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Abstract

We present an approach that leverages expert
knowledge contained in scholarly works to au-
tomatically identify key passages in literary
works. Specifically, we extend a text reuse
detection method for finding quotations, such
that our system Lotte can deal with common
properties of quotations, for example, ellipses
or inaccurate quotations. An evaluation shows
that Lotte outperforms four existing approaches.
To generate key passages, we combine overlap-
ping quotations from multiple scholarly texts.
An interactive website, called Annette, for visu-
alizing and exploring key passages makes the
results accessible and explorable.

1 Introduction

Identification of key passages in nonfiction has long
been a topic of research. For example, in the con-
text of text summarization to identify sentences
and passages which contain key arguments (Paice,
1980). While there has been a lot of progress for
nonfiction (Yao et al., 2017), there are no working
solutions for fiction.

In this paper, we present a first step towards a
system to automatically identify key passages in
fiction. We understand key passages as passages
that are particularly important to expert readers, fol-
lowing a general definition of “key words” (Scott
and Tribble, 2006). We leverage the expert knowl-
edge contained in scholarly works to automatically
identify potential key passages. Authors of schol-
arly works use different types of citations to refer
to original works, for example, quotations or para-
phrases. We adapt existing methods for text re-use
detection (Grune and Huntjens, 1989) such that our
system can deal with common properties of quo-
tations such as ellipses or unclean quotations, for
instance, missing words or spelling mistakes. On
top of that, our system works independently of the

order of quotations and can handle multiple quota-
tions of the same text. To generate key passages,
we combine overlapping quotations from multiple
scholarly works.

Our contributions are Lotte, an algorithm and
Python tool for quotation detection in fictional texts
and Annette, an interactive website for visualizing
and exploring key passages. This makes key pas-
sages available at a larger scale and in structured
form and opens up many new opportunities for
analyses in literary studies and the praxeology of
literary studies.

This paper is organized as follows: In Section 2,
we provide an overview on related work. In Sec-
tion 3, we present our approach to finding key pas-
sages. In Section 4, we describe our evaluation
setup including four existing systems and in Sec-
tion 5 we show how our approach outperforms
them. Finally, in Section 6, we present our tool for
visualizing and exploring key passages.

2 Related Work

Quotation detection can be regarded as a kind of
text reuse detection, which is frequently applied
for plagiarism detection (Hoad and Zobel, 2003).
There, the goal is to find quotations and citations
without proper attribution. In our case, we assume
proper attribution and focus on the step of finding
and linking quotations.

Several tools for different use cases try to solve
similar or related problems. For example, BLAST
aligns biological sequences (Altschul et al., 1990)
and has been adopted for text reuse detection
(Vesanto et al., 2017a,b). Copyfind (Bloomfield)
is an open source tool for comparing documents
written in C++. While Passim (Smith et al., 2014)
and TextMatcher (Reeve, 2020) are simple text
reuse detection tools, TRACER (Büchler, 2016) is
an elaborate framework consisting of around 700
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algorithms. SIM (Grune and Huntjens, 1989) finds
lexical similarities in source code and natural lan-
guage texts, originally built to find duplicate code
in large code bases. The original idea worked well
enough to be used to find copied work in student
submissions. SIM works with a number of pro-
gramming languages and can easily be extended to
work with new languages by providing a lexical de-
scription. Sim_text is a version of SIM for checking
duplicates in natural language texts. Based on SIM,
similarity texter (SimT) is a tool for text comparison
written in JavaScript by Kalaidopoulou (2016).

For various reasons, these tools are not appro-
priate for detecting key passages. For example,
TextMatcher only finds quotations that appear in
the same order in both texts. None of the tools
can find multiple quotations of the same text. In
Section 5 we evaluate BLAST, Copyfind, SimT,
and TextMatcher and compare them against our
approach. We did not evaluate TRACER, as we
could not manage to extract exact matches. Passim
is the only system we could not get to work at all
as its dependencies were no longer available.

A website for visualizing (literal) citations of
Shakespeare’s works has been presented by Miller.
It visualizes how often each line from every play
has been cited in JSTOR’s journal collection. The
website is limited to the visualization of the cita-
tion frequency of each line and does not offer any
functionality to explore the source of citations.

3 Lotte – A Text Reuse Detection Tool

In this section, we describe our approach for identi-
fying quotations which solves the following task:1

Given a source and a target text, it finds all in-
stances where the target text contains some part of
the source text.

