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Abstract
The massive spread of false information on
social media has become a global risk es-
pecially in a global pandemic situation like
COVID-19. False information detection has
thus become a surging research topic in recent
months. NLP4IF-2021 shared task on fighting
the COVID-19 infodemic has been organised
to strengthen the research in false information
detection where the participants are asked to
predict seven different binary labels regarding
false information in a tweet. The shared task
has been organised in three languages; Ara-
bic, Bulgarian and English. In this paper, we
present our approach to tackle the task objec-
tive using transformers. Overall, our approach
achieves a 0.707 mean F1 score in Arabic,
0.578 mean F1 score in Bulgarian and 0.864
mean F1 score in English ranking 4th place in
all the languages.

1 Introduction

By April 2021, coronavirus(COVID-19) pandemic
has affected 219 nations around the world with
136 million total cases and 2.94 million deaths.
With this pandemic situation, a rapid increase in
social media usage was noticed. In measures, dur-
ing 2020, 490 million new users joined indicat-
ing a more than 13% year-on-year growth (Kemp,
2021). This growth is mainly resulted due to the
impacts on day-to-day activities and information
sharing and gathering requirements related to the
pandemic.

As a drawback of these exponential growths, the
dark side of social media is further revealed during
this COVID-19 infodemic (Mourad et al., 2020).
The spreading of false and harmful information
resulted in panic and confusions which make the
pandemic situation worse. Also, the inclusion of
false information reduced the usability of a huge
volume of data which is generated via social media
platforms with the capability of fast propagation.
To handle these issues and utilise social media data

effectively, accurate identification of false informa-
tion is crucial. Considering the high data genera-
tion in social media, manual approaches to filter
false information require significant human efforts.
Therefore an automated technique to tackle this
problem will be invaluable to the community.

Targeting the infodemic that occurred with
COVID-19, NLP4IF-2021 shared task was de-
signed to predict several properties of a tweet in-
cluding harmfulness, falseness, verifiability, inter-
est to the general public and required attention. The
participants of this task were required to predict
the binary aspect of the given properties for the
test sets in three languages: Arabic, Bulgarian and
English provided by the organisers. Our team used
recently released transformer models with the text
classification architecture to make the predictions
and achieved the 4th place in all the languages
while maintaining the simplicity and universality
of the method. In this paper, we mainly present our
approach, with more details about the architecture
including an experimental study. We also provide
our code to the community which will be freely
available to everyone interested in working in this
area using the same methodology1.

2 Related Work

Identifying false information in social media has
been a major research topic in recent years. False
information detection methods can be mainly cate-
gorised into two main areas; Content-based meth-
ods and Social Context-based methods (Guo et al.,
2020).

Content-based methods are mainly based on the
different features in the content of the tweet. For ex-
ample, Castillo et al. (2011) find that highly credi-
ble tweets have more URLs, and the textual content
length is usually longer than that of lower credi-
bility tweets. Many studies utilize the lexical and

1The GitHub repository is publicly available on https:
//github.com/tharindudr/infominer

https://github.com/tharindudr/infominer
https://github.com/tharindudr/infominer
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syntactic features to detect false information. For
instance, Qazvinian et al. (2011) find that the part
of speech (POS) is a distinguishable feature for
false information detection. Kwon et al. (2013)
find that some types of sentiments are apparent
features of machine learning classifiers, including
positive sentiments words (e.g., love, nice, sweet),
negating words (e.g., no, not, never), cognitive ac-
tion words (e.g., cause, know), and inferring action
words (e.g., maybe, perhaps). Then they propose a
periodic time-series model to identify key linguis-
tic differences between true tweets and fake tweets.
With the word embeddings and deep learning get-
ting popular in natural language processing, most
of the fake information detection methods were
based on embeddings of the content fed into a deep
learning network to perform the classification (Ma
et al., 2016).

Traditional content-based methods analyse the
credibility of the single microblog or claim in iso-
lation, ignoring the high correlation between dif-
ferent tweets and events. However, Social Context-
based methods take different tweets in a user pro-
file or an event to identify false information. Many
studies detect false information by analyzing users’
credibility (Li et al., 2019) or stances (Mohammad
et al., 2017). Since this shared task is mainly fo-
cused on the content of the tweet to detect false in-
formation, we can identify our method as a content-
based false information identification approach.

3 Data

The task is about predicting several binary proper-
ties of a tweet on COVID-19: whether it is harmful,
whether it contains a verifiable claim, whether it
may be of interest to the general public, whether
it appears to contain false information, etc. (Shaar
et al., 2021). The data has been released for three
languages; English, Arabic and Bulgarian 2. Fol-
lowing are the binary properties that the partici-
pants should predict for a tweet.

I Verifiable Factual Claim: Does the tweet
contain a verifiable factual claim?

II False Information: To what extent does the
tweet appear to contain false information?

III Interest to General Public: Will the tweet
have an effect on or be of interest to the general
public?

