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Abstract

Most available semantic parsing datasets, com-
prising of pairs of natural utterances and log-
ical forms, were collected solely for the pur-
pose of training and evaluation of natural lan-
guage understanding systems. As a result, they
do not contain any of the richness and vari-
ety of natural-occurring utterances, where hu-
mans ask about data they need or are curi-
ous about. In this work, we release SEDE,
a dataset with 12,023 pairs of utterances and
SQL queries collected from real usage on the
Stack Exchange website. We show that these
pairs contain a variety of real-world challenges
which were rarely reflected so far in any other
semantic parsing dataset, propose an evalu-
ation metric based on comparison of partial
query clauses that is more suitable for real-
world queries, and conduct experiments with
strong baselines, showing a large gap between
the performance on SEDE compared to other
common datasets.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage into logical forms that can be executed on
a database or knowledge graph, has been studied
mostly on academic datasets, where both the ut-
terances and the queries were written as part of a
dataset collection process (Hemphill et al., 1990;
Zelle and Mooney, 1996; Yu et al., 2018), and not
in a natural process where users ask questions about
data they need or are curious about. As a result,
these datasets generally do not contain any of the
richness and diversity of natural-occurring utter-
ances, even if the data on which the questions are
asked about is collected from a real-world source.

Recent methods (Wang et al., 2020a; Herzig
et al., 2020; Yu et al., 2021) have significantly im-
proved results on such academic datasets: state-of-
the-art models have yield impressive results of over

Title: Questions which attract bad answers
Description: posts which have attracted significantly more
controversial or bad answers than good ones
SELECT p.Id as [Post Link], p.Score from (
SELECT p.ParentId, count(*) as ContACnt from (
SELECT PostId,
up = sum(case when VoteTypeId = 2 then 1
else 0 end),

down = sum(case when VoteTypeId = 3 then 1
else 0 end)

FROM Votes v join Posts p on p.Id = v.PostId
WHERE VoteTypeId in (2,3) and PostTypeId = 2
group by PostId

) as ContA
JOIN posts p on ContA.PostId = p.Id
WHERE down > (up / ##UVDVRatio:int##) and
(down + up) > ##MinVotes:int##
GROUP BY p.ParentId

) as ContQ
JOIN posts p on ContQ.ParentId = p.Id
WHERE ContQ.ContACnt > (p.AnswerCount / 2) and
p.AnswerCount > 1
ORDER BY Score desc

Table 1: Example from SEDE for a title and descrip-
tion given by the user, together with the SQL query that
the user has written.

70%, for example, on Spider (Yu et al., 2018) in
a challenging cross-domain setup, where models
are trained and tested on different domains, and
up to 80%-90% (Nguyen et al., 2021; Zhao and
Huang, 2014) on single-domain datasets such as
ATIS (Hemphill et al., 1990) and GeoQuery (Zelle
and Mooney, 1996). While the cross-domain, zero-
shot setup introduces many generalization chal-
lenges such as non-explicit mentioning of column
names and domain-specific phrases (Suhr et al.,
2020; Deng et al., 2020), we argue that even in the
easier single-domain setup, it is still unclear how
well state-of-the-art models generalize to the chal-
lenges that arise from real-world utterances and
queries.

In this work, we take a significant step towards
evaluation of Text-to-SQL models in a real-world
setting, by releasing SEDE: a dataset comprised of
12,023 complex and diverse SQL queries and their
natural language titles and descriptions, written by
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real users of the Stack Exchange Data Explorer out
of a natural interaction.

In Table 1 we show an example for a SQL query
from SEDE, with its title and description. It intro-
duces several challenges that have not been com-
monly addressed in currently available datasets:
comparison between different subsets, complex us-
age of 2 nested sub-queries and an under-specified
question, which doesn’t state what “significantly
more” means (solved in this case with an input
parameter, ##UVDVRation##).

Compared to other Text-to-SQL datasets, we
show that SEDE contains at least 10 times more
SQL queries templates (queries after canonization
and anonymization of values) than other datasets,
and has the most diverse set of utterances and SQL
queries (in terms of 3-grams) out of all single-
domain datasets. We manually analyze a sample
of examples from the dataset and list the intro-
duced challenges, such as under-specification, us-
age of parameters in queries, dates manipulation
and more.

