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Abstract

Recently, several studies have proposed pre-
trained encoder-decoder models using mono-
lingual data, such as BART, which can im-
prove the accuracy of seq2seq tasks via fine-
tuning with task-specific data. However, the
effectiveness of pre-training using monolingual
data requires further verification, as previous
experiments on machine translation have fo-
cused on specific languages with overlapping
vocabularies and particular translation direc-
tions. Additionally, we hypothesize that the
effects of pre-trained models differ depending
on the syntactic similarity between languages
for pre-training and fine-tuning, as in transfer
learning.
To this end, we analyze BART fine-tuned with
languages exhibiting different syntactic prox-
imities to the source language in terms of the
translation accuracy and network representa-
tions. Our experiments show that (1) BART
realizes consistent improvements regardless of
language pairs and translation directions. Con-
trary to our hypothesis, there is no significant
difference in the translation accuracy based on
the syntactic similarity. However, when syntac-
tically similar, BART achieves approximately
twice the accuracy of our baseline model in
the initial epoch. Furthermore, we demon-
strate that (2) syntactic similarity correlates
with closeness of the encoder representations;
in a syntactically similar language pair, the rep-
resentations of the encoder do not change after
fine-tuning. The code used in our experiments
has been published.1

1https://github.com/hwichan0720/
Monolingual-Pretrain-for-NMT

1 Introduction

Neural machine translation (NMT) can realize high
translation accuracy via training on large-scale bilin-
gual data. However, the lack of bilingual data af-
fects the translation accuracy (Koehn and Knowles,
2017). Previous studies have proposed various meth-
ods such as back-translation (Sennrich et al., 2016)
and transfer learning (Zoph et al., 2016) to address
this problem.

Recently, several studies proposed pre-trained
encoder-decoder models using monolingual data;
certain models were applied to the NMT task to
improve translation accuracy. For example, Lewis
et al. (2020) proposed BART, which is pre-trained
with monolingual data of the target language (En-
glish). It was demonstrated that BART could im-
prove Romanian→English translation. We believe
that there is room for further validation. For exam-
ple, the languages used in their experiments have
subword overlap; however, other languages (without
subword overlap) were not investigated. Additionally,
the translation direction where the source language
matches the language of the pre-trained model was
not investigated.

In this study, we examine the effects of BART on
NMT using different experimental settings from the
previous study (Lewis et al., 2020). We use source
or target languages that have no subword overlap
with the language used pre-train BART, and experi-
ment with both translation directions. In addition, we
hypothesize that BART is more effective when the
language pair for fine-tuning is syntactically similar
with the pre-training language, as in transfer learn-
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Language Character Word Order

English Latin alphabet SVO
French Latin alphabet SVO

Japanese Hiragana/Kanji etc. SOV
Korean Hangul SOV

Table 1: The languages and their features. In addition,
English and French are fusional languages, whereas
Japanese and Korean are agglutinative languages.

ing (Zoph et al., 2016; Dabre et al., 2017; Murthy et
al., 2019). Therefore, we analyze BART fine-tuned
using language pairs with varying syntactic proximi-
ties. We observe the following aspects of translation
accuracy and network representations.

• BART realizes consistent improvements regard-
less of the language pairs and translation direc-
tions used. Contrary to our hypothesis, there is
no significant difference in the translation accu-
racy based on the level of syntactic similarity.
However, when languages are syntactically sim-
ilar, BART can yield approximately twice the
accuracy of our baseline model in the initial
epoch.

• The representations of the encoder remain un-
changed after fine-tuning when high syntactic
similarity prevails between pre-training and fine-
tuning languages; however, the representations
of the decoder change regardless of syntactic
similarity.

2 Related Work

When applying pre-trained encoder models like
BERT (Devlin et al., 2019) to the NMT task, sophis-
ticated techniques, such as two-stage optimization
(Imamura and Sumita, 2019) or a fusion method as
input embedding (Zhu et al., 2020), are required to
improve the accuracy of the models. In contrast,
pre-trained encoder-decoder models such as MASS
(Song et al., 2019) can improve the translation accu-
racy via fine-tuning with bilingual data. MASS uses
monolingual data from both the source and target
languages, unlike BART.