2The dataset can be downloaded from https://
gitlab.com/NLP4IF/nlp4if-2021

IV Harmfulness: To what extent is the tweet
harmful to the society?

V Need of Verification: Do you think that a pro-
fessional fact-checker should verify the claim
in the tweet?

VI Harmful to Society: Is the tweet harmful for
the society?

VII Require attention: Do you think that this
tweet should get the attention of government
entities?

4 Architecture

The main motivation for our architecture is the re-
cent success that the transformer models had in vari-
ous natural language processing tasks like sequence
classification (Ranasinghe and Hettiarachchi, 2020;
Ranasinghe et al., 2019; Pitenis et al., 2020), token
classification (Ranasinghe and Zampieri, 2021a;
Ranasinghe et al., 2021), language detection (Jauhi-
ainen et al., 2021), word context prediction (Het-
tiarachchi and Ranasinghe, 2020a, 2021) question
answering (Yang et al., 2019) etc. Apart from pro-
viding strong results compared to RNN based ar-
chitectures (Hettiarachchi and Ranasinghe, 2019;
Ranasinghe et al., 2019), transformer models like
BERT (Devlin et al., 2019) provide pretrained mul-
tilingual language models that support more than
100 languages which will solve the multilingual is-
sues of these tasks (Ranasinghe et al., 2020; Ranas-
inghe and Zampieri, 2021b, 2020).

Transformer models take an input of a sequence
and outputs the representations of the sequence.
There can be one or two segments in a sequence
which are separated by a special token [SEP] (De-
vlin et al., 2019). In this approach we considered a
tweet as a sequence and no [SEP] token is used. An-
other special token [CLS] is used as the first token
of the sequence which contains a special classi-
fication embedding. For text classification tasks,
transformer models take the final hidden state h of
the [CLS] token as the representation of the whole
sequence (Sun et al., 2019). A simple softmax clas-
sifier is added to the top of the transformer model
to predict the probability of a class c as shown in
Equation 1 where W is the task-specific parameter
matrix. In the classification task all the parameters
from transformer as well as W are fine tuned jointly
by maximising the log-probability of the correct
label. The architecture of transformer-based se-
quence classifier is shown in Figure 1.

https://gitlab.com/NLP4IF/nlp4if-2021
https://gitlab.com/NLP4IF/nlp4if-2021
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p(c|h) = softmax(Wh) (1)

Figure 1: Text Classification Architecture

5 Experimental Setup

We considered the whole task as seven different
classification problems. We trained a transformer
model for each label mentioned in Section 3. This
gave us the flexibility to fine-tune the classifica-
tion model in to the specific label rather than the
whole task. Given the very unbalanced nature of
the dataset, the transformer models tend to overfit
and predict only the majority class. Therefore, for
each label we took the number of instances in the
training set for the minority class and undersam-
pled the majority class to have the same number of
instances as the minority class.

We then divided this undersampled dataset into
a training set and a validation set using 0.8:0.2
split. We mainly fine tuned the learning rate and
number of epochs of the classification model man-
ually to obtain the best results for the development
set provided by organisers in each language. We
obtained 1e−5 as the best value for learning rate
and 3 as the best value for number of epochs for
all the languages in all the labels. The other con-
figurations of the transformer model were set to a
constant value over all the languages in order to en-
sure consistency between the languages. We used a
batch-size of eight, Adam optimiser (Kingma and
Ba, 2014) and a linear learning rate warm-up over
10% of the training data. The models were trained
using only training data. We performed early stop-
ping if the evaluation loss did not improve over
ten evaluation rounds. A summary of hyperparam-
eters and their values used to obtain the reported
results are mentioned in Appendix - Table 3. The

optimized hyperparameters are marked with ‡ and
their optimal values are reported. The rest of the
hyperparameter values are kept as constants. We
did not use any language specific preprocessing
techniques in order to have a flexible solution be-
tween the languages. We used a Nvidia Tesla K80
GPU to train the models. All the experiments were
run for five different random seeds and as the final
result, we took the majority class predicted by these
different random seeds as mention in Hettiarachchi
and Ranasinghe (2020b). We used the following
pretrained transformer models for the experiments.

bert-base-cased - Introduced in Devlin et al.
(2019), the model has been trained on a Wikipedia
dump of English using Masked Language Mod-
elling (MLM) objective. There are two variants
in English BERT, base model and the large model.
Considering the fact that we built seven different
models for each label, we decided to use the base
model considering the resources and time.

roberta-base - Introduced in Liu et al. (2019),
RoBERTa builds on BERT and modifies key hyper-
parameters, removing the next-sentence pretrain-
ing objective and training with much larger mini-
batches and learning rates. RoBERTa has outper-
formed BERT in many NLP tasks and it motivated
us to use RoBERTa in this research too. Again we
only considered the base model.

bert-nultilingual-cased - Introduced in Devlin
et al. (2019), the model has been trained on a
Wikipedia dump of 104 languages using MLM ob-
jective. This model has shown good performance
in variety of languages and tasks. Therefore, we
used this model in Arabic and Bulgarian.

