Lotte and Annette: A Framework for Finding and Exploring Key Passages
in Literary Works

Frederik Arnold and Robert Jaschke
Humboldt-Universitit zu Berlin

{frederik.arnold,

Abstract

We present an approach that leverages expert
knowledge contained in scholarly works to au-
tomatically identify key passages in literary
works. Specifically, we extend a text reuse
detection method for finding quotations, such
that our system Lotfe can deal with common
properties of quotations, for example, ellipses
or inaccurate quotations. An evaluation shows
that Lotte outperforms four existing approaches.
To generate key passages, we combine overlap-
ping quotations from multiple scholarly texts.
An interactive website, called Annette, for visu-
alizing and exploring key passages makes the
results accessible and explorable.

1 Introduction

Identification of key passages in nonfiction has long
been a topic of research. For example, in the con-
text of text summarization to identify sentences
and passages which contain key arguments (Paice,
1980). While there has been a lot of progress for
nonfiction (Yao et al., 2017), there are no working
solutions for fiction.

In this paper, we present a first step towards a
system to automatically identify key passages in
fiction. We understand key passages as passages
that are particularly important to expert readers, fol-
lowing a general definition of “key words” (Scott
and Tribble, 2006). We leverage the expert knowl-
edge contained in scholarly works to automatically
identify potential key passages. Authors of schol-
arly works use different types of citations to refer
to original works, for example, quotations or para-
phrases. We adapt existing methods for text re-use
detection (Grune and Huntjens, 1989) such that our
system can deal with common properties of quo-
tations such as ellipses or unclean quotations, for
instance, missing words or spelling mistakes. On
top of that, our system works independently of the

55

robert. jaeschke}l@hu-berlin.de

order of quotations and can handle multiple quota-
tions of the same text. To generate key passages,
we combine overlapping quotations from multiple
scholarly works.

Our contributions are Lotte, an algorithm and
Python tool for quotation detection in fictional texts
and Annette, an interactive website for visualizing
and exploring key passages. This makes key pas-
sages available at a larger scale and in structured
form and opens up many new opportunities for
analyses in literary studies and the praxeology of
literary studies.

This paper is organized as follows: In Section 2,
we provide an overview on related work. In Sec-
tion 3, we present our approach to finding key pas-
sages. In Section 4, we describe our evaluation
setup including four existing systems and in Sec-
tion 5 we show how our approach outperforms
them. Finally, in Section 6, we present our tool for
visualizing and exploring key passages.

2 Related Work

Quotation detection can be regarded as a kind of
text reuse detection, which is frequently applied
for plagiarism detection (Hoad and Zobel, 2003).
There, the goal is to find quotations and citations
without proper attribution. In our case, we assume
proper attribution and focus on the step of finding
and linking quotations.

Several tools for different use cases try to solve
similar or related problems. For example, BLAST
aligns biological sequences (Altschul et al., 1990)
and has been adopted for text reuse detection
(Vesanto et al., 2017a,b). Copyfind (Bloomfield)
is an open source tool for comparing documents
written in C++. While Passim (Smith et al., 2014)
and TextMatcher (Reeve, 2020) are simple text
reuse detection tools, TRACER (Biichler, 2016) is
an elaborate framework consisting of around 700

Proceedings of the Workshop on Natural Language Processing for Digital Humanities (NLP4DH), pages 55-63
co-located with ICON-2021, December 16-19, 2021, Silchar, India. ©2021 NLP Association of India (NLPAI)

https://doi.org/10.26615/978-952-94-5833-2_007

algorithms. SIM (Grune and Huntjens, 1989) finds
lexical similarities in source code and natural lan-
guage texts, originally built to find duplicate code
in large code bases. The original idea worked well
enough to be used to find copied work in student
submissions. SIM works with a number of pro-
gramming languages and can easily be extended to
work with new languages by providing a lexical de-
scription. Sim_text is a version of SIM for checking
duplicates in natural language texts. Based on SIM,
similarity texter (SimT) is a tool for text comparison
written in JavaScript by Kalaidopoulou (2016).

For various reasons, these tools are not appro-
priate for detecting key passages. For example,
TextMatcher only finds quotations that appear in
the same order in both texts. None of the tools
can find multiple quotations of the same text. In
Section 5 we evaluate BLAST, Copyfind, SimT,
and TextMatcher and compare them against our
approach. We did not evaluate TRACER, as we
could not manage to extract exact matches. Passim
is the only system we could not get to work at all
as its dependencies were no longer available.