Our approach is based on a modified and ex-
tended version of Sim_text by Grune and Huntjens
(1989). The original implementation is written in
C while our reimplementation is in Python. Reim-
plementing the algorithm allowed us to integrate
extensions for properly handling specific properties
of quotations which are not covered by Sim_text.

The algorithm works in five main steps which
we describe in the sequel. Table 1 shows two sim-
plified example texts which consist of words only
without any punctuation except for periods and one

1The source code is licensed under the Apache License 2.0
and available at https://scm.cms.hu-berlin.de/
schluesselstellen/lotte.

Source text
0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8. 𝑤4
9 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9. 𝑤10 𝑤11 𝑤12
17𝑤13 𝑤14 𝑤15 𝑤16 𝑤17 𝑤18 𝑤19
24𝑤20 𝑤21 𝑤22 𝑤23 𝑤24 𝑤25 𝑤26

Target text
50𝑤1 𝑤2 𝑤3 𝑤11 𝑤12 𝑤13 [. . . ] 𝑤23 𝑤24
59𝑤25 𝑤26. 𝑤30 𝑤31 𝑤32 𝑤33 𝑤34 𝑤4
67𝑤5 𝑤6 𝑤7 𝑤8 𝑤9. 𝑤10 𝑤11 𝑤4 𝑤5 𝑤6

Table 1: Example source and target texts.

Word sequences Starting positions

𝑤1 𝑤2 𝑤3 [0]
𝑤2 𝑤3 𝑤4 [1]
𝑤4 𝑤5 𝑤6 [3, 8]

Table 2: Some word sequences with starting positions
of the source text.

ellipsis in the target text. The numbers on the left
are the positions of the words (𝑤1 in the source text
is at position 0, 𝑤2 at position 1, 𝑤8 at position 7,
etc.).

3.1 Step 1: Tokenize Text

Both texts are cleaned and tokenized and sequences
like ‘. . . ’, ‘[. . . ]’ and other possible variants of
ellipses-indicating characters are masked so they
can later be identified easily. Punctuation indicat-
ing the end of a sentence is also masked for the
same reason. All other special characters and num-
bers are removed. Finally, the text is tokenized us-
ing white space characters. The main improvement
to Sim_text is the masking of characters which
carry information needed later.

3.2 Step 2: Initial Positions

A mapping of word sequences to starting posi-
tions for the source text is created. The initial
sequence length is currently hard-coded to three as
it worked best in our tests. The value can easily
be changed but a smaller value results in too many
initial matches which will be removed later anyway
because of the minimal length cutoff for results. Ta-
ble 2 shows examples for word sequences and their
starting positions. The sequence 𝑤1 𝑤2 𝑤3 starts
at position 0, sequence 𝑤2 𝑤3 𝑤4 at position 1, etc.
The same sequence can appear multiple times and

https://scm.cms.hu-berlin.de/schluesselstellen/lotte
https://scm.cms.hu-berlin.de/schluesselstellen/lotte
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Source text Target text

0 [0]
3 [67]
8 [67]

Table 3: Some source text starting positions with corre-
sponding target text starting positions.

therefore might have multiple starting positions.
This handling of sequences that appear multiple
times is the main improvement to Sim_text.

3.3 Step 3: Forward References

A table of forward references, that is, a mapping
of starting positions in the source text to a list of
starting positions in the target text is created. For
example, the sequence 𝑤1 𝑤2 𝑤3 which starts at
position 0 in the source text can also be found in
the target text starting at position 0.

As Sim_text only considers exact matches, we
improved this to use MinHash Locality Sensitive
Hashing (Slaney and Casey, 2008) and Levenshtein
distance (Levenshtein, 1966) to find the best match-
ing sequence. Our algorithm first gets a list of all
possible matches above a similarity threshold of
0.95. From that list, it then selects the best match
with a normalized Levenshtein distance2 equal or
greater 0.9. These thresholds were optimized using
expert knowledge (cf. Section 4.2).

3.4 Step 4: Extend Initial Matches

The initially three token long matches are extended
forwards and backwards to match longer sequences,
if possible. For example, in Table 1 the initially
matched sequence 𝑤4 𝑤5 𝑤6 can be extended for-
ward to match 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10 𝑤11. Back-
wards extension is needed to handle certain edge
cases occurring due to ellipses or mismatches of
tokens. Sim_text does neither include backwards
extension nor handling of ellipses or mismatches
of tokens. Our algorithm also uses the normalized
Levenshtein distance for token matching.

