mechanism uses d(x, y) =

√
(x− y)Σ−1(x− y)

(also known as Mahalanobis distance), where Σ is
the sample covariance of the word embeddings.

Once the noise is sampled, it is then added to
the input word embedding and the word with an
embedding that is nearest to this noised embedding
is chosen as the output:

woutput = arg min
w∈W

d(φ(winput) + Z,w).

A limitation of this noisy nearest neighbor selec-
tion is that when |Z| is small (in particular, smaller
than half the distance from the input word to its
nearest neighbor), the first nearest neighbor to the
noised embedding is the same as the original input
word. The problem is exaggerated for rare words,
which exist in the sparse regions of the embedding
space and hence, do not get perturbed even for
larger noise scales. This makes it easier for an ad-
versary to reconstruct the original word, which may
contain sensitive information (e.g. street names).

The proposed Vickrey mechanisms generalize
the noisy nearest neighbor selection step by dis-
tributing the selection probability between the first
and second nearest neighbor3 using a tuning pa-
rameter t ∈ [0, 1] (see Algorithm 1). Intuitively,
this generalization makes the reconstruction of the
original input word harder (see Figures 1 and 2).

We capture our intuition for the claim above in
Figure 1. For simplicity, the horizontal axis in both
plots represents the one-dimensional embedding
on a vocabulary containing only 5 words: (A, B,
C, D, E). The vertical axis represents the output
probability of each word through the mechanism.
The plots represent the output probability in the
mechanism for each of the 5 words, corresponding
to the potential noised embedding values on the
horizontal axis. The top plot represents the Laplace
mechanism when only the first nearest neighbor

2We use the standard definition of a metric, which requires
the distance function to satisfy (1) d(x, x) = 0 for all x; (2)
d(x, y) > 0 for y 6= x; and, (3) the triangle inequality.

3See Section 5 for a general construction using k nearest
neighbors and our experimental results for the same.
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Figure 1: Word probability in the Laplace mechanism
(top) and the Vickrey mechanism (bottom) at 0 < t < 1
for each of the 5 words as a function of the noised one-
dimensional embedding. The Vickrey mechanism in
this example always has two candidate words as output.

Algorithm 1: The Vickrey Mechanism
1 Input: String s = w1w2 . . . wn, metric d, privacy

parameter ε, tuning parameter t ∈ [0, 1]
2 for wi ∈ s do
3 Sample Z with density p(z) ∝ exp{−εd(z, 0)}.
4 Obtain φ̂i ← φ(wi) + Z.
5 Let w̃i1 ← argmin

w∈W\{wi}‖φ̂i − φ(w)‖2, and
w̃i2 ← argmin

w∈W\{wi,w̃i1}‖φ̂i − φ(w)‖2.
6 Set

ŵi ←
{
w̃i1 with prob. p(t, φ̂i)
w̃i2 with prob. 1− p(t, φ̂i)

,where

p(t, φ̂i) =
(1−t)‖φ(w̃i2)−φ̂i‖2

t‖φ(w̃i1)−φ̂i‖2+(1−t)‖φ(w̃i2)−φ̂i‖2
.

7 return s̃ = ŵ1ŵ2 . . . ŵn.

to the noised embedding is feasible for selection
(t = 0). In this case, all 5 curves are step functions
since only the nearest neighbors are returned. The
bottom plot shows the output probability for the
Vickrey mechanisms, which always impart plausi-
ble deniability with another word when the noised
embedding falls in any open interval.

Overview of Algorithm 1. We outline the main
steps for the class of Vickrey mechanisms in Al-
gorithm 1. For each word in the input, an additive
noise Z is sampled according to the density func-
tion p(z) ∝ exp{−d(z, 0)}. Then the Vickrey
mechanism will select both the first and second
nearest neighbor of the noised embedding as candi-
dates, and randomly output one of them according
to probabilities calibrated by their distances to the
noised embedding using a tuning parameter t. The
closer t is to 1, the more the Vickrey mechanism
favors the second nearest neighbor.
Privacy Analysis. We formally prove that the Vick-
rey mechanism M ε

t at privacy parameter ε > 0

enjoys ε metric-DP guarantee for any t ∈ [0, 1].

Theorem 1. For any t ∈ [0, 1], ε > 0, metric d
and w,w′, ŵ ∈ W , the Vickrey mechanism M ε

t

from Algorithm 1 satisfies metric-DP:

Pr{M ε
t (w) = ŵ}

Pr{M ε
t (w

′) = ŵ} ≤ exp
(
εd{φ(w), φ(w′)}

)
.

Proof. Define Qwjwi = {v ∈ Rp : ‖v − φ(wi)‖2 <
‖v − φ(wj)‖2 < minw∈W\{wi,wj} ‖v − φ(w)‖2}
to be the set that has wi and wj as the first and
second nearest neighbors. Let pw(z) be the density
function for the perturbed embedding conditional
on the input w:

pw(z) ∝ exp (−εd{z − φ(w), 0})

Since metric d satisfies the triangle inequality,

d{z−φ(w′), 0}−d{z−φ(w), 0} ≤ d{φ(w), φ(w′)},

we obtain:

e−εd{z−φ(w),0} ≤ eεd{φ(w),φ(w′)}e−εd{z−φ(w′),0},

which is equivalent to the inequality pw(z) ≤
eεd{φ(w),φ(w

′)}pw′(z). For brevity, let

α
wj
ŵ (t, z) =

(1− t)‖z − φ(wj)‖2
t‖z − φ(ŵ)‖2 + (1− t)‖z − φ(wj)‖2

and ρ(w, ŵ) = Pr{M ε
t (w) = ŵ}. Since ρ(w, ŵ)

is a sum of partial probabilities in the areas where
ŵ is either the first or the second nearest neighbor
to the noised embedding, we have:

ρ(w, ŵ) =
∑

j=1

∫

Q
wj
ŵ

pw(z)α
wj
ŵ (t, z)dz

+
∑

i=1

∫

Qŵwi

pw(z){1− αŵwi(t, z)}dz

≤ C(w,w′)
[∑

j=1

∫

Q
wj
ŵ

pw′(z)α
wj
ŵ (t, z)dz

+
∑

i=1

∫

Qŵwi

pw′(z){1− αŵwi(t, z)}dz
]

= C(w,w′) Pr{M ε
t (w

′) = ŵ},

where C(w,w′) = eεd{φ(w),φ(w
′)}, as desired.

For our experiments, we use the Euclidean dis-
tance for d so that the Vickrey mechanism reduces
to the Laplace mechanism when t = 0. In general,
any distance function d that satisfies the triangle
inequality can be used to ensure the desired metric-
DP guarantee (quantified by the parameter ε).
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3 Tuning Parameter Selection

We now discuss how to select the tuning parameter
in Algorithm 1. We do this by optimizing an em-
pirical formulation of the privacy-utility tradeoff.
We discuss the details of this formulation next.

3.1 General Framework for Empirical
Privacy Utility Tradeoff

Let M :W →W denote some privacy-preserving
text generation mechanism (that maps words to
their noised versions). Define fM (w′|w) ,
Pr{M(w) = w′} to be the probability of observ-
ing w′ as the output of the mechanism M from the
input word w. Note that this probability is condi-
tioned on the knowledge of w. We assume a prior
probability measure π :W → [0, 1], which repre-
sents the adversary’s domain knowledge about the
NLP task and distribution of words in the dataset
under consideration. Depending on the use case,
the prior distribution π can be chosen as uniform,
which means the user has no information on the
word distribution in the context; or π can be chosen
as the empirical word distribution in the corpus on
which the user wishes to perform text generation.

Given this formulation, we define the expected
utility loss for mechanism M as follows:

LM ,
∑

w,w′∈W
π(w)fM (w′|w)dL(w,w′), (2)

where dL :W ×W → [0,∞) is a utility-specific
distance metric. The utility loss can be bounded
as LM < C for some bound C > 0, depending on
the maximum tolerance for the underlying task.

To model the empirical privacy loss, we assume
an informative adversary A that uses the prior
π and has full knowledge of the text generation
mechanism M and the parameter ε used (similar
to (Shokri et al., 2011, 2012)). This adversary uses
the posterior probability of each word given the
observed perturbed output to make its inference:

gA(ŵ|w′) , π(w′)fM (ŵ|w′)∑
w∈W π(w)fM (w′|w)

, (3)

Thus, from A’s perspective, the expected inference
error with respect to M is given by:

EM =
∑

w,w′,ŵ

π(w)fM (w′|w)gA(ŵ|w′)dE(ŵ, w),

(4)
where dE : W ×W → [0,∞) is some privacy-
specific distance metric. Our goal is, therefore,

Algorithm 2: Empirical Parameter Selec-
tion for the Vickrey Mechanism

1 Input: VocabularyW , maximum utility loss C,
sampler for the Vickrey mechanism M ε

t at any
privacy parameter ε > 0 and tuning parameter
t ∈ [0, 1]

2 Initialize Emax ← 0, ε← ε0, t← 0
3 while LMε

t
≥ C do

4 set ε = 2ε
5 set Emax ← EMε

t
, εopt ← ε, topt ← 0

6 for t ∈ [0.05, 0.1, . . . , 1] do
7 If LMε

t
≤ C and EMε

t
> Emax,

8 set Emax ← EMε
t

, εopt ← ε, topt ← t

9 return εopt, topt.

to find a mechanism within the class of metric-
DP mechanismsM that maximizes the expected
inference error EM while keeping the utility loss
LM below C:

Moptimal = arg max
M∈M

EM , s.t. LM < C. (5)

To compare different mechanisms, we will compare
their expected inference error EM under different
tolerance thresholds on the expected utility loss
LM . We favor mechanisms with high EM , while
maintaining LM < C.

Note that dL and dE do not have to be the same
distance metrics. For instance, dL can depend on
the downstream machine learning tasks, like the ab-
solute difference in classification error, perplexity
or even cross-entropy loss. From the privacy per-
spective, a natural choice is dE(w, ŵ) = 1(ŵ 6=
w), which means the adversary attempts to retrieve
the original word from the redacted output and con-
siders the inference attack successful if the inferred
word is the exactly same as the input word. Based
on applications, the adversary can also choose dE
to be the Euclidean distance such that the goal of
the inference attack is to have the inferred word as
close to the original word as possible.

3.2 Selecting the Tuning Parameter

We outline the main steps for optimizing the pri-
vacy parameter ε as well as the tuning parameter t
in Algorithm 2. This optimization is with respect to
the empirical privacy-utility tradeoff as laid out in
(5). We initialize with the privacy parameter ε = ε0
at some small initial value ε0 and tuning parameter
t = 0, so that the initial mechanism is essentially
a metric-DP mechanism that implements the noisy
first nearest neighbor selection. Next, we incre-
mentally double the value of ε until the expected
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utility loss LMε
t
< C (recall that a smaller ε typi-

cally has larger utility loss4). Once the maximum
ε is obtained, we iterate over different values of t
between 0 and 1 (since a monotonicity assumption
cannot be made here in general for the behavior of
EM ). The final parameters εopt and topt chosen pro-
vide the highest empirical privacy while keeping
the utility loss within the specified budget. More
importantly, Theorem 1 ensures that the selected
mechanism enjoys at least as much metric DP as
the initial mechanism, which implements only the
nearest neighbor selection.

4 Experimental Results

Setup. We evaluate the performance of the pro-
posed Vickrey mechanisms in terms of the empiri-
cal privacy-utility tradeoff on three datasets:

• The Product Reviews dataset consists of a list
of 2,006 positive sentiment words and 4,783
negative sentiment words extracted from cus-
tomer reviews (Hu and Liu, 2004). This is
a word-level dataset and the metric dL in
expected utility loss is 1{sentiment(w′) 6=
sentiment(w)}, i.e., the loss is incremented
when a positive sentiment word is redacted
into a negative sentiment word, or vice versa.

• The IMDb Movie Reviews dataset (Maas et al.,
2011) has a total vocabulary size of 145,901,
where a pre-specified set of 26,078 words
are subject to redaction in the text generation
mechanism (those are the words selected for
adversarial model training in (Jia et al., 2019)).
The utility task is the sentence-level binary
sentiment classification, where the underlying
model is a bidirectional LSTM using 90% of
the data for training and 10% for testing.

• The Twitter dataset contains 7,613 tweets,
with a vocabulary of 22,013 words5. Each
tweet is associated with a label indicating
whether the tweet describes a disaster event or
not. The classification model is a bidirectional
LSTM using 9:1 data split for training/testing.

For all three datasets, we consider both 300-
dimensional GLOVE embeddings (Pennington

4An implicit assumption we make in Algorithm 2 is that
LM increases monotonically with ε, following the intuition
that a larger noise scale leads to larger utility loss. We defer
the discussion around relaxing this assumption to future work.

5https://www.kaggle.com/c/
nlp-getting-started

et al., 2014) and 300-d FASTTEXT embeddings
(Bojanowski et al., 2017). The empirical privacy
measurement uses the adversary’s expected infer-
ence error rate, i.e. dE(ŵ, w) = 1(ŵ 6= w). The
utility-specific metric dL is chosen to be the mis-
classification error rate. The prior word distribution
is chosen to be the empirical word distribution in
the dataset, because we want to assume an infor-
mative adversary so as not to underestimate the pri-
vacy risk. In the Vickrey mechanism, the distance
function is the Euclidean distance, so that t = 0
is equivalent to the Laplace mechanism (Feyisetan
et al., 2020). We also compare our results with the
Mahalanobis mechanism (Xu et al., 2020).

Results and Observations. In Figure 2(A) -
2(D) shows the empirical privacy-utility tradeoff
on the Product Reviews between the Laplace mech-
anism, Mahalanobis mechanism, and the Vickrey
mechanisms with tuning parameter at to 0.25, 0.5,
0.75, and 1. The vertical axis in all plots represents
the adversary’s inference error in the mechanism.
The error bars are computed over 100 runs. In
the 2(A), the horizontal axis is the privacy bud-
get ε. When ε approaches 0, the inference error
in all mechanisms approach 1, which is expected
because magnitude of the additive noise is large.
When ε increases, the inference error drops, but
the drop in Laplace mechanism is much faster than
the other mechanisms. It is worth noticing that
the curves for Laplace mechanism and the Vickrey
mechanisms are mostly parallel with each other:
when t increases from 0 to 0.75, a higher value of
t is better in terms of empirical privacy at the same
ε; but when t increases to 1, the empirical privacy
will not further increase since the randomness in
noisy selection between the first and second nearest
neighbor is replaced by the deterministic selection
of the second nearest neighbor, which makes the
adversary’s inference attack easier by finding the
second nearest neighbor. However, Vickrey mecha-
nism at t = 1 still dominates Laplace mechanism
which only selects the noisy first nearest neighbor
for redaction. The slope for the Mahalanobis mech-
anism is different from the rest, where intersects
with Vickrey mechanisms with different t at differ-
ent ε. At ε = 100, the baseline Laplace mechanism
has negligible inference error, which means the ad-
versary can almost always make correct guesses,
whereas in the other mechanisms the error is still
substantial.

Figure 2(B) plots inference error vs. misclassi-
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Figure 2: (A): empirical privacy vs ε on Product Reviews using 300-d GLOVE. (B): empirical privacy vs utility loss
on Product Reviews using 300-d GLOVE. (C): empirical privacy vs ε on Product Reviews using 300-d FASTTEXT.
(D): empirical privacy vs utility loss on Product Reviews using 300-d FASTTEXT. (E) - (H) are for IMDb reviews,
and (I) - (L) are for Twitter dataset.

fication error of words (positive words to negative
words, or vice versa). When vertically slicing the
plot, we see that for each utility loss budget greater
than 0.1, a larger value of t will result in a better
privacy guarantee. When capped at a maximum
ε = 100, the curves with a higher t value will have
a higher minimum feasible misclassification error,
which is around around 0.02 for t = 0.25 and Ma-
halanobis, about 0.04 for t = 0.5, about 0.06 for
t = 0.75, and about 0.1 for t = 1. This is ex-
pected because as more weight is put on the second
nearest neighbor, the utility loss becomes larger
at large ε values (small noise), because it is more
likely that the original word will get changed to its

neighbors. But this loss is upper bounded by the
nearest neighbor replacement, which tends to be
small as is shown in the experiments in the paper.
The plot suggests that if the user has a maximum
utility loss budget of 0.06, they should go with the
Vickrey mechanism at t = 0.75 because when slic-
ing vertically at misclassification error of 0.06, the
green curve for t = 0.75 attains a higher empiri-
cal privacy than the other mechanisms. However,
when the utility loss budget is 0.02, the user should
choose t = 0.25 because the green line is on top
of the other curves (red and black) that can achieve
the utility loss of 0.02 (the blue, cyan, and purple
curves cannot achieve utility loss within 0.02 when
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ε is capped at 100). Figure 2(C) and 2(D) on Prod-
uct Reviews using 300-d FASTTEXT embedding
show similar patterns as those in 2(A) and 2(B) in
terms of the privacy-utility tradeoff.