Hyperparameter Value

Embedding dimension 768
Attention heads 12
Layers 6
Feed forward dimension 3072
Optimizer Adam
Adam betas 0.9, 0.98
Learning rate 0.0005
Dropout 0.1
Label smoothing 0.1
Max tokens 4,098

Table 2: Hyperparameters.

Transfer learning is very efficient in improving the
quality of low-resource-language translations. Previ-
ous studies have demonstrated that transfer learning
works most efficiently when the source languages of
the parent and child models are linguistically simi-
lar (Zoph et al., 2016; Dabre et al., 2017; Nguyen
and Chiang, 2017). Murthy et al. (2019) reported
that a divergent word order between the parent and
child model languages limits the benefits of transfer
learning.

There are several methods to calculate the neural
networks’ similarity based on canonical correlation
analysis (Raghu et al., 2017; Morcos et al., 2018).
However, Kornblith et al. (2019) demonstrated these
methods can not measure meaningful similarities if
the data points are fewer than the dimension of the
representations. Therefore, they proposed a novel
method called centered kernel alignment (CKA),
which does not suffer from this limitation. Recently,
many studies have conducted analyses of neural net-
works using the CKA (Wu et al., 2020; Vulić et al.,
2020; Conneau et al., 2020; Muller et al., 2021). In
this study, we measure the similarity between before
and after fine-tuning BART using the CKA.

3 Experimental Settings

We use the English BART base (EnBART)2 and
Japanese BART base v1.1 (JaBART)3 as the non-

2https://github.com/pytorch/fairseq/
tree/master/examples/bart

3https://github.com/utanaka2000/fairseq/
tree/japanese_bart_pretrained_model
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Ko→Ja Ja→Ko En→Ja Ja→En
dev test dev test dev test dev test

Baseline 67.40±.08 71.51±.16 67.81±.02 71.10±.14 38.70±.08 42.53±.15 37.63±.11 40.87±.23
JaBART 68.75±.10 72.76±.14 68.56±.07 72.11±.06 39.14±.07 43.72±.05 38.39±.06 41.94±.08
∆ +1.35 +1.25 +0.75 +1.01 +0.44 +1.19 +0.76 +1.07

Fr→En En→Fr Ja→En En→Ja
dev test dev test dev test dev test

Baseline 35.42±.30 35.26±.11 34.63±.11 34.81±.15 38.13±.24 40.49±.03 38.31±.26 42.65±.18
EnBART 36.65±.29 36.27±.33 35.91±.13 36.12±.13 38.88±.11 42.86±.09 39.68±.15 44.41±.13
∆ +1.22 +1.01 +1.28 +1.31 +0.75 +2.37 +1.37 +1.76

Table 3: BLEU scores of each language pair of baseline and fine-tuned BART. These BLEU scores are the
averages of the three models. We indicate the best scores in bold. The ∆ scores indicate the BLEU-score
gains of the fine-tuned BART over that of the baseline model.
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Figure 1: BLEU scores of the Ko→Ja and En→Ja
models for each epoch.

English BART, which was trained using Japanese
Wikipedia sentences (18M sentences). In this study,
we use Japanese, Korean, and English, as these lan-
guages do not exhibit subword overlap; Korean (Ko)
and French (Fr) are used as the syntactically similar
languages to Japanese (Ja) (Shibatani, 1990; Jeong
et al., 2007) and English (En), respectively. Table 1
presents the languages used in our experiments and
their linguistic features.

We fine-tune the BART for each language4 with
Ko⇆Ja, En⇆Ja, and Fr⇆En as the language pairs

4In this study, we do not use an additional encoder, unlike
Lewis et al. (2020). Instead, we add randomly initialized embed-
dings for each unknown subword in JaBART to both the encoder
and decoder. We share the embeddings for characters that match
across languages, such as numbers.
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Figure 2: BLEU scores of the Fr→En and Ja→En
models for each epoch.

and train baseline models consisting of the same ar-
chitecture as that of BART. We use the same hyper-
parameters presented in Table 2 for both fine-tuning
BART and training the baseline model. We fine-tune
and train the models using the fairseq implementation
(Ott et al., 2019).