We also address the challenging problem of eval-
uating naturally-occurring Text-to-SQL datasets.
In academic datasets, standard evaluation metrics
such as denotation accuracy and exact compari-
son of SQL components can often be used with
relative success, but we found this to be a greater
challenge in SEDE. Denotation accuracy is inaccu-
rate for under-specified utterances, where any sin-
gle clause not mentioned in the question could en-
tirely change execution results, while exact match
comparison of SQL components (e.g. comparing
all SELECT, WHERE, GROUP BY and ORDER BY
clauses) are often too strict when queries are highly
complex. While solving these issues still remains
an open problem, to at least partially address them
we propose to measure a softer version of the ex-
act match metric, PCM-F1, based on partially ex-
tracted queries components, and show that this met-
ric gives a better indication of models’ performance
than common metrics, which yield a score that is
close to 0.

Finally, we test strong baselines on our dataset,
and show that even models that get strong results
on Spider’s development set (63.2% Exact-Match,
86.3% PCM-F1), perform poorly on our dataset,
with a PCM-F1 value of 50.6%. We hope that
the unique and challenging properties exhibited in
SEDE1 will pave a path for future work on gen-

1Our dataset and code to run all experiments and metrics is

eralization of Text-to-SQL models in real world
setups.

2 Background

In the past decades, a broad selection of datasets
have been used as benchmarks for semantic pars-
ing: ATIS (Hemphill et al., 1990), GeoQuery
(Zelle and Mooney, 1996), Restaurants (Tang and
Mooney, 2000), Scholar (Iyer et al., 2017), Aca-
demic (Li and Jagadish, 2014), Yelp and IMDB
(Yaghmazadeh et al., 2017), Advising (Finegan-
Dollak et al., 2018), WikiSQL (Zhong et al., 2017),
Spider (Yu et al., 2018), WikiTableQuestions (Pasu-
pat and Liang, 2015), Overnight (Wang et al., 2015)
and more. However, the utterances and queries in
all of these academic datasets, to the best of our
knowledge, were collected explicitly for the pur-
pose of evaluating semantic parsing models, usu-
ally with the help of crowd-sourcing (even though
in most cases questions are asked about real data).
As such, these academic datasets were generated in
an artificial process, which often introduces various
simplifications and artifacts which are not seen in
real-life.

Utterance-Query alignment One arising issue
with this artificial process is that utterances are of-
ten aligned to their SQL queries counterparts, such
that the columns and the required computations are
explicitly mentioned (Suhr et al., 2020; Deng et al.,
2020). In contrast, natural utterances often do not
explicitly mention these, since the schema of the
database is not necessarily known to the asking
user (for example, the question from Spider "ti-
tles of films that include ’Deleted Scenes’ in their
special feature section" might have been more nat-
urally phrased as "films with deleted scenes" in a
real-world setting).

Well-specified utterances Furthermore, the ut-
terances in academic datasets are mostly well-
specified, whereas in contrast, natural utterances
are often under-specified or ambiguous; they could
be interpreted in different ways and in turn be
mapped to different SQL queries. Consider the
example in Table 1: the definition of “bad an-
swers” is not well-defined, and in fact could be
subjective. Since under-specified utterances, by
definition, can not always be answered correctly,
any human or machine attempting to answer such a
question would have to either make an assumption

available at https://github.com/hirupert/sede.

https://github.com/hirupert/sede
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on the requirement (usually based on previously
seen examples) or ask follow-up questions in an
interactive setting (Yao et al., 2019; Elgohary et al.,
2020, 2021).

Scope Last, in academic datasets the utterances
are usually written by crowd-sourced workers,
asked to provide utterances on various data do-
mains which they do not necessarily need or are
interested with. As a result, the utterances and
queries are often not very diverse or realistic, are
inherently limited in scope, and might not reflect
real-world utterances.

3 Stack Exchange Data Explorer

To introduce a realistic Text-to-SQL benchmark,
we gather SQL queries together with their titles and
descriptions from a naturally occurring dataset: the
Stack Exchange Data Explorer. Stack Exchange is
an online question & answers community, with
over 3 million questions asked. The Data Ex-
plorer2 allows any user to query the database of
Stack Exchange with T-SQL (a SQL variant) to
answer any question they are curious about. The
database schema3 is spread across 29 tables and
211 columns. Common utterance topics are pub-
lished posts, comments, votes, tags, awards, etc.