A website for visualizing (literal) citations of
Shakespeare’s works has been presented by Miller.
It visualizes how often each line from every play
has been cited in JSTOR’s journal collection. The
website is limited to the visualization of the cita-
tion frequency of each line and does not offer any
functionality to explore the source of citations.

3 Lotte — A Text Reuse Detection Tool

In this section, we describe our approach for identi-
fying quotations which solves the following task:!
Given a source and a target text, it finds all in-
stances where the target text contains some part of
the source text.

Our approach is based on a modified and ex-
tended version of Sim_text by Grune and Huntjens
(1989). The original implementation is written in
C while our reimplementation is in Python. Reim-
plementing the algorithm allowed us to integrate
extensions for properly handling specific properties
of quotations which are not covered by Sim_text.

The algorithm works in five main steps which
we describe in the sequel. Table 1 shows two sim-
plified example texts which consist of words only
without any punctuation except for periods and one

IThe source code is licensed under the Apache License 2.0
and available at https://scm.cms.hu-berlin.de/
schluesselstellen/lotte.

56

Source text

0 W1 W W3 W4 W5 Wg W7 Wg. Wyq

9

W5 We W7 Wg W9. Wig W11 W12
17

W13 Wig W15 Wie W17 W18 W19

24
W20 W21 W22 W23 W24 W25 W26

Target text

50
59
W25 W26. W30 W31 W32 W33 W3gq W4

67
W5 We W7 Wg W9. Wig W11 W4 W5 We

wi wo w3 Wit wi2 wiz [...] waz wou

Table 1: Example source and target texts.

Word sequences Starting positions

w1 wa w3 (0]
Wy w3 wy [1]
W4 W5 We (3, 8]

Table 2: Some word sequences with starting positions
of the source text.

ellipsis in the target text. The numbers on the left
are the positions of the words (w in the source text
is at position 0, w, at position 1, wg at position 7,
etc.).

3.1 Step 1: Tokenize Text

Both texts are cleaned and tokenized and sequences
like “...°, ‘[...]" and other possible variants of
ellipses-indicating characters are masked so they
can later be identified easily. Punctuation indicat-
ing the end of a sentence is also masked for the
same reason. All other special characters and num-
bers are removed. Finally, the text is tokenized us-
ing white space characters. The main improvement
to Sim_text is the masking of characters which
carry information needed later.

3.2 Step 2: Initial Positions

A mapping of word sequences to starting posi-
tions for the source text is created. The initial
sequence length is currently hard-coded to three as
it worked best in our tests. The value can easily
be changed but a smaller value results in too many
initial matches which will be removed later anyway
because of the minimal length cutoff for results. Ta-
ble 2 shows examples for word sequences and their
starting positions. The sequence w; wy w3 starts
at position 0, sequence wy w3 w4 at position 1, etc.
The same sequence can appear multiple times and

https://scm.cms.hu-berlin.de/schluesselstellen/lotte
https://scm.cms.hu-berlin.de/schluesselstellen/lotte

Source text Target text
0 [0]

3 [67]

8 [67]

Table 3: Some source text starting positions with corre-
sponding target text starting positions.

therefore might have multiple starting positions.
This handling of sequences that appear multiple
times is the main improvement to Sim_text.

3.3 Step 3: Forward References

A table of forward references, that is, a mapping
of starting positions in the source text to a list of
starting positions in the target text is created. For
example, the sequence w| wy w3z which starts at
position 0 in the source text can also be found in
the target text starting at position 0.

As Sim_text only considers exact matches, we
improved this to use MinHash Locality Sensitive
Hashing (Slaney and Casey, 2008) and Levenshtein
distance (Levenshtein, 1966) to find the best match-
ing sequence. Our algorithm first gets a list of all
possible matches above a similarity threshold of
0.95. From that list, it then selects the best match
with a normalized Levenshtein distance® equal or
greater 0.9. These thresholds were optimized using
expert knowledge (cf. Section 4.2).

3.4 Step 4: Extend Initial Matches

The initially three token long matches are extended
forwards and backwards to match longer sequences,
if possible. For example, in Table 1 the initially
matched sequence w4 ws wg can be extended for-
ward to match wy4 ws wg w7 wg wg wig wii. Back-
wards extension is needed to handle certain edge
cases occurring due to ellipses or mismatches of
tokens. Sim_text does neither include backwards
extension nor handling of ellipses or mismatches
of tokens. Our algorithm also uses the normalized
Levenshtein distance for token matching.