For the Ko⇆Ja and En⇆Ja language pairs, we
use Japan Patent Office (JPO) Corpus 2.05. For the
Fr⇆En language pair, we use 1M parallel sentences,
which are sampled randomly from the Europarl Par-
allel Corpus (Koehn, 2005) such that they match
the size of the training data obtained from the JPO
corpus. For Japanese pre-processing, we use the

5http://lotus.kuee.kyoto-u.ac.jp/WAT/
patent
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Figure 3: The average lengths of the source sentences for which the BLEU scores of each BART model are
higher (top) and lower (bottom) than the baseline in the initial epoch.

JaBART tokenizer. For Korean, English6 and French,
we tokenize sentences using MeCab-ko7 and Moses
scripts8. Next, we apply SentencePiece (Kudo and
Richardson, 2018) with a vocabulary size of 32k.

4 Discussions

4.1 Translation Accuracy

Effect of language pair and translation directions.
Table 3 presents the BLEU scores of the evalua-
tion data and the gains of the fine-tuned BART over
the baseline model. The fine-tuned BART models
achieve consistent improvements for all language
pairs and directions. In particular, the BLEU scores
of fine-tuned JaBART improve by approximately
0.56–1.22 in En⇆Ja translations, and 0.74–1.35 in
Ko⇆Ja translations, compared to the scores of the
baseline model.

Traning process. We also investigate the training
process for each epoch. Figures 1 and 2 present the
BLEU scores on dev data of the En→Ja, Ko→Ja
and Ja→En, Fr→En models for each epoch. In the
En→Ja and Ja→En models (dotted line), no signif-
icant differences in the improvement of the BLEU
scores per epoch are observed between the baseline
and fine-tuned BART. However, in the Ko→Ja and

6When we fine-tune the EnBART and train the baseline mod-
els for comparison with the fine-tuned EnBART models, we use
the EnBART tokenizer.

7https://bitbucket.org/eunjeon/mecab-ko
8https://github.com/moses-smt/

mosesdecoder/tree/RELEASE-4.0

Ko→Ja Ja→Ko
JaBART Baseline JaBART Baseline

Long 58.18 19.04 59.22 21.61
Short 57.44 43.50 56.97 46.51
∆ +0.74 -24.46 +2.25 -24.90

Fr→En En→Fr
EnBART Baseline EnBART Baseline

Long 35.32 11.19 29.03 7.80
Short 40.58 17.71 31.81 15.30
∆ -5.26 -6.52 -2.77 -7.49

Table 4: BLEU scores of the subsets of long and short
sentences. The ∆ scores indicate the differences
between the long and short subsets.

Fr→En models (solid lines), there are significant dif-
ferences in the BLEU scores of the initial epochs
between the baseline and fine-tuned BART. Addi-
tionally, in the Fr→En model, the EnBART already
achieves approximately equal BLEU scores with the
final epoch in the initial epoch. Notably, the same
training-process trend is observed in the opposite
direction.

Sentence length. Next, we examine the types of
sentences translated in a better manner by the BART
model than the baseline model in the initial epoch.
We measure the sentence-level BLEU scores on dev
data in the first epoch and report the differences in
scores between the fine-tuned BART and baseline
models. Subsequently, we sort these values in de-
scending order and calculate the average sentence

https://bitbucket.org/eunjeon/mecab-ko
https://github.com/moses-smt/mosesdecoder/tree/RELEASE-4.0
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Length BLEU

Reference ・・・に設けられたベース１０ ・・・下部リンク２ｄが設けられる。 67 -
Source ・・・에설치된베이스 ( 10 ) ・・・하부링크 ( 2 d )가설치된다 . 86 -
English ・・・ the base 10 shown on ・・・ the lower link 2d are also provided on ・・・ 52 -
Baseline ・・・に設置されたベースベース１０ａ ・・・を示すが、右側（図２ａ）。 65 13.44
JaBART ・・・に設けられたベース１０ ・・・下部リンク２ｄが設けられる。 52 90.73