The results and interpretations are qualitative
similar in Figure 2(E) - 2(H) on IMDb Movie Re-
views and in Figure 2(I) - 2(L) on Twitter. In em-
pirical privacy vs ε plots, the Laplace mechanism
consistently has a lower value of empirical privacy
measure than the Vickrey mechanism and the Ma-
halanobis mechanism. This gap in adversary’s in-
ference error becomes wider as ε increases. In the
privacy vs utility loss plots, the difference between
mechanisms is more significant on Twitter than on
IMDb reviews. The patterns are consistent across
plots, which both show that the Vickrey mechanism
can improve the privacy-utility tradeoff beyond the
baseline mechanism.

The difference in the result between GLOVE and
FASTTEXT, particularly in 2(E) vs. 2(G) and 2(I)
vs. 2(K), is due to the difference in inter-word
distance distributions between the two embedding
spaces (see Figure 1 in (Feyisetan et al., 2020)). In
particular, the inter-word distances are generally
smaller in FASTTEXT than in GLOVE, so that for a
fixed noise scale ε, the inference error is expected
to be larger in FASTTEXT than in GLOVE.

5 Generalizing Vickrey Mechanism
Beyond the Second Nearest Neighbor

By a random selection of both the first and the sec-
ond nearest neighbor to the noised embedding, we
have shown that the Vickrey mechanism can empir-
ically improve the privacy-utility tradeoff upon the
existing Laplace and Mahalanobis mechanisms. A
natural generalization is to extend the selection to
k ≥ 2 nearest neighbors (see Algorithm 3).

Algorithm 3 presents the outline of the gener-
alized Vickrey mechanism that randomly chooses
among the noisy k nearest neighbors as output,
where the selection probability is inversely associ-
ated with their distance to the noised embedding.
Similar to Algorithm 2, the tuning parameters are
selected as to optimize for the empirical privacy-
utility tradeoff, but the selection process will be
more challenging because the optimization space
is unbounded. We defer the details of this opti-
mization to future work. However, we formally
state in Theorem 2 the metric-DP guarantee from
the generalized Vickrey mechanism in Algorithm
2. Due to space constraints, we defer the details of

Figure 3: (A): empirical privacy vs ε on Product Re-
views using 300-d GLOVE. (B): empirical privacy vs
utility loss on Product Reviews using 300-d GLOVE.
(C): empirical privacy vs ε on Product Reviews using
300-d FASTTEXT. (D): empirical privacy vs utility loss
on Product Reviews using 300-d FASTTEXT.

Algorithm 3: Generalized Vickrey Mechanism

1 Input: String s = w1w2 . . . wn, metric d, privacy
parameter ε, tuning parameters t1, . . . , tk > 0

2 for wi ∈ s do
3 Sample Z with density p(z) ∝ exp{−εd(z, 0)}
4 Obtain φ̂i ← φ(wi) + Z

5 Let w̃i1 ← argmin
w∈W\{wi}‖φ̂i − φ(w)‖2

. . .
w̃ik ← argmin

w∈W\{wi,w̃i1,...,w̃ik}‖φ̂i − φ(w)‖2.
6 Set ŵi ← w̃ir with prob. pr(t1,...,k, φ̂i), where

pr(t1,...,k, φ̂i) =
exp{−tr‖φ(w̃ir−φ̂i‖2}∑
j exp{−tj‖φ(w̃ij−φ̂i‖2}

for

all r ∈ [k].
7 return s̃ = ŵ1ŵ2 . . . ŵn.

the proof since it is similar to that for Theorem 1.

Theorem 2. For any t = [t1, . . . , tk] ∈ [0,∞)k,
k ∈ Z+, ε > 0 and w,w′, ŵ ∈ W , the generalized
Vickrey mechanism M ε

t from Algorithm 3 satisfies
ε metric-DP for any metric d.

In Figure 3 , we compare 5 generalizations of the
Vickrey mechanism that deterministically select the
noisy 1st, . . . , 5th neighbors as the output on the
Product Reviews data using both 300-d GLOVE

and 300-d FASTTEXT. We can see that the im-
provement is most significant between the 1st and
2nd nearest neighbor. It also shows that there is
benefit in introducing the 3rd nearest neighbor into
the selection pool, while no big difference is found
beyond the 3rd neighbor.
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6 Discussion and Conclusion

In this paper, we present a measurement framework
to quantify the empirical privacy-utility tradeoff
for metric-DP text generation mechanisms, where
the empirical privacy metric is the reconstruction
risk of the original text based on the redacted text.
We adopt a constrained optimization setup, where
within the class of metric-DP mechanisms, we max-
imize the empirical privacy guarantee while keep-
ing the machine learning utility loss under a pre-
specified tolerance. A novel class of Vickrey mech-
anism is proposed, which not only enjoys metric-
DP but also optimizes the privacy-utility tradeoff
within the constraint. We apply our methodology
to the three text classification datasets and demon-
strate how to empirically compare the privacy-
utility tradeoff as well as how to choose the optimal
parameter setting according to the constrained opti-
mization. Our results show superior performance
when compared to existing mechanisms.

Our analysis in this paper leaves ample room
for further investigation. An ongoing work we are
exploring is the inclusion of contextual informa-
tion into the probability calibration between the
two nearest neighbors. We leave it as an interest-
ing open problem to explore how the choice of
kth neighbor impacts the tradeoff in this scenario,
since contextual signals will likely restrict the set
of candidate words we can choose from.
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Abstract

Contextual language models have led to sig-
nificantly better results on a plethora of lan-
guage understanding tasks, especially when
pre-trained on the same data as the down-
stream task. While this additional pre-training
usually improves performance, it can lead to
information leakage and therefore risks the pri-
vacy of individuals mentioned in the training
data. One method to guarantee the privacy
of such individuals is to train a differentially-
private model, but this usually comes at the
expense of model performance. Moreover, it
is hard to tell given a privacy parameter ε
what was the effect on the trained represen-
tation. In this work we aim to guide future
practitioners and researchers on how to im-
prove privacy while maintaining good model
performance. We demonstrate how to train
a differentially-private pre-trained language
model (i.e., BERT) with a privacy guarantee
of ε = 1 and with only a small degradation in
performance. We experiment on a dataset of
clinical notes with a model trained on a target
entity extraction task, and compare it to a sim-
ilar model trained without differential privacy.
Finally, we present experiments showing how
to interpret the differentially-private represen-
tation and understand the information lost and
maintained in this process.

1 Introduction

Recent advancements in natural language process-
ing (NLP), mainly the introduction of the trans-
former architecture and contextual language repre-
sentations, have led to a surge in the performance
and applicability language models. Such models
rely on pre-training on massive self-labeled cor-
pora to incorporate knowledge within the language
representation. Additionally, when presented with
a new dataset and task, such models often gain
from an additional pre-training stage, where they

∗Work was done while at Google.

are trained to solve a language modeling task on
the new training data.

While the pre-training steps are crucial for good
model performance on downstream tasks, it can
come at the expense of the privacy of the persons
mentioned in the data. As these models learn to pre-
dict words using their context, they often memorize
individual words and phrases. Such memorization
can lead to information leakage when using the
trained models or the language representation. This
problem is amplified in medical domains, where pa-
tients data might leak and expose Protected Health
Information (PHI).

One solution for pre-training the model while
preserving patients’ privacy is to train the model
with a differential privacy guarantee. However, for
a sufficiently small privacy parameter ε, this usually
comes at the expense of model performance. Also,
it was only shown to work for recurrent language
models, and not for more recent systems that are
based on the transformer architecture (McMahan
et al., 2018; Kerrigan et al., 2020). Apart from
their size (our model has 109M trainable parame-
ters), transformer-based language models introduce
an additional privacy concern, as their reliance on
WordPiece based tokenization algorithm can also
potentially leak private information.

Moreover, even with a sufficiently small ε guar-
antee, it is hard to test and evaluate the result-
ing privacy-preserving properties of the model.
One also has difficulty understanding whether the
differentially-private training procedure affected
the language representation other than by measur-
ing performance on a downstream task. For exam-
ple, it could be that other valuable information was
also lost during training.

In this work we provide here a detailed solu-
tion to training a differentially-private contextual
embedding model, and to better understand the re-
sulting representation. We start by presenting a
method for training BERT, a contextual embedding
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model, on medical data with a strong privacy guar-
antee of ε = 1 and with only a small degradation
in performance (Section 3). Possibly the most ma-
jor technical challenge in doing so is the fact that
the training batch size has to be fairly large, all
the while training on specific hardware (TPUs) in
which the batch size is limited. We overcome this
obstacle by distributing each training batch over
time during the training process, along with other
useful manipulations (Section 2.1). As these mod-
els gain from retraining the WordPiece algorithm
on the target dataset, we propose a differentially-
private WordPiece algorithm, preventing additional
information leakage through the model’s vocabu-
lary (Section 3.2).

After training the differentially-private BERT on
clinical notes, we follow common wisdom and pro-
vide privacy tests to show that information leakage
has been prevented in this process (Section 5). We
further provide adversarial attacks that can help
understand the privacy guarantees in terms of mem-
orized words and phrases. These tests, when com-
bined, provide a useful toolbox for understanding
how “private” is the differentially-private model.

2 Previous Work

Since the introduction of the differentially-private
Stochastic Gradient Descent (SGD) algorithm
(Song et al., 2013; Abadi et al., 2016b), it is possi-
ble to train deep neural networks (DNN) with pri-
vacy guarantees. Specifically, there have been sev-
eral attempts to train DNN-based language models
with such guarantees, though with mixed results in
terms of performance on downstream tasks (McMa-
han et al., 2018; Kerrigan et al., 2020). To better
understand the trade-offs between the performance
and privacy of deep language models, we survey
here the literature on differentially-private training
and on methods for measuring privacy in language
models.

2.1 Training Differentially-Private Models

Differential Privacy (DP; Dwork et al., 2006b;
Dwork, 2011; Dwork et al., 2014) is a framework
that quantifies the privacy leaked by some random-
ized algorithm accessing a private dataset. In the
context of training a machine learning model on
private data, it enables one to bound the poten-
tial privacy leakage by releasing the model to the
world.

Definition 1 ((ε, δ)-DP) Given some ε, δ > 0, we

say that algorithm A has (ε, δ)-differential privacy,
if for any two datasets D, D′ differing in a single
element and for all S ⊆ Range(A), we have:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

The leading method for training models with
small differential privacy parameters ε, δ is the DP-
SGD method by Abadi et al. (2016b). The method
was subsequently incorporated into Tensorflow’s
privacy toolbox with improved privacy analysis
(Mironov, 2017; Mironov et al., 2019). The basic
idea behind DP-SGD is to clip and add noise to the
per example gradients of the loss function during
model training. The intuition is that such a mecha-
nism guarantees that, for each step, the influence
of each example on the outcome is bounded.

In the context of NLP, there have been several at-
tempts to train language models using the DP-SGD
algorithm. Specifically, McMahan et al. (2018) pre-
sented a pipeline for training differentially-private
language models based on the recurrent neural net-
work (RNN) architecture. While successful on the
RNN architecture, results on a fine-tuned trans-
former, specifically GPT-2, were shown to be less
successful in preserving privacy without hurting
task performance (Kerrigan et al., 2020). In this
paper, we present the first, as far as we know, suc-
cessfully trained differentially private BERT model,
with a strong privacy guarantee and with only a
small decrease in downstream performance.

2.2 Evaluating the Privacy of Language
Models

While differential privacy training provides privacy
guarantees (in terms of the privacy parameters ε, δ),
it is often hard to evaluate the practical implication
of such a guarantee. In the context of language
models, evaluation becomes even trickier. Private
information might be encoded in specific phrases
contained in the text, but it can also be implicitly
contained in the language model. In the context of
clinical notes, for example, information regarding
the linguistic style of the doctor can be captured
and predicted from linguistic cues in the text itself
(Rosenthal and McKeown, 2011; Preoţiuc-Pietro
et al., 2015; Coavoux et al., 2018).

Song and Raghunathan (2020) studied informa-
tion leakage from language representations, and
presented several methods for evaluating the pri-
vacy preserving qualities of trained language mod-
els. They provided a taxonomy of adversarial at-
tacks, differing by the adversary’s access to model’s
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internal state. Specifically, they defined member-
ship attacks on language representation, which are
designed to detect memorized information. In this
paper, we build on the secret sharer membership
test, a method for quantitatively assessing the risk
that rare or unique training-data sequences are un-
intentionally memorized by generative sequence
models (Carlini et al., 2019). While not specifically
designed for language models such as BERT, it fits
the DP evaluation setup perfectly. Concretely, in
this test a secret sharer plants n identical occur-
rences of a k WordPiece sequence into the train
corpus. The sequence itself consists of i.i.d. ran-
dom WordPieces where the middle is the secret.
The model is then trained on the modified corpus
and evaluated for each planted sequence by trying
to predict the secret WordPiece.

In Section 5, we show that unlike the original
BERT model, our trained DP-BERT model does
not memorize sequences of words introduced via
the secret sharer.

3 Training Differentially Private
Contextual Language Models

Training differentially private language models be-
comes exceedingly difficult with model size. As
such, attempting to train a transformer model such
as BERT using the DP-SGD algorithm and without
any modifications will usually lead to a significant
performance degradation (Kerrigan et al., 2020).
Moreover, as the WordPiece algorithm, the process
that tokenizes the textual input of BERT, is not dif-
ferentially private, training will not guarantee that
there is no information leakage. In this section,
we formulate the problem of training a DP BERT
model on medical text, and explain the process
of constructing a differentially private vocabulary.
We then discuss the importance of parallel training
and very large batch sizes in training such large
language models, and provide a method for suffi-
ciently increasing such crucial parameters.

3.1 Problem Formulation

We choose to focus our DP training on the task of
entity extraction (EE) from medical text, specifi-
cally clinical notes. Clinical notes include medi-
cally relevant information regarding patients’ con-
ditions, and are often used as training data for
downstream machine learning tasks (Esteva et al.,
2019). However, they can contain Protected Health
Information (PHI) as well as additional informa-

tion that might put patients at risk (Feder et al.,
2020; Hartman et al., 2020). For this reason, lan-
guage models trained on such datasets must be
able to learn domain-relevant information (such as
medical jargon and doctors’ writing style) without
memorizing private information (Lee et al., 2020).

To test our ability to train a DP language model
on clinical notes, we use a BERT model (Devlin
et al., 2019) with specialization to the medical do-
main. To this end, the public Wikipedia and Book-
Corpus datasets (Zhu et al., 2015) used to train
BERT were amended with the Medical Informa-
tion Mart for Intensive Care III corpus (Johnson
et al., 2016, MIMIC-III) in order to improve per-
formance on medical tasks. Although MIMIC-III
has undergone a de-identification process aimed
to remove revealing information such as names
and dates, the corpus and its derivative models are
not considered public, and their use must adhere
to certain restrictions. As a consequence, a need
arises to build a medical BERT model with sub-
stantial differential privacy guarantees on its use of
MIMIC-III, and this work aims to do exactly that.

Before introducing changes designed to guaran-
tee privacy, let us review the procedure used to
obtain the Medical BERT model. The available
resources are the 3 billion word Wikipedia + Book-
Corpus, and the 712M word MIMIC-III corpus.
The training process consists of the following three
steps:

(i) Build the vocab from the MIMIC-III corpus.
(ii) Train BERT from scratch on the Wikipedia +

BookCorpus using the new vocab.
(iii) Continue BERT’s training on the MIMIC-III

corpus.
The steps that are susceptible to leaking MIMIC-

III data are the first, and the third. Therefore, by
the composability property of differential privacy
(Dwork et al., 2014, Theorem 3.16), our problem
reduces to providing algorithms with satisfactory
DP guarantees for steps 1 and 3 without causing
a significant performance loss. We discuss these
problems in the following two subsections.