Any query that users run in the data explorer is
logged, and users are able to save the queries with
a title and description for future use by the public.
All of these logs are available online, and Stack
Exchange have agreed to release these queries, to-
gether with their title, description and other meta-
data. We publish our clean version of this log,
which contains 12,023 samples, of which a sub-
set of 1,714 examples is verified by humans to be
correct and is used for validation and test. In this
section, we explain the cleaning process, analyze
the characteristics of the dataset and compare it to
other semantic parsing datasets.

3.1 Data cleaning
The raw aggregated log contains over 1.6 million
queries, however in its raw form many of the rows
are duplicated or contain unusable queries or titles.
The reason for this large difference between the
original data size and the cleaned version is that
any time that the author of the query executes it,
an entry is saved to the log. This introduces two

2Publicly available at https://data.
stackexchange.com/

3https://tinyurl.com/sedeschema

issues: First, many of the queries are not complete,
since they were executed before writing the entire
query (these incomplete queries are usually valid
and executable, but are missing some expressions
with respect to the given title and description). Sec-
ond, after completing the writing of a correct query,
users often keep changing and executing the query,
but they do not update the title and description
accordingly.

To alleviate these issues, we write rule-based
filters that remove bad queries/descriptions pairs
with high precision. For example, we filter out
examples with numbers in the description, if these
numbers do not appear in the query (refer to the pre-
processing script in the repository for the complete
list of filters and the number of examples each
of them filter). Whenever a query has multiple
versions due to multiple executions, we take the
last executed query which passed all filters. After
this filtering step, we are left with 12,309 examples.

Using these filters cleans most of the noise, but
not all of it. To complete the cleaning process,
we manually go over the examples in the vali-
dation and test sets, and either filter-out wrong
examples or perform minimal changes to either
the utterances or the queries (for example, fix a
wrong textual value) to ensure that models are eval-
uated with correct data. Out of the 2,000 exam-
ples that we have evaluated, we have kept 1,024
and fixed 6904, leading to a total of 1,714 vali-
dated examples which we use for validation and
test. While we do not perform verification on
the training set, the verification procedure on the
validation set allows us to estimate that most of
the queries (85.7%) are either entirely accurate or
need just a minimal change to be entirely accu-
rate. For example, when the utterance is ”users
in Brazil” while the matching query contains the
expression: WHERE users.location like
%russia% we either change the utterance to
”users in russia” or change the expression to WHERE
users.location like %Brazil%. The fi-
nal number of all training, validation and test ex-
amples is 12,023.

3.2 Dataset Characteristics

In this sub-section, we quantify and analyze the
introduced challenges in SEDE, compared to other
commonly used semantic parsing datasets.

First, we manually analyze a sample of 100 ex-

4We publish both the original and the fixed examples

https://data.stackexchange.com/
https://data.stackexchange.com/
https://tinyurl.com/sedeschema
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Category Dataset Example test cases

SEDE Spider ATIS Title SQL query

Under specification and Hid-
den assumptions 87 14 15

User List: Highest downvotes per
day ratio with minimum down-
votes

WHERE id <> -1

Parameters 40 0 0 Rollbacks by a certain user WHERE UserId = @UserId

Window functions 8 0 0 List of users in the Philippines. DENSE_RANK() OVER (ORDER BY Reputation DESC)

Dates manipulation 15 0 0 Quickest new contributor answers
to new contributor questions DATEDIFF(s, Q.CreationDate, A.CreationDate)

Numerical computations
and text manipulation 35 0 0 Average Number of Views per Tag sum(p.ViewCount)/count(*)

DECLARE/WITH 11 0 0 Rollbacks by a certain user DECLARE @UserId AS int = ##UserId:int##

CASE 10 0 0 Questions and answers per year CASE WHEN Score < 0 THEN 1 ELSE 0 END

Table 2: Dataset characteristics comparison of randomly selected 100 samples among SEDE and other popular
Text-to-SQL datasets.

amples from SEDE and define 7 categories of in-
troduced challenges. To quantify how often each
of these concepts appear in SEDE in comparison
to other datasets (SPIDER and ATIS), we sample a
subset of equal size from each of the other datasets
and count the appearances of these concepts. The
analysis is shown in Table 2. Next, we describe
each of these concepts.