Reference 燃料タンクの説明図である。 7 -
Source 도 15는연료탱크의설명도이다 . 10 -
English Figure 15 shows an illustration of the fuel tank . 10 -
Baseline 燃料タンクの説明図である。 7 100.00
JaBART 図１５は燃料タンクの説明図である。 10 63.89

Table 5: Examples of Ko→Ja translations in the first epoch and the corresponding English translations.

Length BLEU

Reference 図２に方向決定部１３の機能ブロック図を示す。 14 -
Source FIG. 2 shows a function block diagram of the direction determination portion 13 . 14 -
Baseline 図２は、ブロック１３のブロック１３の機能機能を示す図である。 17 13.67
JaBART 図２は、方向決定部１３の機能ブロック図である。 14 57.57

Reference 次に、クリップ１０の構成について説明する。 11 -
Source Next, the configuration of the clip 10 will be described . 11 -
Baseline 次に、クリップ１０の構成について説明する。 11 100.00
JaBART これにより、ヘッド１０の構成が説明される。 10 14.21

Table 6: Examples of En→Ja translations in the first epoch.

length of the top and bottom 300 source sentences.
Figure 3 presents the average top and bottom sen-
tence lengths for each model. This figure reveals
significant differences between the length of top and
bottom sentence lengths in the translations of syn-
tactic similar language pairs (Ko→Ja, Ja→Ko and
Fr→En, En→Fr) with each BART’s language com-
pared to other languages. These results indicate that
the fine-tuned BART models are good at translating
long sentences even in the first epoch. Tables 5 and 6
present the top (upper) and bottom (lower) translation
examples of the Ko→Ja and En→Ja language pairs
in the JaBART setting. Notably, there is a translation
error in the reference within the lower example in
Table 5. The words “도 15 (Figure 15)” in the source
sentence should be translated to “図 15” in the refer-
ence sentence; notably, these words are not translated.
Therefore, the baseline BLEU score is higher than
that of JaBART; however, JaBART translates ”도 15”
more adequately.

Because there is a possibility that fine-tuned BART
model can not translate well the short sentences only

the results of Figure 3, we compare the BLEU scores
between the subsets of short and long sentences. We
sort dev data in ascending source-sentence-length
order and extract the longest and shortest subsets of
the 300 sentences. We measure their BLEU scores
of the fine-tuned BART and baseline. Table 4 lists
the BLEU scores of each model. This table reveals
the existence of minimal BLEU-score differences
between subsets in the JaBART and EnBART models.
Therefore, it is not that the fine-tuned BART cannot
translate short sentences; it simply the baseline model
cannot translate long sentences adequately.

Summary. BART achieves consistent improve-
ments regardless of language pairs and translation
directions9. However, syntactic similarity does not
affect the enhancement of final BLEU scores.

The JaBART and EnBART models work better

9Aji et al. (2020) demonstrated that the model pre-trained for
a copy sequence task using monolingual data of the target lan-
guage can improve translation accuracy of several language pairs.
Our experiments indicate the same trend, and also demonstrate
the effectiveness in both translation directions.
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Figure 4: Encoder and decoder’s CKA similarity between JaBART and each fine-tuned model.
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Figure 5: Encoder and decoder’s CKA similarity between EnBART and each fine-tuned model.

with syntactically similar languages (Korean and
French) rather than syntactically dissimilar languages
(English and Japanese) as the initial network parame-
ters. We observe that the fine-tuned BART is better at
translating long sentences compared to the baseline
model for syntactically similar pairs(Ko→Ja, Ja→Ko
and Fr→En, En→Fr) in the initial epoch.