3.2 Constructing a differentially private
vocabulary

Transformer-based models commonly tokenize in-
puts into WordPieces using the WordPiece algo-
rithm. The WordPiece algorithm (Wu et al., 2016)
is a general method for improving the generaliza-
tion properties of a language model by tokenizing
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based on the most frequent combination of symbols
rather than words. While its efficacy is undisputed,
it can leak private information by memorizing cer-
tain WordPieces in the training data. To prevent
such leakage, we modify this algorithm to be dif-
ferentially private. We do so as follows.

The WordPiece algorithm starts with construct-
ing the word histogram of the corpus. This his-
togram is then manipulated to obtain the Word-
Piece output vocabulary. Since differential privacy
is robust to post-processing, it is enough to make
the input histogram differentially private in order to
guarantee a differentially-private end-result vocab-
ulary. Our differentially-private WordPiece algo-
rithm is therefore to add noise to the histogram with
given privacy parameters and apply the standard
WordPiece algorithm.

Histogram noising is done following (Korolova
et al., 2009; Bun et al., 2019), let X be the set of all
possible n distinct words. For the input histogram
h : X → R, we do:

(i) For all x ∈ X, if h(x) > 0, add Laplace noise:
h(x)← h(x) + Lap(2/ε).

(ii) For all x ∈ X, if h(x) < 1 + 2 ln(2/δ)/ε, set
h(x)← 0.

The output h of this process satisfies (ε, δ)-
differential privacy with respect to replacing one
of the words in the histogram counts. Assuming
0 < ε < ln(n), 0 < δ < 1/n (Bun et al., 2019;
Korolova et al., 2009).

In order to obtain differential privacy at the level
of BERT example (256???? WordPiece) we use
the basic composition theorem for non-adaptive
queries (Dwork et al., 2006a; Dwork and Lei,
2009):

Theorem 1 Let M1, . . .Mk be (ε, δ)-differentially
private, then (M1, . . . , Mk) is (kε, kδ)-differentially
private.

We used parameters ε′ =?, δ′ =?? in the noisy
histogram algorithm above to achieve an example
level (ε = 256∗?, δ = 256∗?) differential privacy.

3.3 Training a differentially private BERT

We use the DP-SGD method supplied the TF pri-
vacy toolbox (see Section 2.1). The parameters
of the algorithm are the number of steps, batch-
size B, `2-norm-clip C, and the noise multiplier σ.
To fix notation, we formally define the DP-SGD
step, as defined in Abadi et al. (2016b, Algorithm
1). Given the per-example gradients of the loss
function g1, . . . , gB, the gradient g̃ for passing to

apply_gradients is defined by:

gi = gi/ max(1, ‖gi‖2/C), for all i; (1)

g̃ =
1
B

(∑

i

gi +N (0,σ2C2I)

)
. (2)

The most important parameter of the algorithm
is the noise multiplier σ—increasing σ directly
decreases ε; i.e., increases the differential-privacy
guarantee of the algorithm. On the other hand
it harms performance on the target data-set, and
thus a careful choice of σ is necessary to trade-off
privacy against performance. Moreover, we choose
the noise σ to be proportional to the square root
of the batch size B. This is done in order to make
the privacy guarantee oblivious to changes in the
batch size B (as one can observe from Eq. (2)). The
privacy guarantee is also affected by the number of
training steps (or epochs), but this behavior is more
gradual since ε increases near-linearly in the range
of interest. In our experience, the clip level C is of
lesser importance and we fix it to be 0.01.

For any choice of parameters, we upper bound
the privacy parameter ε using the TF privacy
toolbox compute_dp_sgd_privacy function,
where we also use the number of MIMIC examples
N = 83M. We fix privacy δ to be 10–8, which is
smaller than 1/N.

The effect of parallelism. In order to make the
training run faster, we use TPUs1 to parallelize
training by splitting example batches to shards.
This mechanism is readily available through Ten-
sorflow (TF; Abadi et al., 2016a), but its effect
has to be taken into account when computing the
bounds on ε.

In order to understand this effect, let us first
review the way we incorporate TF privacy
into the BERT training code. The change
consists of changing the loss computation code
to compute the vector loss (per-example loss),
and of wrapping the existing Adam weight
decay optimizer (Kingma and Ba, 2015), our
optimizer of choice, by the DP optimizer using
the make_gaussian_optimizer_class
method.

The subtle point lies in the second change,
as the optimization is also wrapped by
CrossShardOptimizer which handles
the sharded batching. Let B denote the unsharded

1https://cloud.google.com/tpu/docs/
tpus.
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batch size, and P denote the number of parallel
shards. For each batch, the examples are split
between P independent instances of the TF privacy
optimizer, each handling B/P examples. For each
shard, the gradients are clipped, averaged and
noise is added by equations Eqs. (1) and (2).
Subsequently, the CrossShardOptimizer
averages the P shard gradients to obtain the single
gradient to be passed to apply_gradients.

Therefore, denoting the i-th gradient of shard j by
gi,j, the gradient passed to apply_gradients
can be written as follows:

g̃ =
1
P

∑

j

[
1

B/P

(∑

i

gi,j +N (0,σ2C2I)

)]

=
1
B


∑

i,j

gi,j +N (0, Pσ2C2I)


 . (3)

This implies that using noise multiplier σ with P
shards is equivalent to an unsharded training with
noise multiplier σ

√
P. As computing an upper

bound on ε through TF privacy does not take paral-
lelism into account, one must use σ

√
P as the noise

multiplier in order to get the correct result.

Achieving larger batch sizes. As it quickly be-
came apparent throughout this project, we needed
larger batch sizes. However, usually batch size
cannot increase beyond a certain point because of
memory considerations, and limitation on the num-
ber of available TPUs. With the resources avail-
able to us, we couldn’t get beyond parallelism of
P = 256 with sharded batch size of 32, achieving
total batch size B = 8192.

The way we chose to solve this problem is to
spread the batch in time, so apply_gradients
is called only after T batches are processed with
the average total gradient. This is equivalent to
increasing both P and B by a factor of T . With
this method, the only limit on T is processing time.
From our experience, the value of T = 32 is a
reasonable choice, achieving parallelism of P =
256 · 32 and total batch size B of 128k with the
above parameters.

We briefly remark upon the implementation of
this mechanism. For every trainable variable, we
created a variable with /grad_acc suffix added
to the original name. For each step, the train_op
either accumulates the current gradients in the
new variables, or zeros the accumulator and calls

apply_gradients, depending on the current
step modulo T .

4 Experimental Setup

We design our experiments to demonstrate the abil-
ity of the DP training scheme to improve perfor-
mance while preserving privacy. We focus on the
medical domain as it has strict privacy requirements
and its language is distinct enough such that addi-
tional pre-training should be useful. We start by
describing the data used for the DP training and
relevant implementation details. We then present
the entity extraction task used for the supervised
task training and evaluation. Finally, we discuss
the relevant baselines, chosen to demonstrate the
efficacy of the DP training scheme.

Pre-training data. For the DP pre-training, we
supplement the original training data used in Devlin
et al. (2019) with the MIMIC-III dataset, a com-
monly used collection of medical information that
contains more than 2 million distinct notes (John-
son et al., 2016; Alsentzer et al., 2019). MIMIC-III
covers 38,597 distinct adult patients and 49,785
hospital admissions between 2001 and 2012. The
clinical notes in this dataset are widely used by
NLP researchers for a variety of clinically-related
tasks (Feder et al., 2020; Hartman et al., 2020), and
were previously used for pre-training BERT mod-
els specifically for the medical domain (Alsentzer
et al., 2019).

Using the combined dataset, we train our DP-
BERT model using the the training scheme de-
scribed in Section 3. At this point, we use a Word-
Piece vocabulary generated from MIMIC-III with-
out privacy guarantees.

Entity-extraction task. For the supervised task
training, we use i2b2-2010, a dataset from the i2b2
National Center for Biomedical Computing for the
NLP Shared Tasks Challenges (Uzuner et al., 2011).
This dataset contains clinical notes tagged for con-
cepts, assertions, and relations. In this task, 170
patient reports are labeled with three concepts: test,
treatment, and problem. The total number of enti-
ties in each category are as follows:

• Problem: 7, 073
• Test: 4, 608
• Treatment: 4, 844

We perform 5-fold cross validation where each fold
has random training (136 notes) and test (34 notes)
sets.
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Baselines. We compare our differentially private
BERT model, denoted as DP BERT, to several non
private baselines:
BERT (Wikipedia + Books) We train a BERT-

large model, as in Devlin et al. (2019), using
the default hyperparameters.

BERT-M (Wikipedia + Books + MIMIC-III)
We supplement the original training from
Devlin et al. (2019) with the MIMIC-III
clinical notes corpus. In addition, we also
use a (non-differentially private) WordPiece
vocabulary generated from MIMIC-III.

BioBERT We use the training data presented in
Lee et al. (2020), and use it to train BERT. We
tested version v1.1 which it trained using the
original dataset + 1M PubMed abstracts.

In Section 5 we compare several differentially
private models, discuss their differences and high-
light the effect of certain parameters (as discussed
in Section 3) on the EE task performance.

5 Results

In this section we empirically evaluate the trade-
offs between a model’s privacy and its usefulness.
Previously, in Section 3, we have shown how to pre-
train a contextual embedding model such as BERT
with any, possibly substantial, privacy guarantee.
We naturally expect that a stronger privacy guaran-
tee would entail that less information is preserved
during pre-training, which in turn would degrade
performance on downstream tasks. Thus, we aim
to ascertain the exact trade-off between these two
goals in order to be able to choose a model that has
both good performance and a satisfactory privacy
guarantee.

We provide two sets of experiments to help bet-
ter understand this trade-off as well as to provide
practitioners with tools to understand the effects
of DP pre-training. First, we use the pre-trained
DP model and fine-tune it on the aforementioned
EE task. Then, we test the ability of the model to
memorize private information and show that it is
protected against commonly used privacy attacks.
Aggregating both results, we argue that medically-
relevant information is preserved in the DP model
all the while private information is not revealed.

5.1 Preserving Useful Information

For our first experiment, we pre-trained a DP BERT
model, then evaluated on an EE task over the i2b2-
2010 dataset. We summarize our results in the

Figure 1: Top to bottom - privacy parameter ε (red) and
test F1 score on the EE task (blue), as a function of:
noise multiplier σ; number of pre-training epochs; pre-
training batch size.

following table.

Model ε F1 Score
BERT ∞ 76.3%

BERT-M ∞ 86.8%
BioBERT ∞ 86.5%
BERT-M 3.2 84.5%
BERT-M 1 83.7%

Table 1: Results on the Medical Entity Extraction task.
ε =∞ means no differential privacy.

These were all evaluated after 1M training steps
with batch size 128K. As one can observe, the ad-
ditional pre-training either on MIMIC-III or on
PubMed gives a significant boost in performance
over the off-the-shelf BERT. The addition of differ-
ential privacy then deteriorates performance only
slightly, and, as expected, performance is inversely
proportional to ε (recall that smaller ε implies better
privacy).

In addition, in Fig. 1 we evaluate the change in
ε and of the F1 score of the downstream task as a
function of batch size, noise multiplier σ, and the
number of pre-training epochs. The behavior in
all three parameters is as expected. Increasing σ
enables more privacy (lower ε), but worsens perfor-
mance. Similarly, with more pre-training epochs
the model gathers more information about the train-
ing data, so we obtain better F1 score but worse
privacy preservation (higher ε). When increasing
the batch size, we also increase the noise multiplier
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Figure 2: Secret exposure as a function of the number
of secret occurrences. Black lines for models with dif-
ferential privacy ε = 0.58, red lines for models without
DP ε =∞.

σ proportionally, thus both ε and the F1 decrease.

5.2 Forgetting Private Information

For our second experiment, we followed Carlini
et al. (2019) to test the model’s ability to memorize
private information. We injected the MIMIC-III
dataset with “secrets”, of the form HS, HSH, and
HHSHH, where H is a generic word and S is a
secret word. The injection was done by sampling
locations to plant each secret uniformly at random
from the dataset. We tested all three forms of se-
crets on a DP model and a non-DP model, with
different numbers of appearances of the secret in
the dataset. For each such evaluation, we measured
the exposure of the secret which essentially mea-
sures how well the model memorized the secret
(see Carlini et al., 2019 for exact definition of “ex-
posure”). As one can see from Fig. 2, even when
the secret appears as much as 100K times in the
data, the DP model performs significantly better
than without differential privacy. This seems to
suggest that the model learns through information
that helps it generalize rather than memorizing the
dataset in its entirety, which includes private and
personal information as well.

6 Discussion and Future Work

In this paper, we have shown a pipeline for learning
and evaluating a differentially-private contextual
language model. We have defined the problem of
learning such a model with end-to-end privacy guar-
antees and have discussed the pitfalls that might
lead to poor downstream performance. To over-
come the difficulties associated with learning such
models, we have offered practical measures for
circumventing them, most notably through vastly
increasing batch sizes. Then, to increase the trust of

the DP trained contextual language model, we have
utilized a secret sharer evaluation test and showed
that our trained language model does not memorize
private information.

While these results are definitely encouraging,
more research is needed. Our results are confined
to the medical domain, where privacy needs are per-
haps most stringent. Showing the efficacy of this
training and evaluation pipeline on other domains
would certainly increase the trust in it. Additionally,
we have not yet measured the model’s performance
with the DP WordPiece algorithm. In future work,
we plan to provide more theoretical and empirical
support for end-to-end privacy guarantees.

Finally, the observed performance gain due to
the vocabulary training presents an interesting ques-
tion for the larger NLP community. Understanding
the importance of vocabulary vs. linguistic style
when performing additional pre-training could im-
prove the domain adaptation capabilities of existing
NLP systems. In future work, we plan to expand
our DP training to additional domains, allowing
us to test the power of vocabulary modifications
via the DP WordPiece training in increasing across
domain performance.

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. 2016a. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467.

Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-
dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016b. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Se-
curity, pages 308–318.

Emily Alsentzer, John R Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, WA Red-
mond, and Matthew BA McDermott. 2019. Publicly
available clinical bert embeddings. NAACL HLT
2019, page 72.

Mark Bun, Kobbi Nissim, and Uri Stemmer. 2019. Si-
multaneous private learning of multiple concepts. J.
Mach. Learn. Res., 20:94–1.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In 28th {USENIX} Security Sympo-
sium ({USENIX} Security 19), pages 267–284.

27



Maximin Coavoux, Shashi Narayan, and Shay B Co-
hen. 2018. Privacy-preserving neural representa-
tions of text. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1–10.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Cynthia Dwork. 2011. A firm foundation for pri-
vate data analysis. Communications of the ACM,
54(1):86–95.

Cynthia Dwork, Krishnaram Kenthapadi, Frank Mc-
Sherry, Ilya Mironov, and Moni Naor. 2006a. Our
data, ourselves: privacy via distributed noise gener-
ation. In Advances in Cryptology - EUROCRYPT
2006, pages 486–503. Springer.

Cynthia Dwork and Jing Lei. 2009. Differential pri-
vacy and robust statistics. In Proceedings of the
Forty-First Annual ACM Symposium on Theory of
Computing, pages 371–380. Association for Com-
puting Machinery.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006b. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography
conference, pages 265–284. Springer.

Cynthia Dwork, Aaron Roth, et al. 2014. The algo-
rithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science,
9(3-4):211–407.

Andre Esteva, Alexandre Robicquet, Bharath Ramsun-
dar, Volodymyr Kuleshov, Mark DePristo, Katherine
Chou, Claire Cui, Greg Corrado, Sebastian Thrun,
and Jeff Dean. 2019. A guide to deep learning in
healthcare. Nature medicine, 25(1):24–29.

Amir Feder, Danny Vainstein, Roni Rosenfeld, Tzvika
Hartman, Avinatan Hassidim, and Yossi Matias.
2020. Active deep learning to detect demographic
traits in free-form clinical notes. Journal of Biomed-
ical Informatics, 107:103436.