Under specification and Hidden assumptions
Utterances in SEDE are often under-specified, that
is, they could be interpreted in different ways. For
example, when users write “top users”, they might
refer to users with the most reputation, but also
to users that have written the most answers. Like-
wise, when users write “last 500 posts” they might
expect to get just the title field of the posts, but pos-
sibly also IDs and dates. Similarly, query authors
often add various assumptions to the queries which
are not mentioned in the questions, because they
require some knowledge of the available data. For
example, they might filter out a special “Commu-
nity” user in StackExchange, which should not be
accounted for in computation of votes. We consider
an utterance/query pair to be under-specified or
contain an hidden assumption whenever the query
contains an expression in any of the SQL clauses
(SELECT, WHERE, etc.) which is not specified in
the utterance, or where it is specified in an ambigu-
ous way.

Parameters In some cases, query authors can
address under-specified utterances by letting the
user fill in the under-specified parameters, which
are marked in SEDE with either two hashtags (#)
on each side of the parameter name, optionally in-
cluding the required value type (int, string, etc.)
and a default value (e.g. ##UserId:int##), or

using a declared variable using SQL syntax (e.g.
@UserId). For example, in Table 1, the parameter
##UVDVRatio:int## is used to indicate that
the user should fill in an integer to specify the ratio
that “significantly more” refers to. More broadly,
parameters are also helpful for re-usability, allow-
ing users unfamiliar with a query to effortlessly
change some values in it.

Window functions Window functions operate
on a set of rows and return a single value for each
row from the underlying query, thus allowing to
perform various aggregation operators without the
need for a separate aggregation query. Window
functions are often used in SEDE to report per-
centiles of a specific value in a row, by using op-
erators such as ROW_NUMBER() OVER, NTILE,
TOP(X) PERCENT, etc.

Dates manipulation Queries in SEDE some-
times contain dates arithmetic expressions. See
the example category query in Table 2: this ex-
pression calculates the difference in seconds from
the time the question was created to the time the
answer was created.

Numerical computations and text manipulation
Queries can perform any arbitrary numerical com-
putation and text manipulation. The computations
in SEDE often include multiple nested operators
including rounding and conversions to float,
for example: ROUND(CAST(Main.Total
AS FLOAT) / Meta.Total, 2) AS
’Ratio’. Queries can also contain text
manipulation such as concatenation, for ex-
ample: ’stackoverflow.com/tags/’ +
t.tagName + ’/info’ as [Link] which
builds a URL from a tag name.
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Unique Unique Average unique Utterance SQL Avg. nesting Unique Average unique
Dataset Utterances Queries Tables / uttr 3-gram 3-gram Level Templates Queries / template

Spider 8,034 4491 1.71 41.7K 25.2K 1.15 1,059 7.6
WikiSQL 80,654† 77,840† 1† 375K 209K 1† 488† 165.3†

Academic 196† 185† 3.0† <1K <1K 1.04† 92† 2.1†

Advising 4,570† 211† 3.0† 20K 11.2K 1.18† 174† 20.3†

ATIS 5,280† 947† 3.8† 13.2K 5.8K 1.39† 751† 7.0†

GeoQuery 877† 246† 1.1† 1.5K 1.4K 2.03† 98† 8.9†

IMDB 131† 89† 1.9† <1K <1K 1.01† 52† 2.5†

Restaurants 378† 23† 2.3† <1K <1K 1.17† 17† 22.2†

Scholar 817† 193† 3.2† 2.6K 2.2K 1.02† 146† 5.6†

Yelp 128† 110† 1.0† <1K <1K 1.0† 89† 1.4†

SEDE 12,023 11,767 2.14 42.6K 173K 1.28 10,664 1.1

Table 3: Comparison of different semantic parsing datasets (for Spider, analysis is performed on training and
validation sets only). † denotes that numbers are reported from Finegan-Dollak et al. (2018). Average Unique
Queries / template denotes the number of different SQL queries per template, thus lower means more diversity in
the dataset. Datasets above dashed line are cross-domain, and below it are single-domain.

DECLARE/WITH SQL queries can be written
as a procedural process, where multiple commands
are executed sequentially. Query authors can store
values in simple variables with DECLARE, but
more importantly, they can store complete “views”
of tables with the WITH command. While these
commands do not add any expressivity (that is, any
query can be written without these commands),
they allow writing more clear and concise queries
with less nested expressions.