3.5 Step 5: Reprocess Found Matches

Step 4 extends the initial matches in a relatively
conservative manner. A more aggressive approach
would lead to too many false positives. This means
that the quality of the matches can be further in-

2https://github.com/maxbachmann/
RapidFuzz

57

Start End Match segments
50 61 wii wix wig
12 23 Wil Wi2 W13
98 113 W23 Woq W25 Woe.
28 44 wo3 wog Wos wog.
9 25 wgqwswewy ws.
65 79 Wyqg W5 W W7 W8
26 53 wg ws wg w7 wg Wo. Wig Wi
65 91 wqwswewy wg wo. Wig Wi

Table 4: Intermediate results after Step 4. First line of
each pair (red) is the match segment from source text
and the second line (blue) is the match segment from
the target text.

creased by reprocessing the intermediate matches.
This is implemented in the following novel steps.

Table 4 shows some of the intermediate results
after executing Steps 1 to 4. The first line of a pair
is the match segment from the source text and the
second line is the match segment from the target
text. The two numbers at the beginning of a line
correspond to the first and last character’s position
of a match in the original text, respectively.

Neighbouring Matches The first improvement is
to merge neighbouring matches. The intermediate
matches are sorted in order of appearance in the
source text. They are then checked for matches that
appear neighbouring in the target text and in the
source text and are not further apart than a certain
number of tokens. If there is an ellipsis between
the two matches in the target text, the number of
tokens between the matches can be greater.

Overlapping Segments We remove matches
with overlapping target match segments. In Ta-
ble 4, the last two matches completely overlap in
the target text. This means that one of the matches
has to be removed. In such a case only the longer
one will be kept.

Short Matches The remaining matches are
checked for matches which are shorter than a cer-
tain length, which can be defined by the user. In our
case, we only keep matches which are five words
or longer. All other matches are removed.

Sentence Boundaries Finally, we check for
matches that cross sentence boundaries. This hap-
pens in a number of cases where after a match the

https://github.com/maxbachmann/RapidFuzz
https://github.com/maxbachmann/RapidFuzz

Start End Match segments

50 113 wii wi2 Wiz Wig Wis Wig
W17 Wi W19 W20 W21 W22
W23 W4 W25 W26

12 44 wip wia wiz [...] woz wog
W25 Wae.

26 44 wys ws wg w7 wg wo.

65 83 wywswgwy wg wo.

Table 5: Final results. For both matches, the first part
(red) is from the source text and the second part (blue)
is the match segment from the target text.

source and target text continue with the same words
by chance. We check for matches which end with
a sentence delimiter (., ;, ! and ?) followed by one
or two words. In such cases the words after the
delimiter are removed. The final results are shown
in Table 5.

4 Experiments

4.1 Datasets

We evaluate our approach on two literary works,
Die Judenbuche by Annette von Droste-Hiilshoff
(1979) and Michael Kohlhaas by Heinrich von
Kleist (1978), with 44 and 49 interpretive scholarly
articles, respectively.> The texts were annotated
in the ArguLIT project (Winko, 2017-2020) using
TEI/XML (TEI Consortium, eds.). The corpus con-
tains annotations for quotations of different types,
for example, quotations from the primary literary
work, other literary works, or other scholarly works.
Only clearly marked quotations, that is, with quo-
tation marks, were annotated. For the purposes of
this evaluation, we are only interested in quotations
from the primary literary work. Table 6 shows the
number of articles and quotations from the primary
literary work with a length of five or more words
(“gold items”).

We limit the experiments to finding matches of
five or more words because none of the approaches
works for very short matches. It would be possible
to find shorter matches but it introduces too much
noise. The limit is based on the distribution of all
word n-grams which have a frequency of at least
two (cf. Table 7). The counts are calculated after
removing special characters and only the longest
sequence is counted, for example, for a 7-gram,

3For the sake of brevity, we will reference Die Judenbuche
and Michael Kohlhaas with J and K.