Tzvika Hartman, Michael D Howell, Jeff Dean,
Shlomo Hoory, Ronit Slyper, Itay Laish, Oren
Gilon, Danny Vainstein, Greg Corrado, Katherine
Chou, et al. 2020. Customization scenarios for de-
identification of clinical notes. BMC medical infor-
matics and decision making, 20(1):1–9.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-Wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3(1):1–9.

Gavin Kerrigan, Dylan Slack, and Jens Tuyls. 2020.
Differentially private language models benefit from
public pre-training. In Proceedings of the Second
Workshop on Privacy in NLP, pages 39–45.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Aleksandra Korolova, Krishnaram Kenthapadi, Nina
Mishra, and Alexandros Ntoulas. 2009. Releasing
search queries and clicks privately. In WWW, pages
171–180. ACM.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning differentially private
recurrent language models. In International Confer-
ence on Learning Representations.

Ilya Mironov. 2017. Rényi differential privacy. In
2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 263–275. IEEE.

Ilya Mironov, Kunal Talwar, and Li Zhang. 2019.
Renyi differential privacy of the sampled gaussian
mechanism. arXiv preprint arXiv:1908.10530.

Daniel Preoţiuc-Pietro, Vasileios Lampos, and Niko-
laos Aletras. 2015. An analysis of the user occupa-
tional class through twitter content. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1754–1764.

Sara Rosenthal and Kathleen McKeown. 2011. Age
prediction in blogs: A study of style, content, and
online behavior in pre-and post-social media genera-
tions. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 763–772.

Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In Pro-
ceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages
377–390.

Shuang Song, Kamalika Chaudhuri, and Anand D Sar-
wate. 2013. Stochastic gradient descent with dif-
ferentially private updates. In 2013 IEEE Global
Conference on Signal and Information Processing,
pages 245–248. IEEE.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

28



Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, and J. Klingner. 2016. Google’s neu-
ral machine translation system: Bridging the gap
between human and machine translation. arXiv
preprint arXiv:1609.08144.

Yukun Zhu, Ryan Kiros, Richard S Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In ICCV.

29



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 30–35
July 5–10, 2020. ©2020 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_004

An Investigation towards Differentially Private Sequence Tagging
in a Federated Framework

Abhik Jana1 and Chris Biemann1

1 Language Technology Group, Dept. of Informatics, Universität Hamburg, Germany
jana@informatik.uni-hamburg.de, biemann@informatik.uni-hamburg.de

Abstract

To build machine learning-based applications
for sensitive domains like medical, legal, etc.
where the digitized text contains private in-
formation, anonymization of text is required
for preserving privacy. Sequence tagging, e.g.
as used for Named Entity Recognition (NER),
can help to detect private information. How-
ever, to train sequence tagging models, a suf-
ficient amount of labeled data are required
but for privacy-sensitive domains, such la-
beled data also can not be shared directly. In
this paper, we investigate the applicability of
a privacy-preserving framework for sequence
tagging tasks, specifically NER. Hence, we an-
alyze a framework for the NER task, which
incorporates two levels of privacy protection.
Firstly, we deploy a federated learning (FL)
framework where the labeled data are neither
shared with the centralized server nor with
the peer clients. Secondly, we apply differen-
tial privacy (DP) while the models are being
trained in each client instance. While both pri-
vacy measures are suitable for privacy-aware
models, their combination results in unstable
models. To our knowledge, this is the first
study of its kind on privacy-aware sequence
tagging models.

1 Introduction

The emergence of substantial amounts of digitized
unstructured text gives rise to train machine learn-
ing models for various downstream applications.
But for sensitive domains like medical, legal, etc.,
the text documents contain private sensitive infor-
mation, which is supposed to be anonymized for
preserving privacy. The first step for anonymiz-
ing text is to detect the span of the private infor-
mation and identify the type of information. Se-
quence tagging is the kind of task that can help
in anonymization. However, to train such a se-
quence tagging model, a significant amount of
labeled data are required. But the labeled data

contains – by definition – private sensitive in-
formation and are often divided across different
data silos. There are legal regulatory policies
as well by the US Health Insurance Portability
and Accountability Act (HIPAA)1 and EU Gen-
eral Data Protection Regulation (GDPR) (Agencia-
Espanola-Proteccion-Datos, 2019), which restricts
such sensitive data access. On the other hand, to
train a centralized machine learning model, there
is a requirement of aggregating such distributed
data in a central server, which can cause privacy
breaches. Hence, there is a requirement for a
privacy-preserving sequence tagging framework
that complies with the data protection policies.

Federated learning (FL) (McMahan et al., 2017)
is one such paradigm that provides a framework to
train a centralized machine learning model with-
out sharing the distributed data from different data
silos. Since the raw data from different data silos
are not being shared in this framework, the primary
level of privacy is maintained. However, the FL
framework is also vulnerable to several inference
attacks (Bagdasaryan et al., 2020; Bonawitz et al.,
2017; Geyer et al., 2017) in some scenarios. To
mitigate such inference attacks, differential privacy
(Dwork et al., 2006) was developed, which comes
with a theoretically guaranteed measurement of
privacy. There have been many recent research
works on deploying the FL framework in several
applications like image classification (Wang et al.,
2019), emotion detection (Chhikara et al., 2021),
anonymization (Choudhury et al., 2020), robotics
(Imteaj and Amini, 2020), etc. and also in medical
domain (Rajendran et al., 2021; Kerkouche et al.,
2021; Choudhury et al., 2019; Ge et al., 2020).
Researchers also investigated the scope of the dif-
ferentially private algorithm in several applications
(Zhao et al., 2020; Koda et al., 2020; Hu et al.,
2020; Chen et al., 2018). However, for sequence

1
https://www.hhs.gov/hipaa/for-professionals/privacy/

special-topics/de-identification/index.html
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tagging tasks, the applicability of the FL frame-
work along with differential privacy (DP) is yet to
be explored. For our study, we focus on one such
sequence tagging task, namely named entity recog-
nition (NER). We argue that this is quite close to
a sequence-tagging based anonymization task and
it allows us to study the effects of privatization
measures in the task performance.

In this paper, we prepare an FL framework fol-
lowing the FederatedAveraging (McMahan et al.,
2017) approach and deploy a differentially private
stochastic gradient descent (Abadi et al., 2016) op-
timizer while training to obtain differential privacy
for the NER task. As base NER models, we con-
sider two variants of one of the state-of-the-art ap-
proaches for sequence labeling, that uses the LSTM
variant (Hochreiter and Schmidhuber, 1997) of
bidirectional recurrent neural networks (BiLSTMs).
Note that the aim of our work is not to produce a
state-of-the-art performance for NER tasks. Rather,
our focus is to analyze how the performance of
NER models varies in a differentially private feder-
ated learning framework. Therefore, we do a com-
prehensive analysis using CoNLL 2003 English
NER dataset and investigate the effect of differ-
ent levels of privacy on the performance of NER
models.

2 Methodology

As we deal with the named entity recognition
(NER) task, we attempt with two variations of
BiLSTM based models. In one variant we keep
TimeDistributed Dense layer (TDDL) as the final
layer with activation function – ‘softmax’ and in
another variant, we keep the conditional random
field (CRF) (Huang et al., 2015) as the final layer.
In a nutshell, both the variants have three layers:
Input embedding layer, Bidirectional LSTM layer,
and either TDDL or CRF as the final layer. We
refer to those model variants ‘BI-LSTM-TDDL’
and ‘BI-LSTM-CRF’ respectively for our study.
Next, we will discuss the two privacy mechanisms:
Federated Learning and Differential Privacy.
Federated Learning: The objective of the Feder-
ated Learning framework is to train a centralized
model from data distributed across multiple client
data silos, eliminating the need for raw data sharing.
We adapt the well-accepted FederatedAveraging al-
gorithm proposed by McMahan et al. (2017). As
per the process, first, a global model from the server
site is shared across n client sites. Next, each client

site trains the model based on its local data. After
the training is complete, the parameter updates of
the local models are then subsequently sent to the
central aggregation server. Next, the central server
computes the average of all the model parameters
over n clients and updates the global model accord-
ingly. The whole process continues for specified
number of rounds (t) and in each round a random
set of m clients ( m <= n) participate. For this
study, in each round we allow all the n client sites
to participate in the process.
Differential Privacy: The objective of differen-
tial privacy is to provide a strong criterion for pri-
vacy preservation of distributed data processing
systems. This is a widely used privacy-preserving
mechanism due to its strong information-theoretic
guarantees (Dwork and Roth, 2014), algorithmic
simplicity, and relatively small systems overhead.
By definition, any randomized algorithm A(D) sat-
isfies ε - differential privacy if for all datasets D
and D′, that differ by a single record, and for all
sets S ∈ R, where R is the range of A,

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S]
where ε, is a non-negative number. ε measures the
strength of the privacy guarantee of the algorithm.
It gives a bound on how much the probability of
particular model output can vary by including (or
removing) a single training example. The lower the
value of ε, the higher the privacy. There are several
methods for incorporating differential privacy in an
algorithm. For this study, we adopt the approach
that relies on Differentially Private Stochastic Gra-
dient Descent (DP-SGD) optimizer proposed by
Abadi et al. (2016). As per this approach, after
sampling a micro-batch of training points we need
to compute the loss and gradient of the loss. There-
after, we need to clip gradients, per the training
example included in the micro-batch. Next, we
need to add random noise to the clipped gradients
and multiply these clipped and noised gradients by
the learning rate and apply the product to update
model parameters.

3 Experiments and Discussions

Since the objective of our work is to investigate
the effect of federated learning (FL) framework
and differential privacy (DP) on the state-of-the-art
NER model, we design our analysis in four differ-
ent phases. First, we observe the basic NER model
performance without using FL as well as DP. In the
second phase, we incorporate DP in the optimizer

31



of the NER model and analyze its behavior. Third,
we analyze the performance of the NER model in
an FL framework, but none of the optimizers of
the clients are DP enabled. In the fourth phase, we
investigate the performance of the NER model by
deploying the FL framework and incorporating DP
into the client-side optimizers. For our analysis,
we use CoNLL 2003 English NER dataset, hav-
ing a training set size of 14987, validation set size
of 3466, and test set size of 3684. Each token in
the dataset is tagged with other (O) or one of the
four entity types: Person (PER), Location (LOC),
Organization (ORG), Miscellaneous (MISC). Con-
sidering the BIO2 annotation standard, the number
of possible labels for each token is 9.

Model Precision Recall F-measure
BI-LSTM-TDDL 0.916 0.922 0.916
BI-LSTM-CRF 0.892 0.862 0.864

Table 1: Performance of Basic NER models.

Noise-multiplier 0.5 1 5 10 50
ε 3.73 0.688 0.05 0.024 0.022

BI-LSTM-TDDL
Precision 0.915 0.911 0.917 0.914 0.911

Recall 0.919 0.911 0.924 0.912 0.913
F-measure 0.913 0.906 0.916 0.908 0.908

BI-LSTM-CRF
Precision 0.869 0.727 0.825 0.889 0.839

Recall 0.847 0.809 0.786 0.834 0.816
F-measure 0.839 0.75 0.802 0.840 0.815

Table 2: Performance of NER models after incorporat-
ing ε differentially Private SGD.

(n) −→ 2 5 10 15 20
Precision 0.905 0.881 0.824 0.792 0.786

Recall 0.903 0.885 0.830 0.814 0.803
F-measure 0.897 0.874 0.805 0.784 0.766

Table 3: Performance of BI-LSTM-TDDL model in the
FL setup, with increasing number of clients (n).

Training Precision Recall F-measure
Data mean sd mean sd mean sd
20 % 0.756 0.002 0.798 0.000 0.762 0.000
40 % 0.814 0.006 0.824 0.001 0.797 0.001
60 % 0.832 0.001 0.842 0.000 0.820 0.000
80 % 0.845 0.009 0.854 0.000 0.835 0.001
100 % 0.861 0.005 0.863 0.000 0.846 0.001

Table 4: Performance of BI-LSTM-TDDL model in the
FL setup, with increasing % of training data in each
client. Number of clients = 5. Mean and standard devi-
ation (sd) are computed over 5 different simulations.

Without DP, Without FL: We experiment with
two different NER models described in Section 22.
The vector embeddings used is GloVe (trained on

2The hyperparameter settings to train those models are
as follows: epochs- 10, batch size - 32, learning rate - 0.15,
optimizer - Stochastic gradient descent (SGD)

Common Crawl corpus) from spaCy library3, the
dimension of which is 300. The performance of
these two models (BI-LSTM-TDDL, BI-LSTM-
CRF) are presented in Table 1. Note that, since
our objective is not to produce a state-of-the-art
performance for NER tasks, we do not attempt to
tune the hyper-parameters to obtain the best possi-
ble performance. However, the F-measure obtained
by BI-LSTM-TDDL is comparable to the state-of-
the-art (Akbik et al., 2018) F-measure of 0.9309.
On the other hand, we put our effort into analyzing
the behavior of these NER models’ performance in
privacy preserving framework.
With DP, Without FL: Next, we incorporate a
Differentially Private Stochastic gradient descent
(DP-SGD) optimizer for training4. The perfor-
mance of both the models with varying noise-
multiplier (a hyperparameter to add noise) are pre-
sented in Table 2. Note that, by increasing the value

(n) −→ 2 5 10 15 20
Precision 0.835 0.804 0.752 0.731 0.740

Recall 0.867 0.845 0.815 0.810 0.801
F-measure 0.834 0.810 0.772 0.763 0.758

Table 5: Performance of BI-LSTM-TDDL model in
the FL setup along with DP, with increasing number
of clients (n). Noise multiplier = 1, ε = 0.688

of noise-multiplier we add more privacy (lower ε)
to the NER models. We observe, even if the pri-
vacy increases, the BI-LSTM-TDDL model pro-
duces stable performance and does not deteriorate
much compared to its performance while DP is
not present. On the other hand, using DP-SGD,
BI-LSTM-CRF architecture performs poorly and
fluctuates significantly. We observe a negative sig-
nal towards incorporating DP, where model archi-
tecture has CRF in the final layer, for tasks like
NER. Finding out the reason behind such behavior
of CRF-based model and mitigating the problem
would be immediate future work. However, for the
next two phases of analysis, we continue only with
the robust BI-LSTM-TDDL model architecture.
Without DP, With FL: Next, we analyze the FL
setup for NER, where we have one centralized
server and n number of the client sites. The train-
ing and validation data are divided equally among
all the clients. We analyze the framework in two
ways. First, we observe the performance variation
of the aggregated model on test data with the num-
ber of clients, which is presented in Table 3. The

3
https://spacy.io/models/en#en_core_web_lg

4we use Tensorflow Privacy library https://github.com/
tensorflow/privacy/blob/master/tensorflow_privacy. The hyperpa-
rameter settings: micro-batch size - 1, normalization clip - 1.5
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Training Precision Recall F-measure
Data mean sd mean sd mean sd
20 % 0.767 0.008 0.745 0.033 0.744 0.013
40 % 0.773 0.006 0.738 0.029 0.744 0.013
60 % 0.707 0.102 0.123 0.063 0.171 0.104
80 % 0.812 0.052 0.113 0.172 0.106 0.231
100 % 0.585 0.556 0.137 0.228 0.123 0.269

Table 6: Performance of BI-LSTM-TDDL model in the
FL setup along with DP, with increasing % of training
data used in each client. Mean and standard deviation
(sd) are computed over 5 different simulation. Number
of clients = 5, Noise multiplier = 1, ε = 0.688.

results are reported only after one communication
round, i.e. all the client models are trained with
their respective training data (full) and the client
models’ parameters are transferred to the central
server once for aggregation. From the result in Ta-
ble 3, we see with the increasing number of clients
the performance of the centralized NER model de-
creases. Given that the number of the training
sample is constant and those are divided among
the clients equally, the observed performance fits
our intuitions. As the number of clients increases,
the amount of training data per client decreases,
and the client models are trained with a smaller
amount of training data5. Secondly, we observe
how the central model behaves if model parame-
ters are shared from clients after training the client
models with x% of the local training data. For our
study we keep x = 10, which implies client model
aggregation and global model update cycle is being
executed after each pass of model training with 10
% of local data on the client-side. Since the x%
of data is picked randomly, we simulate indepen-
dently for 5 times and report the mean and standard
deviation (sd) of all metrics. From the results pre-
sented in Table 4, we observe that even in such
an incremental training scenario we achieve an F-
measure of 0.846 with 100% training data, which
is comparable to the non-incremental version of
training (0.874 as per Table 3). The FL setup for
the NER model looks promising in the incremental
approach as well, making it suitable even for the
scenario while on the client-side a large amount of
training data is not available at once.
With DP, With FL: We attempt two different
analyses following the same experimental setup
as ‘Without DP, With FL’, but during client-side
training, we use DP-SGD instead of SGD as the
optimizer. In Table 5, we see that the trend of de-
creasing F-measure with the increasing number of

5The hyperparameter settings for training client model:
epochs - 10, batch size - 32, learning rate - 0.15, optimizer -
Stochastic gradient descent (SGD).

clients, which is the same as the non-private perfor-
mance. Note that, when we incorporate DP in FL
setup it reduces the F-measure about 1-6 %. The
result for the second type of analysis is presented
in Table 6. We note that with increasing percentage
(%) of training data, the F-measure does not im-
prove, and after some point (60 %) the F-measure
drops significantly. DP does not seem promising
for incremental setup, while in each phase the train-
ing data used is sufficiently small. Note that, in
each phase, only x = 10% training data (approx.
300 data points) is being used for training.