CASE The CASE clause is similar to an if-then-
else statement of any programming language, and
is often used to either make the query more read-
able (e.g. by returning names of values instead of
integers) or to perform conditional logic. For exam-
ple, the clause in Table 2 (last row) counts negative
scores using CASE function.

Comparison In Table 2 we see that a vast ma-
jority of SEDE is not well-specified, which im-
plies that in order for Text-to-SQL models to work
robustly in a real-world setting, it should iden-
tify cases of ambiguity and possibly proceed with
follow-up questions. We see that the rest of the
concepts appear in 10% to 40% of SEDE exam-
ples, whereas these concepts are not exhibited in
any other analyzed dataset.

Next, we show a comparison of quantifiable met-
rics of popular Text-to-SQL datasets compared to
SEDE in Table 3. We see that SEDE is the largest
dataset in terms of unique utterances and queries
out of all single-domain datasets. To compare di-
versity and scope, we also measure the number
of unique 3-grams for both the utterances and the
queries, and see that SEDE has a very diverse set
of SQL 3-grams, with almost 6 times the number

of the next follower, Spider, and only 17% less
than WikiSQL, which is 6.6 bigger in terms of
queries. The number of utterance 3-gram is the
second largest, after WikiSQL. Last, we count the
number of unique SQL templates, as defined in
Finegan-Dollak et al. (2018): we anonymize the
values and group all canonized queries. We see
that SEDE has more than 10 times templates than
the follower Spider, and that the average number of
queries per template is the lowest. We also see that
SEDE is third in terms of average nesting level,
after ATIS and GeoQuery.

3.3 Limitations

We note that in order to simulate the most realistic
setting, an ideal Text-to-SQL dataset would include
questions asked by users which are completely un-
aware of the schema, which are not SQL-savy, and
that the person asking the question would be dif-
ferent than the person answering it. While this is
not the case in SEDE, we believe its setting is still
significantly more realistic that other datasets.

4 Evaluation

Semantic parsing models are usually evaluated in
two different forms: execution accuracy and logi-
cal forms accuracy. In this section, we show why
using any of these metrics is difficult with complex
queries such as those in SEDE, and propose a more
loose metric for evaluation of models.

Execution accuracy This metric is measured by
executing both the predicted and gold query against
a dataset, and considers the query to be correct
if the two output results are the same (or similar
enough). While this metric appears to be exactly
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what we want to optimize (yielding a query the
outputs a correct output), it does not necessarily
cope well with two challenges: spurious queries
and under-specified questions. Spurious queries are
incorrect queries (with respect to the given ques-
tion) that happen to result in a correct answer, thus
leading to a false-positive count. The problem of
spuriousness can be addressed by executing the pre-
dicted query on modified versions of the dataset, as
proposed in Zhong et al. (2020). The second chal-
lenge, evaluating under-specification, is arguably
harder to address, as mentioned in Subsection 3.2.
For example, consider a question that asks for "the
top 1% active users". This question does not spec-
ify which columns should be returned, how the
rows should be ordered, and how does one measure
“being active”. As such, a query could be correct
with respect to some interpretation, yet its execu-
tion result might be different than the execution
result of the given gold query.

Logical form accuracy Instead of comparing ex-
ecution results, another frequent approach is to
simply perform a textual comparison between the
predicted and gold queries. When comparing SQL
queries, it is common to perform a more loose
comparison that does not consider the order of ap-
pearances of different clauses (e.g. it shouldn’t
matter which WHERE expression is written first), as
performed in Spider (Yu et al., 2018). However, as
discussed in Zhong et al. (2020), even this looser
metric leads to false-negative measures, since mul-
tiple queries can all be correct with respect to an
utterance, but written in various different manners.
Due to the richness of SQL queries in SEDE, its
extended scope and the fact that queries are written
by many different authors, in our case this problem
deteriorates: queries can be written in a substan-
tial number of ways. For example, a query that
contains a WITH statement could yield exactly the
same result without it, by including a nested FROM
clause instead.