AraBERT Recently language-specific BERT
based models have proven to be very efficient at
language understanding. AraBERT (Antoun et al.,
2020) is such a model built for Arabic with BERT
using scraped Arabic news websites and two pub-
licly available Arabic corpora; 1.5 billion words
Arabic Corpus (El-khair, 2016) and OSIAN: the
Open Source International Arabic News Corpus
(Zeroual et al., 2019). Since AraBERT has out-
performed multilingual bert in many NLP tasks in
Arabic (Antoun et al., 2020) we used this model
for Arabic in this task. There are two version in
AraBERT; AraBERTv0.1 and AraBERTv1, with
the difference being that AraBERTv1 uses pre-
segmented text where prefixes and suffixes were
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Model I II III IV V VI VII Mean

English roberta-base 0.822 0.393 0.821 0.681 0.461 0.235 0.251 0.523
bert-base-cased 0.866 0.461 0.893 0.740 0.562 0.285 0.303 0.587

Arabic
bert-multilingual-cased 0.866 0.172 0.724 0.400 0.557 0.411 0.625 0.536
arabert-v2 0.917 0.196 0.782 0.469 0.601 0.433 0.686 0.583
arabert-v2-tokenized 0.960 0.136 0.873 0.571 0.598 0.424 0.678 0.606

Bulgarian bert-multilingual-cased 0.845 0.098 0.516 0.199 0.467 0.303 0.196 0.375

Table 1: Macro F1 between the algorithm predictions and human annotations for development set in all the lan-
guages. Results are sorted from Mean F1 score for each language.

Model I II III IV V VI VII Mean

English
Best System 0.835 0.913 0.978 0.873 0.882 0.908 0.889 0.897
InfoMiner 0.819 0.886 0.946 0.841 0.803 0.884 0.867 0.864
Random Baseline 0.552 0.480 0.457 0.473 0.423 0.563 0.526 0.496

Arabic
Best System 0.843 0.762 0.890 0.799 0.596 0.912 0.663 0.781
InfoMiner 0.852 0.704 0.774 0.743 0.593 0.698 0.588 0.707
Random Baseline 0.510 0.444 0.487 0.442 0.476 0.584 0.533 0.496

Bulgarian
Best System 0.887 0.955 0.980 0.834 0.819 0.678 0.706 0.837
InfoMiner 0.786 0.749 0.419 0.599 0.556 0.303 0.631 0.578
Random Baseline 0.594 0.502 0.470 0.480 0.399 0.498 0.528 0.496

Table 2: Macro F1 between the InfoMiner submission and human annotations for test set in all the languages. Best
System is the results of the best model submitted for each language as reported by the task organisers (Shaar et al.,
2021).

splitted using the Farasa Segmenter (Abdelali et al.,
2016).

6 Results

When it comes to selecting the best model for each
language, highest F1 score out of the evaluated
models was chosen. Due to the fact that our ap-
proach uses a single model for each label, our
main goal was to achieve good F1 scores using
light weight models. The limitation of available re-
sources to train several models for all seven labels
itself was a very challenging task to the team but
we managed to evaluate several.

As depicted in Table 1, for English, bert-base-
cased model performed better than roberta-base
model. For Arabic, arabert-v2-tokenized per-
formed better than the other two models we con-
sidered. For Bulgarian, with the limited time, we
could only train bert-multilingual model, therefore,
we submitted the predictions from that for Bulgar-
ian.

As shown in Table 2, our submission is very
competitive with the best system submitted in each
language and well above the random baseline. Our
team was ranked 4th in all the languages.

7 Conclusion

We have presented the system by InfoMiner team
for NLP4IF-2021-Fighting the COVID-19 Info-
demic. We have shown that multiple transformer
models trained on different labels can be success-
fully applied to this task. Furthermore, we have
shown that undersampling can be used to prevent
the overfitting of the transformer models to the
majority class in an unbalanced dataset like this.
Overall, our approach is simple but can be consid-
ered as effective since it achieved 4th place in the
leader-board for all three languages.

One limitation in our approach is that it requires
maintaining seven transformer models for the seven
binary properties of this task which can be costly
in a practical scenario which also restricted us from
experimenting with different transformer types due
to the limited time and resources. Therefore, in
future work, we are interested in remodeling the
task as a multilabel classification problem, where a
single transformer model can be used to predict all
seven labels.
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A Appendix

A summary of hyperparameters and their values
used to obtain the reported results are mentioned
in Table 3. The optimised hyperparameters are
marked with ‡ and their optimal values are reported.
The rest of the hyperparameter values are kept as
constants.

Parameter Value
learning rate‡ 1e−5

number of epochs‡ 3

adam epsilon 1e−8

warmup ration 0.1
warmup steps 0
max grad norm 1.0
max seq. length 120
gradient accumulation steps 1

Table 3: Hyperparameter specifications
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