4 Conclusion

In this work, we presented an analysis of the behav-
ior of one sequence tagging task namely NER in
a federated learning framework along with differ-
ential privacy, which is the first-ever attempt of its
kind. From the investigation, we observed that with
DP-SGD optimizer, the performance of CRF based
model tends to decrease significantly in our current
experimental setup. In the federated framework,
we observed that with the increase of the number
of clients with smaller training data, the perfor-
mance of aggregated models decrease significantly,
whereas the performance shoots up when client
models are trained in an incremental approach and
the incremental models are communicated to the
server after each training phase. On the other hand,
when a DP-SGD optimizer is deployed in each
client training phase, even the incremental training
policy works only till 60% of the training data is
used and thereafter performance drops. Immediate
future work would be to find out the root cause of
such a phenomenon and mitigate it, as a combi-
nation of privacy measures would be very much
desired in privacy-aware application scenarios.

To extend this study, we plan to explore several
other NER datasets (even low-resource datasets) to
find out more general behavior. Hyper-parameter
tuning is another direction of our future work to
find out the best performance for each set-up. The
broader goal is to build a differentially private fed-
erated framework for sequence tagging tasks with
compromising performance as little as possible.
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Abstract

We curated WikiPII, an automatically labeled
dataset composed of Wikipedia biography
pages, annotated for personal information ex-
traction. Although automatic annotation can
lead to a high degree of label noise, it is an in-
expensive process and can generate large vol-
umes of annotated documents. We trained
a BERT-based NER model with WikiPII and
showed that with an adequately large training
dataset, the model can significantly decrease
the cost of manual information extraction, de-
spite the high level of label noise. In a similar
approach, organizations can leverage text min-
ing techniques to create customized annotated
datasets from their historical data without shar-
ing the raw data for human annotation. Also,
we explore collaborative training of NER mod-
els through federated learning when the anno-
tation is noisy. Our results suggest that de-
pending on the level of trust to the ML op-
erator and the volume of the available data,
distributed training can be an effective way
of training a personal information identifier
in a privacy-preserved manner. Research ma-
terial is available at https://github.com/
ratmcu/wikipiifed.

1 Introduction

Extraction of Personally Identifiable Information
(PII) from unstructured text is a crucial task in
many industries such as healthcare (e.g (Li and Qin,
2017; Kushida et al., 2012)) legal documents (Ok-
sanen et al., 2019), mining of user-generated data
(Mosallanezhad et al., 2019) and publication pro-
cess (Aura et al., 2006). PII is a laborious task, of-
ten necessary for de-identification purposes, among
other applications. For example, the extracted in-
formation can be used for indexing of documents,
categorization and other applications. Identifica-
tion of PII elements is a laborious task that can be
automated by deploying Named Entity Recognition
(NER) models (Hassan et al., 2018; Graliński et al.,
2009). We formulate PII recognition as a NER
task that extracts predefined PII entities. Our goal
is to develop NER models to decrease this task’s

∗ Equal contribution.

cost by preprocessing documents before manual
information extraction.

Supervised machine learning approaches such as
Conditional Random Field (CRF) models, Support
vector machines, and extensive feature engineer-
ing based on lexical and phrase embeddings have
been used to train NER systems (Luo et al., 2015;
Passos et al., 2014; Retinov and Roth, 2009). With
improvements of deep learning models, recurrent
neural networks and specially LSTM models be-
came the default model for training NER systems
(Chiu and Nichols, 2016). Recently, a combination
of pre-trained transformer-based language models
and linear or recurrent prediction layers achieved
the state-of-the-art in most NER tasks (Dai et al.,
2019; Fraser et al., 2019).

Training a NER model for extraction of PII de-
mands a massive corpus of text, rich in personal
information, which raises privacy concerns in the
process of data annotation and model training. Al-
though NER models achieve high performance in
cross-validation settings, the generalization of off-
the-shelf models remains poor (Fu et al., 2020).
For training a robust PII recognizer, a customized
domain-specific annotated dataset is needed (Chen
et al., 2015). In this work, our goal is to bring pri-
vacy to the front line of designing a PII extractor
from dataset creation to model training.

We consider a scenario where an institution in-
tends to build an assistant tool to decrease the cost
of manual PII extraction. We assume that the insti-
tution has accumulated documents alongside their
corresponding PII fields over the years, but PII
elements are not necessarily marked within the
text. This is the typical case for many institutions
(such as hospitals and banks), which have manually
extracted PII elements for years. For example, a
hospital has access to patients’ names and ages for
every specific health record. However, the locations
of occurrences of name and age within the docu-
ments are unknown. Also, the name and age can
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come in various forms and lengths when mentioned
in free text. To build a useful training dataset for a
PII recognizer, the hospital needs to mark phrases
related to name and age in the free text through text
mining. However, sharing this data for annotation
and training involves privacy considerations. We
consider the following steps to ensure our process
is compliant with the privacy of data subjects.

• Annotating the free text programmatically
without the need for sharing the data for hu-
man annotation.

• Distributed storing of annotated documents so
that the data can be kept in authorized loca-
tions.

• Remote training of the PII extraction model
without the need for sharing annotated docu-
ments with machine learning practitioners.

To conduct a reproducible research, we show the
feasibility of the proposed approach on a dataset
collected from Wikipedia and share the created
dataset and results with research community. Our
contributions are as following:

• We create and release an automatically labeled
dataset comprised of 77703 sentences from
Wikipedia biography pages annotated for 5
classes of personal information.

• We develop a method for remote training
of a transformer-based model on distributed
datasets, using PySyft platform.

• We explore the impact of label noise and
dataset size on the performance of remotely
trained NER models.

2 WikiPII Dataset

Our goal is to create and annotate a customized tex-
tual dataset for training a PII extractor (the scenario
described in Section 1). Approaches like snorkel
(Ratner et al., 2017) had been embracing noise of
automatic annotations and compensated the noise
by adding to the volume of inexpensive data. We
took the same approach for annotating Wikipedia
pages and benefited from the fact that a version
of entities was available in the infobox. We used
the infobox to generate noisy and inexpensive data
annotations, whereas snorkel uses multiple noisy
parallel annotation functions and weak-supervision
from alternative sources.

Figure 1: Infobox a) viewed on web page, b) in HTML
format, c) converted to a dictionary

We collected our data from Wikipedia biogra-
phy pages because 1) they are rich in terms of PII,
2) with the infobox available on each page, they
comply with our assumption of having access to
extracted PII, 3) they are publicly available and can
be shared and used as a benchmark for research
purposes. Similar automated annotation tasks such
as Nothman et al. (2013) utilized a broader set of
Wikipedia pages and contain general CoNLL style
(Sang and De Meulder, 2003) (location, organiza-
tion, person, miscellaneous) classes of entities and
does not focus on granular personal information
as ours. We refer to this dataset as WikiPII and
release this data for further research.

2.1 Data Collection

We scraped our raw textual data from biography
page entries of living people in Wikipedia (about
900K pages). For programmatic annotation of each
page’s textual body, we first read the HTML-coded
infobox and converted it to a PII element dictionary,
using the BeautifulSoup1 package. An example of
this conversion is demonstrated in Figure 1.

Next, we normalized the similar entity types to
acquire consistent entity types across all pages. For
example, the spouse’s name can come under the ti-
tles’ Spouse’,’ Spouse(s)’ and’ Spouses’, which are
all normalized to the ‘SP’ tag. After normalization,
we manually inspected the entities and chose the
ones with high coverage in the dataset. At last, we
decided to include BD (date of birth), PR (names
of parents), SP (names of spouse(s)), CH (names
of children) and ED (terms of education institutes
attended). Our final tags and their corresponding

1https://www.crummy.com/software/
BeautifulSoup/bs4/doc/
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infobox entries are shown in Table 1 2.

Tag Corresponding entries in infobox

Birth Date (BD) ’Born’, ’Born:’

Parents (PR) ’Parent’, ’Parent(s)’, ’Parents’, ’Fa-
ther’, ’Father’s name’, ’Mother’,
’Mother’s name

Spouses (SP) ’Spouse’, ’Spouse(s)’, ’Spouses’

Children (CH) ’Children’

Education (ED) ’Education’, ’High school’, ’High
school:’, ’Law School’, ’School’,
’Schools’, ’College’, ’College(s)’,
’Colleges’, ’Alma mater’,’Almat
mater’

Table 1: Tags included in our dataset and correspond-
ing entities in infobox.

2.2 Labeling of Entities in Text

Once the PII was extracted from the infobox, we
had to locate them in the text and generate a tag
for each word to create an annotated dataset. This
step’s main challenge is that the mentions of en-
tities in the text might be variations of the ones
extracted from the infobox.

We parsed the textual body into sentences and
removed citation brackets and numerals using regu-
lar expressions. For each tag shown in Table 1, we
develop a function that takes the extracted phrase
from infobox and locates that phrase within the free
text. We combine two different methods of match-
ing to get a more accurate match. Our entities are
subcategories of places, organizations, persons and
dates, which SpaCy already covers. We leveraged
the part-of-speech and named entity recognition
capabilities of the SpaCy3 package to find noun
chunks, person names, locations, organizations and
dates. Then, depending on the type of the entity,
we choose a subset of extracted phrases and use
fuzzy string matching4 to find the closest phrase
to our target phrase. For example, for the tag, ED
(education), we extract all the organization names
by SpaCy. We then use fuzzy matching to find the
variations of the education institute pulled from the
infobox.

2We first extracted birthplace from the infobox, but places
are mentioned in several formats such as town, province, coun-
try, etc. We omit this entity in the final tagging.

3We used the en_core_web_lg pipeline from https://
spacy.io/usage/facts-figures#benchmarks,
which is highly accurate in NER task and optimized in terms
of speed.

4We utilized the implementation published at https://
github.com/axiak/fuzzyset/ for fuzzy matching.

We used the BIO scheme for tagging of words.
NER is a sequence to sequence learning task that
predicts a label for each word, specifying whether
the word is within or outside an entity and the en-
tities’ type. In the BIO format, the tags ‘B_’, ‘I_’,
and ‘O_’ mark the beginning, inside and outside of
an entity, respectively. For example, ‘B_CH’ speci-
fies the beginning of a phrase tagged as ‘Children’.
The combination of these tags specifies the bound-
ary and tag of the extracted entity. Therefore, error
analysis of an NER task is based on errors in tag
and boundary detection. These error are reflected
in the evaluation metrics described in Section 3.

2.3 Manual Annotation
To evaluate the quality of the programmatic annota-
tion, we manually annotated a subset of the pages.
We selected pages that include highest numbers of
entities and made sure that the manually annotated
dataset contains 50 to 100 mentions of each class.
Manual annotation is done by re-annotating the en-
tities already found by the automated annotator. A
human annotator can choose to confirm, reject or
correct the labels created by the automatic annota-
tion. We designed a user interface for the manual
annotation where the annotator had access to the
infobox elements and their corresponding tags. An
example of the designed annotator user interface is
shown in Figure 2.

Figure 3 shows examples of common mistakes
in the automatic annotation. Entities extracted from
the infobox are shown in the left column. The yel-
low entities are missed by automated annotation
and corrected by the human annotator. These en-
tities are missed because they are missing from
the infobox. Also, since the automatic annotation
does not consider the context, it cannot resolve am-
biguities. In the example of Figure 3 ‘Troy’ is a
city name but is tagged as CH (children) since it
appears as a child name in the infobox. Also, ‘Har-
vard University’, which is tagged as an education
institute, is not a PII element for the main subject
of the page but an affiliation of someone else. In
manual annotation, ‘Troy’ and ‘Harvard University’
will be corrected and not tagged as an entity.

2.4 Statistics of WikiPII dataset
Our data source contains over 900K entries. Our
annotation method could only use a little over 23K
entries due to formatting changes in the Wikipedia
pages where infobox is not available. We filtered
the sentences that do not include any of our target
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Figure 2: Annotator UI for manual annotation.

Figure 3: Examples of mistakes in automated annotation.

entities. The dataset contains a large number of PII
instances belonging to over 23K individuals world-
wide belonging to 5 classes. Separate splits of the
created dataset and numbers of entities contained
are presented in Table 2.

3 Evaluation of PII extraction

Averaged F-score is a common metric to evaluate
a NER system. However, the definition of a True
Positive and a True Negative prediction is not al-
ways trivial. Since identifying an entity involves
finding both the span and type of the entity, some
of the system’s predictions can be partially correct.
Multiple evaluation schemes have been developed.
Shared tasks such as IREX (Sekine and Isahara,
1999), and CoNLL (Sang and De Meulder, 2003)
only gave credit to the exacted entities with the ex-
act type and boundary matches. Other works have
adopted type matching or partial matching evalua-
tion schemes, which reward partially correct entity
extractions (Tsai et al., 2006; Chinchor and Sund-
heim, 1993; Segura Bedmar et al., 2013). Learning-
based evaluation methods are developed to predict
the user experience in specific tasks (Nejadgholi
et al., 2020).

PII extraction is a sensitive task, and a fully auto-
matic system cannot be reliable. Instead, the output
of such systems are used to augment the perfor-
mance of manual PII extraction. In practice, when

a human is in the loop, partial matching can reduce
the manual effort of PII extraction. We adopted
the metrics introduced by the MUC-5 task (Chin-
chor and Sundheim, 1993), and SemEval-13 task
9 (Segura Bedmar et al., 2013) and implemented
the following evaluation metrics ordered in terms
of strictness:

• Strict Matching: rewards a prediction only if
boundary and type of entity match with gold
standard label. This metric evaluates the sys-
tem in a fully automated PII extraction setting.

• Exact Boundary: rewards a prediction if the
boundary of extracted entity matches the gold
standard labeling. This metric evaluates the
system where the human annotator relies on
boundaries predicted by the system and only
corrects the label if necessary.

• Type Matching: rewards the strict matches
and partially (×0.5) rewards the extracted en-
tities where the type is correct and boundary
overlaps with the gold standard. This metric
evaluates the system where the human anno-
tator relies on types predicted by the system
and only corrects the boundary if necessary.

• Partial Boundary: rewards strict matches
and partially (×0.5) rewards where the bound-
ary overlaps with the gold standard label re-
gardless of type. This metric evaluates the
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Data split / annotation method Pages Sentences BD PR SP CH ED
training/automatic 20039 77703 16883 6326 25163 10824 24365
validation/automatic 2744 12267 2512 1509 3844 1846 3831
test/automatic 307 2051 303 331 609 604 534
test/manual 91 320 76 50 80 62 92

Table 2: Count of pages, sentences which contain at least one of the target entities and number of mentions per
each class of entities for different splits of the WikiPII dataset.

Predicted Entity strict exact type partial implication in PII extraction

name Adam London. 33 33 33 33 no need for correction.