4.1 Sub-tree elements matching

In this work, in order to alleviate the aforemen-
tioned issues with exact-match logical form eval-
uation, we loosen it so that models can get partial
scores if at least some part of their predicted ex-
pressions are found in the gold query. We do this
by parsing both the predicted query and the gold
query, comparing different parts of the two parsed
trees and aggregating the scores into a single met-

SELECT a,b WHERE b=1

SELECT b,c,d WHERE b=2

SELECT

prediction

gold

a
,

b

a

SELECT

b

b

d

c

WHERE

b
=

1

= 1

WHERE

b
=

2

= 2bc d

b

b

,

q1 =

q2 =

Figure 1: An example for sub-tree matching.

ric, as defined next. We term this metric Partial
Component Match F1 (PCM-F1).

Our proposed metric is based on the “Compo-
nent Matching” metric which is used in Spider’s
evaluation (Yu et al., 2019), except that we use a
parser that supports a large variety of queries (Spi-
der’s parser only supports specific types of queries),
define how to compute the metric in a general way
(not specific to any SQL-specific clause) and aggre-
gate (average) the F1 scores into a single value, as
defined next.

We first use an open-source SQL parser, JSql-
Parser,5 to parse a given SQL query q into a tree,
and extract a set of elements for each of its sub-
trees, considering a sub-tree only if all of its leaves
are terminal values in the query (similar to extract-
ing constituents from a parse tree). For example, as
can be seen in Figure 1, the predicted query q1 has
7 relevant sub-trees (marked in rectangles). The
sub-tree which represents the expression b=1 con-
tains four elements: b,=,1 and b=1. We then
split these sets into different categories, based on
the SQL query part that the root of the original
sub-tree belonged to, for each of the following
categories: C = {SELECT, TOP, FROM, WHERE,
GROUPBY, HAVING, ORDERBY}. We denote all
sets of elements for a query q in a category c ∈ C
as sc(q). For example, as can be seen in Figure 1,
the clause sSELECT(q1) yields 3 sub-trees. Given
a predicted query qp and a gold query qg, we com-
pute the average F1 metric of all aligned pairs of
sets sc(qp) and sc(qg):

PCM-F1(qp, qg) =
1

| C |
∑
c∈C

F1 (sc(qp), sc(qg))

5https://github.com/JSQLParser/
JSqlParser

https://github.com/JSQLParser/JSqlParser
https://github.com/JSQLParser/JSqlParser


83

Model Spider-Dev

PCM-F1 PCM-EM PCM-F1-NOVALUES PCM-EM-NOVALUES EM

RAT (Wang et al., 2020b) 88.1 37.3 91.3 69.0 69.7†

RAT+GAP (Shi et al., 2020) 89.3 39.0 92.6 71.8 71.8†

T5-Base with schema 85.7 56.7 85.9 57.2 57.6
T5-Large with schema 86.3 61.2 86.6 62.6 63.2

Table 4: Results on Spider with various metrics. While we do not focus on Spider, we show our results for
comparison of the model and evaluation metric with a known benchmark. † denotes reported numbers from
Spider’s official leaderboard. PCM-F1-NoValues and PCM-EM-NoValues are modified versions of PCM-F1
and PCM-EM, respectively, such that all values in the SQL are anonymized and the ON clause is ignored, in order
to compare with Spider’s official Exact-Match (EM) metric.

where F1 score is the harmonic mean of the pre-
cision and recall of the predicted sub-trees sc(qp)
with respect to the gold sub-trees sc(qg). If for
some category c, we get that sc(qp) is an empty set
but sc(qg) is not, or vice-versa, we set F1 = 0.0
for that category.

Consider Figure 1 for an example.
sSELECT(q1) has 3 sub-trees while the gold
category sSELECT(q2) has 4 sub-trees. The
predicted SELECT clause has 2 wrong sub-trees
(a and a,b) leading to a precision p = 1

3 , and
2 missing elements leading to a recall r = 1

4 .
Similarly, the WHERE clause gets a precision
of p = 1

2 and a recall of r = 1
2 . Thus, we get

F1 = 0.285 for SELECT and F1 = 0.5 for
WHERE, leading to a final score PCM-F1 = 0.392.

4.2 Limitations

Parsing Queries JSqlParser could only parse
93.2% of the validation SQL queries in SEDE,
and 92.5% of the test queries. For that reason, for
evaluation we only use the subset of queries which
we can parse and evaluate 6. During evaluation, if
the predicted query was not parsed, it receives a
score of 0. Note that this does not affect training.