3.5 Step 5: Reprocess Found Matches

Step 4 extends the initial matches in a relatively
conservative manner. A more aggressive approach
would lead to too many false positives. This means
that the quality of the matches can be further in-

2https://github.com/maxbachmann/
RapidFuzz

Start End Match segments

50 61 𝑤11 𝑤12 𝑤13
12 23 𝑤11 𝑤12 𝑤13

98 113 𝑤23 𝑤24 𝑤25 𝑤26.
28 44 𝑤23 𝑤24 𝑤25 𝑤26.

9 25 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8.
65 79 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8

26 53 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9. 𝑤10 𝑤11
65 91 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9. 𝑤10 𝑤11

Table 4: Intermediate results after Step 4. First line of
each pair (red) is the match segment from source text
and the second line (blue) is the match segment from
the target text.

creased by reprocessing the intermediate matches.
This is implemented in the following novel steps.

Table 4 shows some of the intermediate results
after executing Steps 1 to 4. The first line of a pair
is the match segment from the source text and the
second line is the match segment from the target
text. The two numbers at the beginning of a line
correspond to the first and last character’s position
of a match in the original text, respectively.

Neighbouring Matches The first improvement is
to merge neighbouring matches. The intermediate
matches are sorted in order of appearance in the
source text. They are then checked for matches that
appear neighbouring in the target text and in the
source text and are not further apart than a certain
number of tokens. If there is an ellipsis between
the two matches in the target text, the number of
tokens between the matches can be greater.

Overlapping Segments We remove matches
with overlapping target match segments. In Ta-
ble 4, the last two matches completely overlap in
the target text. This means that one of the matches
has to be removed. In such a case only the longer
one will be kept.

Short Matches The remaining matches are
checked for matches which are shorter than a cer-
tain length, which can be defined by the user. In our
case, we only keep matches which are five words
or longer. All other matches are removed.

Sentence Boundaries Finally, we check for
matches that cross sentence boundaries. This hap-
pens in a number of cases where after a match the

https://github.com/maxbachmann/RapidFuzz
https://github.com/maxbachmann/RapidFuzz
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Start End Match segments

50 113 𝑤11 𝑤12 𝑤13 𝑤14 𝑤15 𝑤16
𝑤17 𝑤18 𝑤19 𝑤20 𝑤21 𝑤22
𝑤23 𝑤24 𝑤25 𝑤26

12 44 𝑤11 𝑤12 𝑤13 [...] 𝑤23 𝑤24
𝑤25 𝑤26.

26 44 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9.
65 83 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9.

Table 5: Final results. For both matches, the first part
(red) is from the source text and the second part (blue)
is the match segment from the target text.

source and target text continue with the same words
by chance. We check for matches which end with
a sentence delimiter (., ;, ! and ?) followed by one
or two words. In such cases the words after the
delimiter are removed. The final results are shown
in Table 5.

4 Experiments

4.1 Datasets
We evaluate our approach on two literary works,
Die Judenbuche by Annette von Droste-Hülshoff
(1979) and Michael Kohlhaas by Heinrich von
Kleist (1978), with 44 and 49 interpretive scholarly
articles, respectively.3 The texts were annotated
in the ArguLIT project (Winko, 2017–2020) using
TEI/XML (TEI Consortium, eds.). The corpus con-
tains annotations for quotations of different types,
for example, quotations from the primary literary
work, other literary works, or other scholarly works.
Only clearly marked quotations, that is, with quo-
tation marks, were annotated. For the purposes of
this evaluation, we are only interested in quotations
from the primary literary work. Table 6 shows the
number of articles and quotations from the primary
literary work with a length of five or more words
(“gold items”).

We limit the experiments to finding matches of
five or more words because none of the approaches
works for very short matches. It would be possible
to find shorter matches but it introduces too much
noise. The limit is based on the distribution of all
word 𝑛-grams which have a frequency of at least
two (cf. Table 7). The counts are calculated after
removing special characters and only the longest
sequence is counted, for example, for a 7-gram,

3For the sake of brevity, we will reference Die Judenbuche
and Michael Kohlhaas with J and K.

the 3- and 4-sub-grams are not counted again. Die
Judenbuche contains two 5-grams, one 6-gram, and
one 7-gram which appear twice. This is few enough
to not introduce too much noise. In the case of
Michael Kohlhaas, which is twice as long as Die
Judenbuche, the 𝑛-gram counts do not as clearly
support a limit of five or more words. We decided
to keep the limit but this could be improved in
the future. For example, as a first step, Lotte could
report ambiguous cases. In the longer term, we will
develop methods for extracting quotations shorter
than five words and handling ambiguous cases.