Adam name London. 7 7 3 3 boundary should be corrected.

place Adam London. 7 33 7 3 type should be corrected.

Adam place London. 7 7 7 3 entity is located, boundary and type should be corrected.

Table 3: Examples of predicted entity with respect to various evaluation metrics. 7indicates no reward, 3indicates
half point reward and 33indicates a full reward.

system where the human annotator relies on
the location of predictions and corrects both
label and boundary if necessary.

Table 3 shows examples of predicted entities
by a PII recognizer with respect to the evaluation
metrics and the cost of correction in a human-in-
the-loop PII recognition task.

4 PII Extraction model

First, we evaluate the automated annotation com-
pared to the manual annotation. Then we use the
automatically annotated train set to train a BERT-
based NER model with a fully connected linear
layer as the prediction layer. We then evaluate the
performance of the trained PII recognizer on both
automatically and manually annotated test sets.

4.1 Comparison between Manual and
Automatic Annotation

To evaluate the automatic annotation, we take man-
ual annotations as the gold standard and score the
corresponding automated annotations with the met-
rics described in Section 3. Table 4 shows the
results of this evaluation. As discussed in Section
3, we used different metrics to evaluate this model
based on the real-application scenario. For exam-
ple, partial metric evaluates the scenario where the
model is used to assist the human annotator in lo-
cating the entities. We observe that the rule-based
annotation tool leads to high levels of noise. With
partial evaluation, we conclude that automatic an-
notation spots about half of the entities correctly,
but the boundary and type might not be fully cor-
rect. On the other side, the strict metric indicates

that about one-third of the entities are perfectly an-
notated. Also, the type metric is higher than the
exact metric, indicating that automatic annotation
performs better in predicting types than boundaries.
This is expected because of the complexities and
subjectivity of boundary identification.

strict exact type partial
precision 0.31 0.32 0.39 0.46

recall 0.45 0.46 0.57 0.65
F1-score 0.37 0.38 0.47 0.54

Table 4: Evaluation of automated annotation compared
to the manual annotation.

4.2 Performance of PII Extraction Model
We fine-tuned a BERT-based NER model with
the training split of the automatically annotated
WikiPII dataset to build a PII recognizer and tested
the trained model with the test split of automati-
cally annotated dataset and the manually annotated
test set. We choose a batch size of 128 sentences
and a maximum length of 50 tokens and present
the results for one epoch of training. The opti-
mum number of epochs varies between 1 and 3 for
different datasets, but for the sake of comparison
we choose to run all experiments with one epoch.
Table 5 shows the results of this experiment.

We observed that despite the high level of noise
in the automatically annotated training dataset the
trained NER model reaches an acceptable perfor-
mance. This is due to the large size of the au-
tomatically annotated dataset. As Rolnick et al.
(2017) showed, deep learning models are robust
to label noise when the size of the dataset is ade-
quately large. We observed that the partial metric is
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80%, which indicates a significant decrease in man-
ual cost of PII extraction. While these predictions
might still need corrections of type and boundary
the system can locate most of the entities. From
the strict metric, we conclude that half of the PII
elements are predicted correctly in label and span
and do not need any correction. Comparing of the
exact and type metric shows that in most cases the
system predicts the label correctly and boundaries
need to be corrected.

5 Distributed Training

Modern deep learning models are known as data-
hungry algorithms. In the task of PII extraction,
sharing data across organizations will lead to more
robust models. However, sharing of personal data
in a central location involves concerns of privacy.
To mitigate the risk of data breaches, we can train
machine learning models in a distributed fashion
while leaving the data in a location governed by the
data owners. In this work, we explore Federated
Learning (FL) (Yang et al., 2019) for training a
NER model with noisy labelled data. Federated
learning involves training statistical models over re-
mote data centers, such as mobile phones or hospi-
tals, while keeping data localized without requiring
transfer of the whole dataset to a central location.

To implement FL, we use the PySyft framework,
developed by OpenMined 5. This framework is
developed in PyTorch and provides the platform for
executing tensor operations remotely (Ryffel et al.,
2018). PySyft has been developed under the theme
"Answer questions you cannot see", to perform
machine learning inference with zero knowledge
about the specifics of the data.

In this framework, a central entity orchestrates
the training scenario. Data is maintained and
tagged by its owners at a remote location. At each
data location, a worker follows the commands of
the central entity. The model is transferred to the re-
mote location, and updates are completed remotely
at each training iteration. Subsequently, the final
model is updated by averaging weights, averaging
remote gradient updates or consecutive updates at
each dataset location (Li et al., 2020).

5.1 Federated Training of BERT-based
Model

BERT (Bidirectional Encoder Representations
from Transformers) is a transformer-based lan-

5http://www.openmined.org/

guage model pre-trained on a massive corpus of
written text. BERT and a series of language models
belonging to BERT’s family form the backbone
of today’s deep learning NLP models. The lan-
guage model generates a vector representation for
the input text and passes it on to the downstream
task. The pre-trained language model is usually
fine-tuned with the task-specific data during task-
specific learning. In this work, we only use BERT-
based NER model, with a fully connected linear
layer as the prediction layer, but the general idea
applies to other transformer-based language mod-
els.Training and testing splits are the same as the
ones used in Section 4.2.

The input to a BERT model contains three ten-
sors: Token type id (specifies single sentence or
double sentence use of the model), position ids
(specifies the position of the token in the sentence),
and input ids (specifies the id of the word in the
vocabulary) (Devlin et al., 2018). Except for in-
put ids, all the other inputs are tensors generated
dynamically at the training time. The pre-trained
tokenizer model generates these inputs to be based
on the dimensions of the input sentence batches.

PySyft is designed in a way that abstracts the
remote tensor objects by wrapping them around
an empty tensor located centrally. Wrapping the
tensor is the process of maintaining an empty local
tensor object, while executing tensor operations
on the remote tensor through the network. This
method abstracts the location separation and al-
lows the central worker to operate on tensor objects
just as they were situated centrally. One drawback
of this wrapping-based abstraction is that the func-
tions such as size querying are operated on the local
empty tensor rather than the native real tensor lo-
cated in the remote worker. For that reason, the
PySyft framework cannot query the dimensions of
the input data tensors while operating in a remote
worker (Ryffel et al., 2018).

For remote tokenization through PySyft, we
modified the model to carry these inputs as static
non-trainable parameters embedded in the form
of tensor buffers. Using PySyft, we can move a
model between the remote workers and the central
worker using the API calls. Initially, these APIs
were developed to handle the trainable parameters
of the models among workers involved in feder-
ated learning. We contributed to the PySyft frame-
work’s codebase by developing a federated BERT
tokenizer method, which handles the movement of
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Automatically annotated Manually annotated
strict exact type partial strict exact type partial

precision 0.64 0.72 0.70 0.74 0.55 0.56 0.68 0.79
recall 0.62 0.69 0.68 0.72 0.56 0.56 0.68 0.80

F1-score 0.64 0.70 0.69 0.73 0.55 0.56 0.68 0.80

Table 5: Test accuracy of the BERT-based NER model on both test sets

non-trainable parameters and allows full remote
functionality of the model. Our implementation of
the BERT-base model for remote operation will be
released for further research.

5.2 Training Scenarios

We deploy two settings of FL to share training data
in a privacy-preserved manner. In practice one of
these scenarios might be preferred depending on
how much trusted the central worker is.

• federated/central: A trusted central operator
can receive data batches from remote data
holders

• federated/remote: A mistrusted central opera-
tor sends model to a remote data holders

(a)

(b)

Figure 4: Training loss for central vs federated/remote
on a) CoNLL-2003 and b) WikiPII dataset

In scenario 1, the operator is trusted to receive
data from remote sources and updates the model in
the central location. Data batches from distributed
sources are called using the federated training iter-
ator. Received data batches contribute to forward
pass and back-propagation operations. Then the
operator discards the data batch as agreed. Here the
operator has full control over the data batches, and

the BERT tokenizer works in its typical mode. The
only different operations with respect to central
training are data transfers from the remote work-
ers towards the central worker. These transfers
might lead to information loss because of data com-
pression. Also, from machine learning perspective,
distributed data cannot be shuffled randomly and
data batches might be imbalanced which has an
impact on the final performance of the model.

In scenario 2, the operator is not fully trusted, so
the batch of data can not be fully transferred to the
central operator. Federated training iterator holds
the locations of the data holders or remote workers.
The model owned by the central operator is sent
to the remote worker and allowed to be remotely
executed. Only the central operator’s commands
are allowed to reach the remote worker guarantee-
ing the central operator is not breaching into the
data. In this scenario, we use our remote tokeniza-
tion method. Interactions for this training involve
sending the model, sending commands to execute
the model, and receiving the trained model parame-
ters back. Model weights are received back by the
central operator after training for all the batches
of data belonging to the remote worker. Then the
model is sent to the other workers. An epoch is
completed when the model cycles all the workers.

5.3 Performance of Model Trained with
Distributed Data and Noisy Labels

To gain insight into the impact of distributed train-
ing on NER models’ performance, besides the
WikiPII dataset, we trained our model on the widely
used NER dataset, CoNLL-2003. Similar to our
central training (Section 4.2), we restrict our ex-
periments to one epoch of training. We simulated
both scenarios with only two virtual workers and
recorded the training loss to investigate how re-
mote learning impacts the model’s convergence.
Also, for simplicity, we assume the remote work-
ers’ availability at all the times a central worker
requests their computational resources for training,
which might not be the real-world scenario and will
require planning and robustness.

We observed that the case of federated/central
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Dataset/Setting no. of workers F1 score
CoNLL2003

central N/A 0.90 ±0.005
federated/remote 2 0.85 ±0.003
federated/central 2 0.90 ±0.008

WikiPII
central N/A 0.70 ±0.006
federated/remote 2 0.56 ±0.02
federated/central 2 0.70 ±0.01

Table 6: Exact F1-score for central vs federated model

training does not impact the convergence of the
model. Figures 4a and 4b show the convergence
of the loss when model trained on two workers
in federated/remote scenario compared to the typi-
cal centralized training, for both CoNLL2003 and
WikiPII. In the case of CoNLL2003, where the an-
notations are of gold-standard quality, the federated
training does not significantly impact the model’s
convergence. In WikiPII, with noisy labels, feder-
ated/remote training leads to higher loss function
values. However, this impact is not detrimental.

The exact F-scores trained under our FL imple-
mentations are summarized in Table 6. We ob-
served very close final model performance between
the federated learning with centrally operated and
typical centralized training. Federated training with
the mistrusted central operator deviates from cen-
tral training, with higher loss convergence values
and a reduced final performance score, for both
CoNLL2003 and WikiPII datasets. This observa-
tion can be explained by the loss of information in
weight compression while transferring the model.

5.4 Effect of Dataset Size

Federated learning is most useful where multiple
data holders participate in the training process. In
reality, different distributed sources contributing
to training can carry imbalanced amounts of data
and features, which can have a negative impact on
the results. Here we measure the effect of increas-
ing the dataset size by increasing the number of
workers. We randomly divided the training dataset
among ten workers and, starting from 2 workers,
increased the number of workers participating in
the training process. Figure 5 shows the change of
different types of F-score as more workers are uti-
lized, and the dataset size increases as a result. We
used the federated/central scenario here, which was
shown to achieve comparable performance to cen-
tral training. To control for the random sampling,
we repeat each experiment 10 times and average

the acquired F1-score. The error plot in Figure 5
demonstrates this experiment’s final results for all
the metrics.

In general, we observed that when the size of
the noisy annotated data increases, higher perfor-
mances are achieved. Since automatic labelling of
data is inexpensive, generating and sharing noisy
labelled data is a promising way of achieving high-
quality models. However, note that the standard
deviation of F-scores can be considerable. This
observation indicates that the imbalances of dis-
tributed data can drastically impact the final model.

Figure 5: F1-scores vs. the training dataset size as more
workers participate in federated/central training

6 Discussion

In this work, our goal is to use the historical data ac-
cumulated in an organization to build a customized
NER for a human-in-the-loop PII recognition tool.
We expect that this tool can significantly decrease
the cost of manual extraction by locating PII enti-
ties in the free text.

First, we assume that the organization has access
to a corpus of unstructured documents along with
the structured dataset containing their correspond-
ing PII entities. We propose that these parallel
datasets can be used to create a noisy annotated
training set. Our method of automatic annotation
is based on matching of phrases and the raw data
is not exposed to a third party for annotation. Us-
ing Wikipedia biography pages as an example, we
show the feasibility of creating a noisy annotated
dataset and training a PII recognition model in a
privacy-preserved fashion. Our automatic annota-
tion is inexpensive. Therefore it can generate large
volumes of annotated datasets to compensate for
the label noise. This is in line with previous work
showing that deep learning is robust against noise
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when trained with massive noisy datasets (Rolnick
et al., 2017).

Furthermore, we looked at the feasibility of dis-
tributed training in cases that multiple organiza-
tions have similar datasets and are willing to col-
laborate to build more robust models but cannot
share the data due to privacy concerns. We showed
that where the operator is trusted, distributed train-
ing will not affect performance regardless of the
annotation quality. For both CoNLL2003 (clean
annotations) and our WikiPII dataset (noisy annota-
tions), the F-score of NER models does not suffer
from distributed training. However, when the oper-
ator is not trusted, the F-score is impacted and the
drop of F-score is more significant in the case of the
noisy dataset. In model transfer, all the parameter
tensors of the model go through the simplification,
serialization and compression steps followed by de-
compression, de-serialization and decompression
steps. We suspect this mechanism affects the pre-
cision of the weights. In future work, a rigorous
analysis should be carried out to analyze the effect
of object transfers in a distributed system.

Lastly, in the federated/central scenario, we
showed that the increase in the dataset size is a
promising way to achieve higher accuracies. Dis-
tributed training allows organizations to share their
data which results in a bigger size of the data. We
conclude that there is a trade-off between the drop
in performance because of the distributed training
and the increase in performance because of the
higher volume of data.

This work has limitations. NER is a very chal-
lenging task, and it is difficult to achieve a fully
reliable NER model for a sensitive task such as
PII extraction. Also, even highly accurate NER
models can be vulnerable to adversarial attacks
(Zhang et al., 2020). For this reason, throughout
this work, we only envisioned this system to as-
sist human annotators by locating the entities and
suggest a highly likely tag. Although this system
does not reach very high performance, it is still
instrumental in reducing the cost of PII extraction
when compared to a fully manual procedure. We
only considered a BERT-based NER model, but
the general idea applies to other transformer-based
NER models. In future, an ensemble of different
techniques should be considered to improve the
utility of the system.

7 Conclusion

We propose an inexpensive and privacy-preserved
method that automatically annotates parallel struc-
tured/unstructured datasets to train a customized
NER models. The final models can be used to de-
crease the cost of manual extraction of PII elements
by preprocessing the documents in a human-in-the-
loop setting. Our results demonstrate that federated
training is a promising tool to compensate for label
noise by increasing the volume of the noisy labeled
dataset.
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Abstract

We study the problem of domain adaptation
in Neural Machine Translation (NMT) when
domain-specific data cannot be shared due to
confidentiality or copyright issues. As a first
step, we propose to fragment data into phrase
pairs and use a random sample to fine-tune a
generic NMT model instead of the full sen-
tences. Despite the loss of long segments
for the sake of confidentiality protection, we
find that NMT quality can considerably benefit
from this adaptation, and that further gains can
be obtained with a simple tagging technique.

1 Introduction

The availability of in-domain data remains essential
to ensure the quality of Neural Machine Translation
(NMT), especially in technical domains (Koehn
and Knowles, 2017). However, obtaining such data
is often challenging, and in many real-world scenar-
ios this is further aggravated by data confidentiality
or copyright concerns. In fact, when data content
is sensitive, the owner may simply deny providing
its Translation Memories to the translation com-
pany it is hiring (Cancedda, 2012). This can lead to
considerably worse MT quality, higher post-editing
efforts, and subsequently higher translation costs
for the data owners themselves.