False negatives We note that our metric does not
address at all the issue of false negatives - in fact,
since it’s a looser metric than the Exact Match
metric, it is actually more prone to produce false
negative outcomes. For SEDE, this issue could be
mitigated by improving the similarity function that
compares two queries, or by adapting the execution
accuracy method in a way that will be less sensitive
to instances of under-specification. We leave this
challenge for future work.

6While we did not use the rest of the validation queries,
we have released them in the dataset for future use, assuming
at least some of them are valid queries.

Model SEDE-Dev SEDE-Test

PCM-F1 PCM-EM PCM-F1 PCM-EM

T5-Base 46.8 4.0 49.4 3.6
with schema 46.4 3.4 48.9 4.5

T5-Large 48.2 4.0 50.6 4.1
with schema 47.1 3.7 51.0 3.3

Table 5: Results on SEDE development and test sets.

5 Experiments

In this section, we describe our experimental setup,
test how strong baselines perform on SEDE, and
analyze their errors.

5.1 Experimantal Setup

Most models in the Spider leaderboard7 use a
grammar-based decoder designed for Spider, and
as a result, they cannot be used as-is on SEDE,
which uses a larger grammar. Thus, following
Shaw et al. (2020), we use a general-purpose pre-
trained sequence-to-sequence model, T5 (Raffel
et al., 2020), which was shown to be competitive
with Spider’s state-of-the-art models.

Since all queries in SEDE come from a single
schema which is seen during training time, it is not
clear if allowing the model to access the schema
during encoding and decoding is helpful. We thus
experiment with two versions. In the first one, T5,
the input is simply the utterance ū. In the second,
T5 with schema, the input is the utterance ū fol-
lowed by a separator token, and then the serialized
schema. We follow Suhr et al. (2020) and serial-
ize the schema by listing all tables in the schema
and all the columns for each table, with a separator
token between each column and table. Naturally,
we did not evaluate T5 (without schema) on Spider
since encoding the schema is crucial in a zero-shot

7https://yale-lily.github.io/spider

https://yale-lily.github.io/spider
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Category & Utterance Gold Predicted

Under-specification and
Hidden assumptions

Positive scored ques-
tions without answers for
c++ tags

SELECT id as "" Post Link "", *
FROM posts
WHERE

answercount = 0
AND tags NOT LIKE ’%c++%’
AND score > 0
AND ClosedDate is null

ORDER BY score DESC

SELECT id as [Post Link], tags,
score, viewcount, CreationDate

FROM posts
WHERE

tags NOT LIKE ’%c++%’
AND answercount = 0
AND posttypeid = 1
AND score > 0
AND CreationDate > ’2018-01-01’

ORDER BY CreationDate DESC

Dates Manipulation

Percentage of votes -
depending on day after
posting (only questions)

SELECT
DATEDIFF(day, p.CreationDate,

v.CreationDate) AS Days,
COUNT(v.Id) AS Count,
COUNT(v.Id) * 100.0

/ SUM(COUNT(v.Id)) OVER ()
AS Percentage ...

SELECT
DATEDIFF(day, p.CreationDate,

v.CreationDate) AS Days,
COUNT(v.Id) AS Count,
COUNT(v.Id) * 100.0

/ COUNT(v.Id)
AS Percentage ...

Parameters

Top users in a tag
by score and answer
count

SELECT TOP 100 ...
WHERE ...

AND t.TagName = ’tagName’

SELECT TOP ##num?100## Users.id
AS [User Link], ...

WHERE tags.TagName = ’##tagname##’

Table 6: Error analysis of gold queries vs. predicted queries for some selected dataset characteristics mentioned in
3. For brevity, in some of the examples we show only relevant parts of the query.

setup. We perform textual pre-processing to the
queries in SEDE before training (i.e. remove non
UTF-8 characters and SQL comments, normalize
spaces and new lines, normalize apostrophes, re-
move comments, etc.). We show results for experi-
ments considering the titles alone, and ignore their
given description, which are given in 14.6% of the
examples. We have found that if we concatenate
the description to the title, we get slightly worse
results.