Literary work
Die Ju-

denbuche
Michael

Kohlhaas

Scholarly articles 44 49
Gold items (≥ 5 words) 1 235 1 349
Quotations with ellipses 206 262
Literary text characters 102 477 221 097
Scholarly articles
characters

2 650 095 2 778 528

Table 6: Basic statistics for Die Judenbuche and Michael
Kohlhaas.

𝑛-gram
Frequency

2 3 4 5 > 5

J K J K J K J K J K

3 130 752 14 114 3 27 1 4 2 7
4 21 176 1 21 0 3 0 2 0 0
5 2 55 0 7 0 1 0 0 0 0
6 1 11 0 1 0 0 0 0 0 1
7 1 3 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 1 0 0 0 0 0 0 0 0
10 0 2 0 0 0 0 0 0 0 0

Table 7: The 𝑛-gram counts for Die Judenbuche and
Michael Kohlhaas.

4.2 Setup
For each approach, we try to select parameters as
close as possible to those of our approach. Minimal
match length is always set to 5. Lotte’s thresholds
and parameters were optimized on the corpus for
Die Judenbuche. The results will show that the
approach performs equally well on unseen texts.

BLAST There are several parameters but none
really correspond to those of the other approaches.
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BLAST Copyfind Lotte SimT TextMatcher

Order independent X X X X -
one-to-many matching - - X - -
Fuzzy matching X - X - -
Skip words - X X - X
Ellipsis handling - - X - -

Table 8: System functionality comparison.

So we use the defaults and remove short matches
in a post-processing step. BLAST requires a map-
ping from characters to DNA sequence blocks. Us-
ing the provided mapping for English with space
worked better than using a mapping based on the
most frequent characters in German.

Copyfind We ignore letter case, numbers and
punctuation. We allow up to two non-matching
words between perfectly matching phrases and a
minimum of 80 % matching words for a phrase to
be considered a match.

Lotte We use the following parameters: A look-
back limit of 10, a look-ahead limit of 3, a maxi-
mum merge distance of 2, and a maximum merge
distance for ellipses of 10. We ignore letter case,
numbers, punctuation, and replace umlauts.

SimT We ignore letter case, numbers and punc-
tuation and replace umlauts.

TextMatcher Again, there are several parameters
but none really correspond to those of the other
approaches. We set threshold and cutoff to 0 and
leave the default value of 3 for 𝑛-gram size. We
also remove short matches in a post-processing
step.

Table 8 shows a comparison of the functionality
of each approach. TextMatcher is the only system
that does not support order-independent matching,
that is, only matches appearing in the same order
in both texts will be found. One-to-many match-
ing, that is, matching a sequence in the source
text with multiple sequences in the target text is
only supported by Lotte. Fuzzy matching is sup-
ported by Lotte and BLAST. Copyfind, Lotte, and
TextMatcher can skip words, that is, a sequence can
still be a match even if there is a mismatch between
individual words. Lotte is the only system that ex-
plicitly handles ellipses. Processing 44 scholarly
works for Die Judenbuche with Lotte takes around
five minutes on an Intel Core i9-9880H CPU.

Figure 1: Calculation of precision (|Overlap| / |Match|),
recall (|Overlap| / |Gold item|), and F1-score based on
the overlap between a match and a gold item.

4.3 Evaluation

For the evaluation, we asses the performance of
all approaches by averaging precision, recall, and
F1-score of each match and gold item. Figure 1
illustrates the calculation. Internally, we use char-
acter counts for the calculation. This ensures that
the results of all approaches are comparable and
is necessary in case an approach does not respect
token boundaries and returns incomplete words.
Matches which cover multiple gold items are pun-
ished by taking the average precision. Analogously,
gold items which are partly covered by multiple
matches are punished by taking the average recall.

5 Results

5.1 Performance Comparison

Table 9 shows the performance of the approaches in
the top section. The bottom section shows different
variants of Lotte which we discuss in Section 5.3.

For Die Judenbuche, Lotte outperforms the other
approaches with an F1-score of 0.86. Copyfind
performs second best (0.79), closely followed by
SimT (0.76). SimT’s precision is highest with 0.91.