When the complete data cannot be shared in
its original form, releasing fragmented data can
be considered as a compromise. The most well-
known example of releasing fragmented data is
Google N-gram (Michel et al., 2011). N-gram ta-
bles consisting of sequences of n words and their
counts in a given corpus were routinely used to
train count-based language models (Kneser and
Ney, 1995; Brants et al., 2007) before the advent
of neural methods. However, N-grams are not opti-
mal for training state-of-the-art NLP models such
as sequence-to-sequence LSTM (Bahdanau et al.,
2015) or Transformers (Vaswani et al., 2017). In
fact, one of the main strengths of these models

is the ability of handling arbitrarily long contexts,
which would be hindered by the use of fragmented
data. In this paper, we take a pragmatic approach
and ask: If the data owner can only release frag-
mented data due to confidentiality issues, can this
still benefit downstream NMT quality in any way?

Motivated by the brittleness of NMT in out-of-
domain settings (Koehn and Knowles, 2017) and
the increasing availability of large pre-trained mod-
els (Ng et al., 2019), we focus on the task of adapt-
ing a strong-performing general-domain NMT sys-
tem to various technical domains. We show that
fine-tuning on phrase pairs can be a viable solution
to exploit confidential data, but the scale of im-
provements varies strongly across target domains.

2 Background

To our knowledge, the use of confidential data in
MT has not received much attention recently. Can-
cedda (2012) proposed an encryption-based (one-
time pad) method for phrase-based statistical ma-
chine translation (PB-SMT). However, PB-SMT
is nowadays clearly outperformed by NMT (Ben-
tivogli et al., 2016), which function completely
differently and therefore require new solutions to
preserve data confidentiality.

In the broader context of NLP, secure multi-
party computation (Feng et al., 2020) and homo-
morphic encryption (Al Badawi et al., 2020) have
been used to provide strong privacy guarantees.
Since these cryptographic methods incur high per-
formance penalties (see (Riazi et al., 2019) for an
overview of their performance in deep learning),
more recent proposals have focused on the care-
ful use of simpler cryptographic primitives while
training a model over encrypted text due to confi-
dentiality reasons. For instance, TextHide (Huang
et al., 2020) allows to perform natural language un-
derstanding tasks while requiring the participants
to complete an encryption step in a federated set-
ting. The aforementioned studies mostly focus on
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Figure 1: Motivating scenario: a Translation Company
(TC) uses confidential data from its clients to adapt a
pre-trained generic NMT system to different technical
(e.g. medical, legal) domains.

preventing explicit/implicit leakage of partial infor-
mation while training the models. By contrast, we
explore the possibility of using fragmented data to
improve state-of-the-art NMT applications.

Scenario As illustrated in Figure 1, we consider
a common case where a translation company (TC)
provides professional services based on a pipeline
of NMT and human post-editing. TC wants to im-
prove the quality of its NMT models by training or
adapting them on the clients’ previously translated
data. Due to confidentiality concerns, the clients
only provide their data in a fragmented form as
a compromise. If this kind of data can be used
to improve the NMT model, both the clients and
the company will benefit by abating human post-
editing costs. Thus, we want to study the possibil-
ity of sharing fragmented data for improving utility
while preserving the confidentiality of data.

Threat Model We assume an honest but curious
model in which the receiver of the partial data (e.g.
the translation company) is untrusted or only par-
tially trusted. The main threat we focus on is the
full reconstruction of the original text from a list
of given n-grams of phrases rather than the protec-
tion of partial information (e.g. key phrases (Hard
et al., 2018), names, social security numbers). This
setting is useful in various contexts where only
partial data release is desired such as copyright
protection. Examples of text where sensitive infor-
mation is encoded in long sequences (sentences or
paragraphs) include patent applications, as well as
not (yet) publicly available product analysis reports
or drug reaction reports.

3 Approach

Releasing fragmented data in the form of N-grams
has a long tradition in NLP (Michel et al., 2011).
However, fixed-size N-gram extraction is not di-
rectly applicable to parallel data because it breaks
translation equivalence with the target side. As a
solution, we propose to use phrase pairs (Koehn
et al., 2003) as a text fragmentation method.

3.1 Phrase Pairs
Like N-grams, phrases are short sequences of con-
secutive words extracted from the input sentences.
Unlike N-grams, phrases are always extracted in
pairs from source-target sentence pairs in a way that
is consistent with their word-level alignment. For-
mally, a phrase pair (f̄ , ē) is consistent with word
alignment A if all source words f1, · · · , fn in f̄
that have alignment points in A are connected with
target words e1, · · · , em in ē and viceversa (Koehn
et al., 2003; Koehn, 2009). As Figure 2 illustrates,
the words of the target language (German) are first
automatically aligned (grey connecting lines) with
the words of the source language (English) by a
statistical alignment model. Then, phrase pairs of
various lengths (denoted by boxes) are extracted.

Phrase pairs and their statistics constitute the
main component of PB-SMT systems, together
with the target language model. In this work, how-
ever, we only use phrase extraction as a text frag-
mentation technique. After extraction, we shuf-
fle the large set of phrase pairs extracted from the
whole dataset and, finally, discard a random sample
of phrase pairs (e.g. 50%) to preserve confidential-
ity. In the example of Figure 2, this would mean
protecting the hypothetically sensitive connection
between the drug name (Abraxane) and its reported
side effect (tiredness).

Figure 2: Example sentence pair from the EMEA cor-
pus with extracted phrase pairs of maximum length 3
(every black box is a phrase). Grey lines denote word
alignment. Shorter phrases imply more data protection.

3.2 Domain Adaptation
NMT models are trained on full sentences, and their
ability to capture large context is one of their main
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strengths compared to classical SMT approaches.
As a result, training NMT on fragmented data is
likely to lead to a very poor performance. Nonethe-
less, we postulate that phrase pairs may still contain
very valuable information for the adaptation of a
general-domain system to a specific target domain.
In fact, much of domain adaptation has to do with
learning new words or short phrases, as well as new
senses for known words and phrases (Irvine et al.,
2013). As the domain adaptation technique, we
choose fine-tuning (Luong et al., 2015; Sennrich
et al., 2016b) which consists of continuing training
a previously trained model on a, typically smaller,
in-domain dataset.

We start by directly fine-tuning a general-domain
NMT system on a random sample of phrase pairs
(occurrences, not types) extracted from the in-
domain dataset. Since this is expected to bias the
model to produce shorter sentences, we also ex-
periment with a simple phrase tagging technique
(Sennrich et al., 2016a) so that the model may learn
to represent the special nature of phrases and be
less inclined to produce short outputs when trans-
lating full sentences in the test phase.

4 Experimental setup

We evaluate our approach on German-English in
the domains of medicine descriptions, software
manuals, and EU legislation. To simulate a realistic
production setup, we start from a strong NMT sys-
tem pre-trained on large amounts (28M sentences)
of publicly available data.

Baseline NMT We use the Transformer-based
system (Vaswani et al., 2017) pre-trained by Face-
book for the WMT’19 news translation task (Ng
et al., 2019)1 and released as part of the Fairseq
toolkit (Ott et al., 2019). This model was ranked
first in the WMT’19 news competition (Barrault
et al., 2019) with a BLEU score of 40.8.

Datasets We simulate confidential translation
data by using publicly available datasets from three
technical domains:2 EMEA (medical), GNOME
(software) and JRC-Acquis (legal) (Tiedemann,
2012; Steinberger et al., 2006).3 Data statistics

1https://github.com/pytorch/fairseq/
tree/master/examples/translation

2To simulate a professional translation scenario,
we split the datasets by documents. We release the
benchmarks at https://github.com/Sohyo/
Using-Confidential-Data-for-NMT

3https://opus.nlpl.eu

Type Domain #sent #tok(DE) #tok(EN)

Train
EMEA

10k
199k 209k

GNOME 179k 194k
JRC 279k 396k

Valid
EMEA

150
3k 3k

GNOME 3k 3k
JRC 4k 5k

Test
EMEA

2k
38k 42k

GNOME 29k 30k
JRC 53k 82k

Table 1: Size of datasets used in our fine-tuning exper-
iments. The baseline NMT model was pre-trained on a
separate corpus of 28M sentence pairs, not shown here.

are shown in Table 1. Following the Fairseq model
pipeline, we segment our data with FastBPE byte-
pair encoding (Sennrich et al., 2016c).4

Phrase extraction We first word-align the in-
domain datasets using FASTALIGN (Dyer et al.,
2013)5 and compute the union of source-to-target
and target-to-source word alignment links (known
as union symmetrization heuristic) to obtain the
alignment A. Then we use the phrase extraction
utility from the MOSES phrase-based SMT toolkit
(Koehn et al., 2007)6 to extract all phrases consis-
tent with A. After the phrase extraction step, our
dataset has been fragmented into a list of aligned
phrases of various lengths. We experiment with a
maximum source-side phrase length of either 4 or 7
words, and in both cases we randomly discard 50%
of the extracted phrases (occurrences, not types).

Fine-Tuning During fine-tuning, we provide
phrase pairs to the models as if they were sentence
pairs. Note that this data is shuffled and has many
duplicates. Additionally, we experiment with a sim-
ple tagging technique by adding <P> and </P> at
the front and end of each phrase respectively, in
both source and target side. During testing, full
sentences with no tags are given to the model.

We apply the hyper-parameters described by Ng
et al. (2019) with only a few adjustments inspired
from previous work on fine-tuning regularization
(Miceli Barone et al., 2017) and tuned on a small
(full-sentence) validation set in each domain (150
sentences, see Table 1). Specifically, learning rate
is divided by 4 (0.000175), weight decay rate is set
to 0.0001 and dropout probability to 0.2. The same
small validation set is used for early stopping.

4https://github.com/glample/fastBPE
5https://github.com/clab/fast_align
6http://www.statmt.org/moses
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Baseline
Fine-Tuning

Max length 4 Max length 7 Original data
(Full sentences)(No fine-tuning) No tag Tag No tag Tag

EMEA 35.5 39.1 40.5 41.5 37.2 45.2
GNOME 29.8 36.0 37.0 35.8 36.8 38.9

JRC 29.0 29.4 30.0 29.2 29.7 54.7

Table 2: BLEU scores of German-English NMT in three different domains: medical (EMEA), software (GNOME),
and legal (JRC). The baseline is the pre-trained Fairseq WMT19 news system (Ng et al., 2019) based on Trans-
former (Vaswani et al., 2017) and ranked first in the WMT19 competition.

5 Results

We evaluate the quality of NMT models by BLEU
(Papineni et al., 2002) computed with SACRE-
BLEU (Post, 2018). The phrase-adapted models
are compared to the non-adapted baseline (Ng et al.,
2019), and to fine-tuning on the original (non frag-
mented) dataset in order to determine the maximum
possible gains. Results are reported in Table 2.

Our main finding is that phrase pairs can indeed
be used to fine-tune a NMT model without any
changes to the architecture or the need of specific
fine-tuning algorithms. The BLEU gains over the
non-adapted baseline vary between +7.0 on EMEA
and +1.0 on JRC. This is relevant for our scenario
because even translation companies without signif-
icant in-house NMT expertise could easily apply
our solution to their workflow. Our approach is
also applicable in cases where TC uses NMT as an
outsourced (cloud-based) service, by sending the
provider phrase pairs instead of full sentences for
model adaptation.

Effect of phrase tagging The addition of tags
appear to improve NMT quality in most cases. Fig-
ure 3 shows that tagging yields slightly longer sys-
tem outputs, suggesting the model indeed learned
to associate the <P> tag with shorter training sam-
ples. While differences look small, they have
a large impact on BLEU because of the Brevity
Penalty (Papineni et al., 2002). As a notable excep-
tion to this positive trend, BLEU score decreases
with tagging on EMEA (max length 7). We are
currently investigating this result further.

Effect of phrase length We expected longer
phrases to be considerably more useful for fine-
tuning, at the expense of less confidentiality protec-
tion. By contrast, increasing the maximum length
from 4 to 7 does not have a positive effect on BLEU
but actually lowers it in the GNOME and JRC do-
mains. This counter-intuitive result may be due to

the fact that increasing the maximum length leads
to a much larger number of extracted phrases that
are redundant and overlapping. Previous work on
lexicon-augmented NMT also reported negative re-
sults when fine-tuning on very large numbers of
segments (Thompson et al., 2019b). In future work,
we plan to experiment with minimum phrase length
as a way to reduce the total number of phrase pairs.

Domain differences The benefits of fine-tuning
on phrases appear to vary strongly across domains:
on EMEA we obtain large gains but there is still
space for improvement, on GNOME our approach
nears the ceiling of fine-tuning on the original data,
whereas on JRC gains are small and scores remain
very far from the ceiling. To explain these results,
we inspected our datasets and specifically looked
for peculiarities of the JRC dataset. We find that
JRC is rather different in terms of sentence length
distribution, with much longer sentences on aver-
age. As shown in Figure 3, only fine-tuning on
the original data leads to reasonably long outputs,
whereas baseline and phrase-adapted systems all
generate sentences that are, on average, about 10
words shorter than they should be. This suggests
that our tagging technique is not sufficient to ad-
dress the shorter-output bias in a robust way. Re-
cent techniques to prevent overfitting during fine-
tuning (Kirkpatrick et al., 2017; Thompson et al.,
2019a) may overcome this problem in future work.

6 Conclusions

We have studied the problem of domain adaptation
of NMT models when domain-specific data can-
not be shared due to confidentiality or copyright
concerns. Inspired by a common NLP practice of
sharing confidential data in the form of N-grams
(Michel et al., 2011), we propose to use phrase
extraction (Koehn et al., 2003), shuffling and sub-
sampling as a data fragmentation technique for
translation data. Our experiments on three different

49



Figure 3: Average length (in tokens) of reference trans-
lations and outputs of different NMT systems, includ-
ing a non-fine-tuned baseline and four differently fine-
tuned systems.

domains show that this type of data can be used
to fine-tune NMT models leading to considerable
improvements on top of a strong baseline and fur-
ther gains when a simple phrase tagging technique
is used. We also find that the magnitude of these
gains varies largely across domains, which we ten-
tatively attribute to the different length profiles of
our datasets (e.g. legal domain has much longer
sentences than the other domains).

While our results show that text fragmentation
is indeed compatible with modern machine trans-
lation systems adaptation, more work needs to be
done before our method can be applied on actual
sensitive data. To this end, we plan to determine
metrics for the quantification of confidentiality pro-
tection (or violation) when an adversary tries to
reconstruct the original documents. Our starting
point for this direction would be Gallé and Tealdi
(2015), who presented a technique for this purpose
only in the context of (monolingual) N-grams.
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Abstract
Text classifiers are regularly applied to per-
sonal texts, leaving users of these classifiers
vulnerable to privacy breaches. We propose a
solution for privacy-preserving text classifica-
tion that is based on Convolutional Neural Net-
works (CNNs) and Secure Multiparty Compu-
tation (MPC). Our method enables the infer-
ence of a class label for a personal text in such
a way that (1) the owner of the personal text
does not have to disclose their text to anyone
in an unencrypted manner, and (2) the owner
of the text classifier does not have to reveal the
trained model parameters to the text owner or
to anyone else. To demonstrate the feasibility
of our protocol for practical private text clas-
sification, we implemented it in the PyTorch-
based MPC framework CrypTen, using a well-
known additive secret sharing scheme in the
honest-but-curious setting. We test the runtime
of our privacy-preserving text classifier, which
is fast enough to be used in practice.

1 Introduction

Text classification is inherently a two-party compu-
tation problem between the owner of a text classi-
fier and the owner of a personal text. Text classi-
fiers are used for a wide variety of purposes, such
as detection of spam and misinformation, sentiment
analysis, tailored advertising, surveillance, etc. In
these applications, the text classifier is often owned
by a company or organization who wants to keep
their model private because it offers a competitive
advantage and/or it was trained on a proprietary
dataset. Deep learning models in particular are
powerful enough to memorize specific examples
from the training data (Carlini et al., 2019), hence
disclosing a trained model can leak very specific
information about training data. Furthermore, in
applications such as spam or misinformation detec-
tion, disclosing the model would help adversaries
to develop strategies for evading detection.