4.2 Network Representation

As described in the previous section, we observed
that the fine-tuned BART achieved high translation
accuracy even in the first epoch with syntactically
similar language pairs. Additionally, the BLEU-score
gains of the final model over the initial model are

approximately 10 points and 3 points, in JaBART and
EnBART settings, respectively. From these results,
we hypothesize that the layer representations do not
change significantly before and after fine-tuning on
fine-tuning with a syntactically similar language. To
confirm our hypothesis, we calculated the similarities
between the networks before and after fine-tuning
using centered kernel alignment (CKA) (Kornblith
et al., 2019). The linear CKA similarity measure is
defined as follows:

CKA(X,Y ) =
∥Y TX∥2F

(∥XTX∥F∥Y TY ∥F)



where X and Y correspond respectively to the ma-
trices of the d-dimensional mean pooled subword
representations at the layer of the n parallel source
and target sentences. We randomly sampled 100
sentences from the dev data to calculate the CKA
similarity.

Encoder representation. The heat maps in Fig-
ures 4a and 5a reveal the CKA similarities of each
layer on the encoder side before and after fine-tuning
JaBART and EnBART.

When fine-tuning the Ja→Ko, Ja→En models in
Figure 4a and the En→Fr, En→Ja models in Figure
5a, the CKA similarities are very high, indicating
that the layer representations are approximately the
same. Contrary to our hypothesis, the representations
of the encoder side do not change not only in the
Ja→Ko and En→Fr models, but also in the Ja→En
and En→Ja models, in the JaBART and EnBART
settings, respectively.

When fine-tuning the En→Ja model in Figure 4a
and the Ja→En model in Figure 5a, the CKA similar-
ities are lower than other translation directions.This
indicates that the network representations change af-
ter fine-tuning for the language pair with the most
dissimilar source and target languages. Furthermore,
the CKA similarities with the fine-tuned Ko→Ja and
Fr→En models are very high, in the JaBART and
EnBART settings, respectively. Specifically, the sim-
ilarity scores exceed 0.88 and 0.76 in each setting.
This can be attributed to the fact that Korean and
French are syntactically similar to Japanese and En-
glish, respectively. This result is consistent with our
hypothesis.

Decoder representation. Figures 4b and 5b depict
the CKA similarity of each layer of the decoder side
of JaBART and EnBART. Figure 4b reveals that the
CKA similarities with the fine-tuned Ja⇆En and
Ja⇆Ko models are lower than those on the encoder
side. Furthermore, Figure 5b reveals that the simi-
larities with the fine-tuned En⇆Fr models are lower
than the corresponding similarities on the encoder
side.

We consider that the change in representations of
the decoder side, especially when the target language
is the same as the language of each BART, is caused
by the information input received in different lan-
guages by the cross-attention layer from the encoder

side. Therefore, we additionally calculate the similar-
ity using the representations up to the self-attention
layer, and illustrate the resulting heat maps in Fig-
ures 4c and 5c. In the final layer of Figure 4c, the
similarity scores for the representation up to the self-
attention layer are higher than the scores indicated in
Figure 4b. However, there are almost no differences
in the other layers and the layers of Figure 5c.

Summary. The representations of the encoder side
do not change when the source language is the same
as or syntactically similar to the target language; how-
ever, the representations of the decoder side change
regardless of the target language.

5 Conclusions

In this study, we analyzed the effect of BART on
NMT in detail. Our experiments showed that BART
realizes consistent improvements regardless of lan-
guage pairs with no subword overlapping, and irre-
spective of translation directions. Furthermore, we
observed that BART was adequate as an initial net-
work representation and the representations of the
encoder do not change after fine-tuning when the lan-
guages were syntactically similar. Additionally, our
experimental results revealed that the representations
of the decoder change after fine-tuning, regardless of
the target language.

We believe that the difference between the pre-
training and fine-tuning tasks causes the change in
decoder representations. Guu et al. (2020) reported
that intermediate pre-training, similar to a down-
stream task before fine-tuning, can improve final
performance. Therefore, in the future, we will at-
tempt to perform an intermediate pre-training similar
to NMT and investigate what types of pre-training
methods using monolingual data are suited for ma-
chine translation tasks.
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