For Michael Kohlhaas the results look different.
Lotte achieves the highest recall of 0.90, but SimT
performs best with the highest precision of 0.83
and an F1-score of 0.79.

5.2 Error Analysis

To better understand the differences in precision
between the approaches and the lower precision
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Approach
Die Judenbuche Michael Kohlhaas

Precision Recall F1 Precision Recall F1

BLAST 0.59 0.61 0.60 0.37 0.59 0.45
Copyfind 0.85 0.75 0.79 0.76 0.79 0.78
SimT 0.91 0.64 0.76 0.83 0.74 0.79
TextMatcher 0.69 0.37 0.48 0.68 0.42 0.52
Lotte 0.82 0.90 0.86 0.70 0.90 0.78

Lotte-Base 0.96 0.29 0.45 0.84 0.26 0.40
+ OI 0.91 0.64 0.75 0.84 0.74 0.79
+ OI+otm 0.90 0.72 0.80 0.83 0.79 0.81

+ Fuzzy 0.88 0.83 0.85 0.79 0.84 0.81
+ Skip 0.85 0.84 0.84 0.75 0.85 0.79
+ Ellipsis 0.90 0.74 0.82 0.83 0.82 0.82

Table 9: Precision, recall, and F1-score for Die Judenbuche and Michael Kohlhaas.

of Lotte, we analyze the different types of false
positives as shown in Table 10. The second column
shows the total number of false positives, followed
by the counts for three relevant types of false pos-
itives. For example, out of the 279 false positive
matches found by Lotte for Die Judenbuche, 64 are
type other, that is, there is a match in our gold an-
notations which was not annotated as a quote from
the primary literary work but some other text, for
example, other literary works or scholarly works.
For example, Die Judenbuche quotes the Bible and
that same quote is quoted in a scholarly work and
attributed to the Bible by our annotations but, of
course, Lotte counts it as a match. 31 are of type
short, that is, a match with five words or more was
found but the corresponding gold item is only four
words long. O+S is the combination of the two
previous cases. The remaining false positives do
not belong to any category.

Comparing the numbers for Copyfind, Lotte and
SimT, we find that for both literary works, SimT
and Copyfind have less false positives of the three
types. Counting these as true positives Lotte’s pre-
cision would improve relative to the other two ap-
proaches.

Another reason for the high number of false pos-
itives is that a large number of quotations are not
annotated at all because they are not correctly high-
lighted (e.g., with quotation marks). This issue is
worse for Lotte because of the improved handling
of quotation-specific properties which leads to a
higher number of false positives which are actu-
ally true positives but are missing in our data. The
false positives which do not belong to any of the

Approach
Total Other Short O+S

J K J K J K J K

BLAST 227 646 30 37 33 45 0 1
Copyfind 174 232 46 22 24 29 0 0
Lotte 279 404 64 47 31 47 2 0
SimT 128 186 40 22 12 25 0 0
TextMatcher 130 112 14 1 4 13 0 0

Table 10: False positives counts for Die Judenbuche (J)
and Michael Kohlhaas (K).

mentioned types (other, short and O+S) have an
average length of 6.93 words (J) and 5.75 words
(K). Of those matches, 45 (J) and 79 (K) are string
equal when case is ignored. The average normal-
ized Levenshtein distance of the source and target
text string is 0.95 (J) and 0.92 (K). These results
show that it is very likely that most of the false
positives are not actually false positives.

5.3 Ablation Study

The presented approaches differ in the functionality
they support as shown in Table 8. To evaluate the
influence of the different functionalities, we com-
pare the results of different versions of Lotte which
emulate the absence of different functionality (cf.
Table 9).

BLAST is optimized for fuzzy matching of
OCRed text and allows for a high number of mis-
matched characters. This results in a high number
of errors and makes it hard to link specific function-
ality to specific results. Therefore, BLAST will not
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be considered in this comparison.
Lotte-(base) is Lotte with all five functionali-

ties (cf. Table 8) disabled. This results in low
recalls of 0.29 (J) and 0.26 (K). Lotte-(OI) is the
base system with order independent matching en-
abled. This more than doubles the recalls to 0.64
(J) and 0.74 (K) and explains why TextMatcher
has the lowest recall of all systems as it is the only
system that does not support order-independent
matching. SimT on the other hand only supports
order-independent matching and achieves a rather
high recall. Lotte-(OI+otm) is the OI-system with
one-to-many matching added. This again improves
recall significantly.