The common practice nowadays is therefore for
the owner of the personal text to disclose their text

to the company or application developer. This in
turn also raises serious privacy concerns, stemming
from misuse of the data by the company for pur-
poses beyond the originally professed scope. Fur-
thermore, while most companies make reasonable
efforts to keep data private, the data itself is a valu-
able asset that is routinely sold when companies
undergo bankruptcy and/or it can become subject
of accidental or intentional public exposure (Canny,
2002; Solon, 2018; Thompson and Warzel, 2019).
Data breaches and intentional misuse of data have
given rise to new laws and regulations, such as
the European General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act
(CCPA), and, orthogonal to this, the use of privacy-
enhancing technologies (PETs) for the develop-
ment of algorithms that do not leak personal infor-
mation about their inputs, thereby protecting the
privacy of all the users involved.

In this paper we propose such an algorithm
for private text classification that, as illustrated in
Fig. 1, allows the owner of a personal text (Bob)
to infer a label using Alice’s text classifier, without
requiring Bob to disclose anything about his text
in an unencrypted manner to Alice, and without re-
quiring Alice to show her trained model parameters
to anyone. To this end, we use Secure Multiparty
Computation (MPC) (Cramer et al., 2015), an um-
brella term for cryptographic approaches that allow
two or more parties to jointly compute a specified
output (the class label) from their private infor-
mation (the classifier and the personal text) in a
distributed fashion, without revealing the private
information to each other.

Initial solutions for private classification of un-
structured text with MPC have been proposed for
logistic regression models and tree based models
(Reich et al., 2019), and for Naive Bayes classifiers
(Resende et al., 2021). All of this existing work
relies on an MPC subprotocol for private feature
extraction, in which a boolean word occurrence
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Figure 1: Private text classification process

vector is created that indicates which words from
Alice’s predefined vocabulary occur in Bob’s text.
In contrast with this, and in line with the fact that
deep learning is current state-of-the-art for many
tasks in natural language processing (NLP), we
propose to perform MPC-based private text clas-
sification with a Convolutional Neural Network
(CNN) that has been trained to extract relevant fea-
tures automatically. To the best of our knowledge
this has not been explored yet in the literature.

The MPC protocols for text classification with
CNNs that we use in this paper, are very similar
to existing MPC protocols for image classifica-
tion with CNNs (Agrawal et al., 2019; Dalskov
et al., 2020; Juvekar et al., 2018; Kumar et al.,
2020; Mishra et al., 2020). The main distinguish-
ing aspect is that image classification is based on
2-dimensional (2D) CNNs, while for text classi-
fication it is common to use 1-dimensional (1D)
CNNs in which the filters move in only one direc-
tion. Existing MPC protocols for inference with
2D CNNs can be straightforwardly adjusted to 1D
CNNs. Our main contribution is therefore in de-
signing the first application of MPC protocols for
CNN-based text classification, and in particular in
addressing a question that has remained open in
the literature thus far, namely to what extent such
provably secure protocols can enable accurate and
fast text classification.

Among deep learning architectures, our choice
for CNNs is deliberate. CNNs have been success-
fully applied for text classification (Kim, 2014)
and offer the important advantage of being com-
putationally less intensive than Long Short-Term
Memory (LSTM) networks or other state-of-the-
art architectures. As such, CNNs are an excellent
“MPC-friendly” starting point to explore deep learn-
ing based private text classification. In Sec. 2 we
describe a multi-channel CNN architecture that we
designed for sentiment analysis of product reviews.
The trained CNN F is owned by Alice in Fig. 1.

In Sec. 3 we describe our MPC protocol πTEXT
for private text classification of Bob’s text with

Quantity of reviews by star rating
1 2 3 4 5

23,783 6,890 8,308 46,693 46,410
negative positive

Table 1: Distribution of reviews by star rating

Alice’s CNN F . As the first step in this process,
Bob prepares his text using preprocessing steps
that are publicly known and do not depend on Al-
ice’s model F nor on the data that Alice used to
train F in any way. In our prototype, the prepro-
cessing consists of converting the text using a pub-
licly available sentence transformer (Reimers and
Gurevych, 2019). Below we refer to both Alice’s
CNN model parameters and Bob’s preprocessed
text simply as “data”. At the start of πTEXT, Al-
ice and Bob send each other encrypted shares of
their data. Subsequently both parties engage in
MPC computations and exchange intermediate en-
crypted results, without learning anything about
the values of the data. At the end of πTEXT, Alice
and Bob each have “shares” of the inferred class
label. The true class label is revealed only when
these shares are combined, e.g. when Alice sends
her shares to Bob.

In Sec. 4 we present results obtained with an
implementation of πTEXT in CrypTen (Knott et al.,
2020), a recently proposed MPC framework built
upon PyTorch. CrypTen realizes MPC through a
well-known additive secret sharing scheme (see
Sec. 3) that guards against honest-but-curious ad-
versaries. A party corrupted by such an adversary
still follows the instructions of the MPC protocol
but attempts to learn information about the data
from the intermediate values and communications
between the parties. A correctly designed MPC
protocol (as πTEXT) prevents such attacks from be-
ing successful. To implement πTEXT, we adapted
and extended existing functionality for private im-
age classification in CrypTen to text classification
with 1-dimensional (1D) convolutional layers and
1D max pooling. Our results in Tab. 2 demonstrate
the practicality of πTEXT as the runtimes are low
enough to be used in practice.

2 Text Classifier

Dataset. We trained Alice’s model on the Software
portion of the Amazon Customer Reviews Dataset.1

1https://s3.amazonaws.com/
amazon-reviews-pds/readme.html
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Figure 2: The structure of Alice’s CNN

The data consists of product reviews for software
offered on Amazon’s storefront. There are 132,084
reviews total, each with an associated star rating
ranging from one to five (see Tab. 1). The average
length of a review is 63.6 words. We split the data
into 80% for training and 20% for validation, using
a stratified split to ensure the distribution of the
star ratings is identical in both sets. As described
below, we trained a binary classifier for sentiment
analysis over this dataset, treating reviews with
star ratings ≥ 4 as positive instances, and the rest
as negative. We note that, with reproducibility of
results in mind, we used a publicly available dataset.
During deployment of our private text classification
solution, it can be replaced by proprietary text data.

Model Architecture. The text classifier con-
sists of two parts: a public sentence trans-
former and the private CNN belonging to Al-
ice. The sentence transformer we employ
is stsb-distilbert-base (Reimers and
Gurevych, 2019), a model fine-tuned to produce
sentence vectors. This takes as input the raw text
and outputs a 768 dimensional embedding vector.
As this transformer is public, Bob can also use the
sentence transformer to prepare his data for classifi-
cation by Alice’s model. Alice’s model consists of
three parallel series of convolution and pooling lay-
ers, followed by fully-connected layers, ending in
a sigmoid activated classification layer (see Fig. 2).
This model is then trained with a learning rate of
0.002 with a batch size of 50, and loss is calculated
using cross entropy. A dropout of 0.25 is added to
the concatenation layer. The trained model obtains
85% accuracy on the validation data.

3 Private Text Classification

Additive Secret Sharing MPC Scheme. Proto-
cols for Secure Multiparty Computation (MPC)
enable a set of parties to jointly compute the output
of a function over the private inputs of each party,
without requiring any of the parties to disclose their
own private inputs (Evans et al., 2018). MPC is
concerned with the protocol execution coming un-
der attack by an adversary which may corrupt one
or more of the parties. In this paper we assume
a set-up with two parties (Alice and Bob), one of
which may be corrupted by an honest-but-curious
adversary. “Honest-but-curious” means that a cor-
rupted party still follows the instructions of the
protocol, but the adversary attempts to learn private
information from the internal state of the corrupted
party and the messages that it receives. MPC pro-
tocols that are secure against honest-but-curious
adversaries prevent such leakage of information.

In the additive secret sharing MPC scheme that
we use, all computations are done on integers mod-
ulo q, i.e., in a ring Zq = {0, 1, . . . , q − 1}. To
map real numbers, such as the trained CNN model
parameters, into this ring, we use a fixed point rep-
resentation with 16 bits of precision for the man-
tissa. A value x is secret-shared over Zq between
parties Alice and Bob by picking xA, xB ∈ Zq

uniformly at random subject to the constraint that
x = xA + xB mod q, and then revealing xA to
Alice and xB to Bob. We denote this secret sharing
by [[x]], which can be thought of as a shorthand for
(xA, xB).

Secret-sharing based MPC works by first having
the parties split their respective data in secret shares
and send some of these shares to each other. To any
individual party, their shares of x look like random
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noise. Only when all of the shares are combined
together is the true value of x revealed.

When Alice and Bob have secret-shared num-
bers [[x]] and [[y]], they can straightforwardly com-
pute [[x+ y]] by adding their own shares. To com-
pute [[x · y]], Alice and Bob run a secure multipli-
cation protocol πmul that requires communication
between the parties, using a well-known technique
with Beaver Triples (Beaver, 1997). These triples
can be generated by a trusted initializer (TI) that
distributes correlated randomness to Alice and Bob
and otherwise does not participate in the computa-
tions at all. This is the technique used in CrypTen
(Knott et al., 2020) and adopted in the experiments
in Sec. 4. Such a TI can be thought of as a third
party, next to Alice and Bob, making the setting
used in our experiments effectively a three-party
configuration. In case a TI is not available or desir-
able, the required triples can be pre-computed by
Alice and Bob in an online phase using an MPC pro-
tocol to emulate the TI (Damgård et al., 2012); this
method is currently not yet supported in CrypTen.

Building on the cryptographic primitives for ad-
dition and multiplication, MPC protocols for other
operations have been developed in the literature,
many of which we use in turn to build our protocol
πTEXT. Of note is the secure comparison protocol
πcomp, which works by computing the difference of
two secret-shared numbers [[x]] and [[y]] and extract-
ing the most significant bit, effectively returning
[[1]] if x < y, and [[0]] otherwise (more details in
(Knott et al., 2020)).

MPC Protocol πTEXT. At the start of the proto-
col for private text classification, Alice has a CNN
model with trained model parameters F , and Bob
has an embedding vector D of his text obtained
after preprocessing.

• Bob secret-shares vector D with Alice
• Alice secret-shares CNN parameters F with Bob
• Alice and Bob jointly perform computations on

the secret sharings [[F ]] and [[D]], following the
computational graph of [[F ]] on [[D]]. To this end,
for each operation on each layer of the CNN,
Alice and Bob execute the appropriate MPC sub-
protocols, which include:
– πConv1D: This operation reduces to the mul-

tiplication of secret-shared filter weights with
secret-shared input values, and is thus trivially
implemented with πmul.

– πMaxPool1D: The MaxPool operation is per-
formed through pairwise comparisons with

πcomp of secret-shared values in a tournament
style to determine secret shares of the maxi-
mum value for each window.

– πReLU : Alice and Bob compute the ReLU acti-
vation function of a secret-shared number [[x]]
by computing πmult ([[x]], πcomp ([[x]], 0)).

– πDense: Application of dense layers reduces to
multiplication of matrices with secret-shared
numbers, which is an extension of πmul.

– πSigmoid: Alice and Bob compute the sigmoid
activation function of a secret-shared num-
ber [[x]] using the approximation described by
(Knott et al., 2020).

• Alice and Bob execute πcomp on the secret-
shared output of the CNN to obtain secret shares
of the class label.

4 Results

We implemented πTEXT in CrypTen, taking advan-
tage of CrypTen’s architecture, which allows to
overwrite Torch functions with MPC protocols. All
subprotocols needed for πTEXT already existed in
the branch crypten-v0.1, barring the πConv1D and
πMaxPool1D protocols. We ported πConv1D from
the master branch of CrypTen, and we constructed
πMaxPool1D ourselves.

In our tests, using πSigmoid to approximate the
Sigmoid function made no statistically significant
impact on the accuracies. On a test set contain-
ing 20,417 instances, using πSigmoid resulted in
17,351 correct classifications, whereas its plaintext
counterpart provided 17,350 correct classifications,
i.e. an accuracy of 85% across the line. In other
words, our use of MPC does not cause accuracy
loss. The code we used to run our tests is located on
our fork of the CrypTen repository,2 on the branch
“crypten-v0.1”.

For our tests, we set up three VMs on Azure,
namely one for Alice, one for Bob, and one for the
TI. The VMs are Standard L16s_v2, with 16 vC-
PUs, 128 GiB memory, and an expected network
bandwidth of 6400 Mbps. In our experiments, de-
spite having access to large amounts of memory,
the parties never used more than 5 GiB at a time.

The TI never sees Alice’s or Bob’s data. Since
the TI’s activities are independent of the data that
is used as input for the MPC protocols, MPC proto-
cols can be separated in an off-line phase – during
which the TI generates correlated randomness and
distributes it to Alice and Bob – and an online

2https://github.com/SamuelDAdams/
CrypTen
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L16s: Private Text Classifier Runtimes
# Instances Sequential (sec) Batched (sec)

200 151 21
400 296 44
600 445 65
800 596 88

1000 734 110

Table 2: Runtime results (in seconds) to privately clas-
sify “#Instances” using πTEXT on Standard L16s_v2
VMs. “Sequential” denotes the protocol is run one in-
stance at a time, and “Batched” shows the runtime to
classify all instances in a single batch. All results are
an average over 5 runs.

phase – during which Alice and Bob execute the
MPC protocols. In CrypTen this separation is not
made, hence the results in Tab. 2 include both the
offline and the online phase.

Tab. 2 shows the runtime results of πTEXT when
privately classifying various amounts of instances
(texts). On average, it takes roughly 0.74 sec-
onds to classify a single instance using the sequen-
tial method, and 0.11 seconds using the batching
method. Batching the classification task outper-
forms classifying data sequentially by a wide mar-
gin. This is because when batching, the parties
can also batch communication rounds during the
protocol execution, reducing the communication
complexity. The time it takes to classify text is
reasonably low, and would lend itself to real life
applications, showing that MPC-based private text
classification with deep learning models is feasible
in practice.

5 Conclusion and Future Work

We have presented and evaluated the first applica-
tion of MPC-based privacy-preserving text classi-
fication with CNNs. Our solution involves model
owner Alice, who has a multi-channel CNN for text
classification, and text owner Bob who transforms
his text into an embedding vector using a publicly
available BERT model. Next Alice and Bob secret
share their inputs and run an MPC protocol to label
Bob’s text with Alice’s model in a provably privacy-
preserving manner. Our protocol takes ∼ 0.74 sec
to classify a text when run in sequential mode, and
∼ 0.11 sec when run in batch mode on Standard
L16s_v2 Azure virtual machines with an expected
bandwidth of 6400 Mbps. These runtimes are inde-
pendent of the length of the text, as the embedding
vector has a fixed length.

Our work serves as a baseline for MPC-based
text classification with deep learning that can be
improved upon in many ways. From an NLP point
of view, we have assumed that Bob can preprocess
his text based on public knowledge, in particular
with a sentence transformer model that is in no way
dependent on Alice’s training data or model param-
eters. While many text preprocessing algorithms
are standard and publicly available to all parties
(e.g. for stemming, tokenization, etc.), others may
involve proprietary information. Pre-trained ver-
sions of language representation models that are
publicly available can for instance be fine-tuned
by model builders (such as Alice) on task specific
data, leading to proprietary word or sentence em-
bedding models that the model owners would not
want to disclose. The development of effective and
efficient MPC protocols for converting raw text
into embedding vectors with state-of-the-art trans-
former architectures is an open problem.

From a security perspective, there exist a variety
of MPC schemes beyond the one we considered in
this paper, designed for different numbers of par-
ties and offering various level of security that corre-
spond to different threat models and come with dif-
ferent computational costs. Regarding threat mod-
els, besides honest-but-curious adversaries, there
exist MPC schemes that protect against malicious
adversaries that corrupt parties to deviate from the
protocol instructions. Regarding the number of
parties, some of the most efficient MPC schemes
have been developed for three computing servers,
out of which at most one is corrupted (i.e. honest
majority) by an honest-but-curious or a malicious
adversary. While text classification is inherently a
(dishonest majority) two-party computation prob-
lem between the model owner Alice and the text
owner Bob, MLaaS (machine learning as a service)
set-ups in which Alice and Bob secret share with,
and outsource the computations to, three servers in
the cloud are growing in popularity in the privacy-
preserving ML literature because of their efficiency
(Dalskov et al., 2020; Kumar et al., 2020; Riazi
et al., 2018; Wagh et al., 2019; Patra and Suresh,
2020). The use of these different MPC schemes for
privacy-preserving text classification is an interest-
ing direction for future work.
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