We use the SentencePiece (Kudo and Richard-
son, 2018) tokenizer, with its default vocabulary,
for all models. We fine-tune the model to mini-
mize the token-level cross-entropy loss against the
gold SQL query for 60 epochs with the AdamW
(Loshchilov and Hutter, 2019) optimizer and a
learning rate of 5e−5. We choose the best model
based on the performance on the validation set for
each dataset, using Exact-Match (EM) for Spider
and PCM-F1 for SEDE. For inference, we use
beam-search (of size 6) and choose the highest-
probability generated SQL query. We show results
for both T5-Base and T5-Large.

For each experiment we measure PCM-F1 to-
gether with a modified version of it, PCM-EM
(PCM exact match), that returns an accuracy of 1
for a given prediction if and only if the PCM-F1
value for that prediction is 1. For Spider, we use
the officially provided script to measure the EM
metric.

5.2 Main Results

We show experiments results for SEDE in Table 5
and for Spider in Table 4. The results indicate that
the performance gap between SEDE and Spider
is large: while T5-Large reaches a score of 63.2
EM on Spider’s validation set, not very far from
the state-of-the-art (a difference of 8.6 points), and
a PCM-F1 of 86.3, when trained on SEDE, it only
receives 48.2 and 50.6 PCM-F1 on the validation
and test set of SEDE, respectively. This supports
our main claim, that single-schema datasets could
still impose a substantial challenge when tested in a
realistic setup. We also notice in Table 4 that large
improvements in EM do not necessarily imply a
large increase in PCM-F1, since PCM-F1 num-
bers are already high for Spider in any of the tested
models, implying that the model is generating SQL
queries that are close to the exact gold SQL, only
different by a small change (e.g. value or column
name).

Comparing experiments with and without encod-
ing the schema shows that encoding the schema
does not significantly improve results in this single-
domain setup. We also observe that PCM-EM is
close to 0 in all experiments, supporting our moti-
vation to create a loosened evaluation metric.

5.3 PCM-F1 Validation

In order to validate the correctness of our proposed
evaluation metric, we compare PCM-EM with the



85

more established EM metric of Spider. There are
two differences in the way EM is calculated com-
pared to PCM-EM: (1) EM anonymizes all val-
ues in the queries and (2) EM ignores the ON ex-
pressions in the JOIN clauses. For those reasons,
we define PCM-F1-NOVALUES and PCM-EM-
NOVALUES, modified versions of PCM-F1 and
PCM-EM, respectively, such that all values in the
SQL are anonymized and the ON expressions are
ignored. Table 4 shows that EM and PCM-EM-
NOVALUES are only different by up to 0.7 points
for all models, showing that PCM-F1 is well cali-
brated with Spider’s EM.

5.4 Error Analysis

Next, we analyze errors and successful outputs of
the model. Table 6 shows examples of gold vs.
predicted queries by our model, with respect to
some of the introduced challenges mentioned in
3.2.

We can see from the first example that the
model is often wrong whenever the question is
not specified well: In this example, this happens
in the SELECT, WHERE and ORDER fields. In the
SELECT clause, the model predicts extra columns
in comparison to the gold query, most likely as it
has learned to do so for similar questions. In addi-
tion, since the desired order of the results are not
mentioned in the utterance, it leads to a different
predicted ORDER BY clause. A hidden assump-
tion the author had added to the query is taking into
account only open questions (i.e. questions with
no close date: ClosedDate is null). The
model, which could not deduce this assumption
from the utterance alone, predicts a wrong filter ex-
pression CreationDate > ’2018-01-01’.

The second example shows how the model cor-
rectly uses the DATEDIFF function to manipulate
dates, although it predicted a wrong computation
of the percentage (i.e. without the SUM function).

The last example shows how the model gener-
ates a SQL query with parameters, for the number
of required users (with a predicted default value
of 100) and for the tag name. In this case, the pre-
dicted query is possibly better than the gold one as
it uses a reusable parameter instead of a fixed one.

6 Conclusion

In this work, we take a significant step towards
improving and evaluating Text-to-SQL models in
a real world setting, by releasing SEDE, a dataset

comprised of real-world complex and diverse SQL
queries with their utterances, naturally written by
real users. We show that there’s a large gap be-
tween the performance of strong Text-to-SQL base-
lines on SEDE compared to the commonly studied
dataset Spider, and hope that the release of this
challenging dataset will encourage research on im-
proving generalization for real-world SQL predic-
tion.
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