The last three systems Lotte-(fuzzy), Lotte-(skip),
and Lotte-(ellipsis) are all based on Lotte-(OI+otm)
with one functionality added. The improvement in
recall for Lotte-(skip) explains the better perfor-
mance of Copyfind over SimT.

Although around 16 % (J) and 19 % (K) (cf. Ta-
ble 6) of quotations contain ellipses, the perfor-
mance of Lotte-(ellipsis) is not a lot better. This
might be because even without explicitly handling
ellipses, a system will still find at least some part
of the full match.

One more notable result is the high precision
for all the different variants of Lotte. As discussed
earlier, our data makes it hard to accurately evaluate
the precision. We therefore decided to optimize for
recall and assume a higher precision based on our
findings in Section 5.2.

6 Visualizing and Exploring Key Passages

Here, we describe how the results of Lotte are in-
tegrated into an interactive website for visualizing
and exploring key passages.4

6.1 Segmentation to Identify Key Passages

We process the output of Lotte to identify key pas-
sages by combining overlapping matches and gen-
erating minimal non-overlapping segments with
frequency counts. Figure 2 sketches the segmenta-
tion process. The example contains the source text
𝑤1 𝑤2 . . . 𝑤9 𝑤10 and different sequences which
quote the source to a varying extent. We segment
the source text into non-overlapping segments and

4The website is available at https://hu.berlin/
annette-en. The source code of a white-label version
is available at https://scm.cms.hu-berlin.de/
schluesselstellen/lottevizex licensed under the
Apache License 2.0.

Figure 2: Visualization of the segmentation process.

count the frequency for each segment. For exam-
ple, the sequence 𝑤1 appears in two texts, sequence
𝑤2 in three texts, sequence 𝑤5 𝑤6 𝑤7 in two texts,
and so on. This results in the quotation frequency
shown at be bottom of Figure 2. The result of this
segmentation process is used to visualize the liter-
ary text and the scholarly texts as described next.

6.2 Annette – A Visualization and
Exploration Website

A screenshot of the website is shown in Figure 3.
On the left, a heatmap of the complete literary text
shows the distribution of quoted passages. The
darker the text, the more often it has been quoted
and thus the more important it is assumed to be.
Next to the heatmap, the literary work is shown.
The grayscale is determined by how many scholarly
works quote some part of a key passage. That is,
the color is always the same for the whole key
passage. The font size is determined by how often
a minimal segment is quoted. At the bottom, next
to the literary text, a list of all scholarly works is
shown. On the right, the top ten key passages are
shown.

Starting from the initial screen, we can choose
between different paths. The first option is to select
a key passage by clicking on it. At the bottom,
next to the literary text, a list of scholarly works
which contribute to the selected key passage is then
shown along with a preview of the quoted text. By
clicking on one of the quoted texts, we can select a
specific scholarly work. The text of that scholarly
work is then shown at the top right. We can then go
through that text and select other quoted passages.
The bottom right shows how often the selected key
passage was quoted and by how many scholarly
works. Below, we can find the top ten most quoted
segments of that passage. We can go back to the
initial screen by clicking on the title at the top.
From there, the other option is to select one of the

https://hu.berlin/annette-en
https://hu.berlin/annette-en
https://scm.cms.hu-berlin.de/schluesselstellen/lottevizex
https://scm.cms.hu-berlin.de/schluesselstellen/lottevizex
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Figure 3: A screenshot of the website for visualizing and exploring key passages.

scholarly works from the list of all works. This will
show the text of the selected work in the top right
with all quotations highlighted.

7 Conclusion

We presented an approach for finding and visual-
izing key passages in literary works using schol-
arly works. For finding the quotations, we devel-
oped a system called Lotte by adapting Sim_text
(Grune and Huntjens, 1989). Our approach out-
performs prior approaches for text reuse detection.
The matches are further processed to identify key
passages by combining overlapping matches. We
also presented Annette, a website that visualizes
the literary work and scholarly articles together
with the found quotations and thus allows us to
explore the identified key passages and their ori-
gin. The current system only considers matches of
length five and greater. In the future, we want to
also identify shorter quotations and investigate how
much information these add compared to longer
ones. Another limitation of the current system is
the missing suppport for handling ambiguous quo-
tations. We have shown that this becomes more
relevant the longer the source texts are. One solu-
tion to resolve such cases could be to utilize page
references about the quoted passage, which are of-
ten included in the scholarly text. Furthermore,

we aim to identify and analyze paraphrases and
renarrations of literary works.
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