58

the 3- and 4-sub-grams are not counted again. Die
Judenbuche contains two 5-grams, one 6-gram, and
one 7-gram which appear twice. This is few enough
to not introduce too much noise. In the case of
Michael Kohlhaas, which is twice as long as Die
Judenbuche, the n-gram counts do not as clearly
support a limit of five or more words. We decided
to keep the limit but this could be improved in
the future. For example, as a first step, Lotte could
report ambiguous cases. In the longer term, we will
develop methods for extracting quotations shorter
than five words and handling ambiguous cases.

Literary work Die Ju- Michael

eraty w denbuche Kohlhaas
Scholarly articles 44 49
Gold items (> 5 words) 1235 1349
Quotations with ellipses 206 262
Literary text characters 102477 221097
Scholarly articles 2650005 2778508

characters

Table 6: Basic statistics for Die Judenbuche and Michael
Kohlhaas.

Frequency
n-gram 2 3 4 5 >5
J K JT K JK JK JK
3 130752 14114 327 14 2 7
4 21176 1 21 3 2
5 2 55 7 1
6 1 11 1 1
7 1 3
8
9 1
10 2

Table 7: The n-gram counts for Die Judenbuche and
Michael Kohlhaas.

4.2 Setup

For each approach, we try to select parameters as
close as possible to those of our approach. Minimal
match length is always set to 5. Lotte’s thresholds
and parameters were optimized on the corpus for
Die Judenbuche. The results will show that the
approach performs equally well on unseen texts.

BLAST There are several parameters but none
really correspond to those of the other approaches.

BLAST Copyfind Lotte SimT TextMatcher

Order independent v v v v -
one-to-many matching - - v - -
Fuzzy matching v - v - -
Skip words - v v - v
Ellipsis handling - - v - -
Table 8: System functionality comparison.
So we use the defaults and remove short matches Overlap

in a post-processing step. BLAST requires a map-
ping from characters to DNA sequence blocks. Us-
ing the provided mapping for English with space
worked better than using a mapping based on the
most frequent characters in German.

Copyfind We ignore letter case, numbers and
punctuation. We allow up to two non-matching
words between perfectly matching phrases and a
minimum of 80 % matching words for a phrase to
be considered a match.

Lotte We use the following parameters: A look-
back limit of 10, a look-ahead limit of 3, a maxi-
mum merge distance of 2, and a maximum merge
distance for ellipses of 10. We ignore letter case,
numbers, punctuation, and replace umlauts.

SimT We ignore letter case, numbers and punc-
tuation and replace umlauts.

TextMatcher Again, there are several parameters
but none really correspond to those of the other
approaches. We set threshold and cutoff to O and
leave the default value of 3 for n-gram size. We
also remove short matches in a post-processing
step.

Table 8 shows a comparison of the functionality
of each approach. TextMatcher is the only system
that does not support order-independent matching,
that is, only matches appearing in the same order
in both texts will be found. One-to-many match-
ing, that is, matching a sequence in the source
text with multiple sequences in the target text is
only supported by Lotte. Fuzzy matching is sup-
ported by Lotte and BLAST. Copyfind, Lotte, and
TextMatcher can skip words, that is, a sequence can
still be a match even if there is a mismatch between
individual words. Lotte is the only system that ex-
plicitly handles ellipses. Processing 44 scholarly
works for Die Judenbuche with Lotte takes around
five minutes on an Intel Core i19-9880H CPU.

59

,7 Match —‘

WI WZ W3 w4 w5 Wé W7 W8 W9 W]O

I‘ Gold item —,

Figure 1: Calculation of precision (IOverlapl / [Matchl),
recall (IOverlapl / IGold iteml), and F;-score based on
the overlap between a match and a gold item.

4.3 Evaluation

For the evaluation, we asses the performance of
all approaches by averaging precision, recall, and
F;-score of each match and gold item. Figure 1
illustrates the calculation. Internally, we use char-
acter counts for the calculation. This ensures that
the results of all approaches are comparable and
is necessary in case an approach does not respect
token boundaries and returns incomplete words.
Matches which cover multiple gold items are pun-
ished by taking the average precision. Analogously,
gold items which are partly covered by multiple
matches are punished by taking the average recall.

5 Results

5.1 Performance Comparison

Table 9 shows the performance of the approaches in
the top section. The bottom section shows different
variants of Lotte which we discuss in Section 5.3.

For Die Judenbuche, Lotte outperforms the other
approaches with an F;-score of 0.86. Copyfind
performs second best (0.79), closely followed by
SimT (0.76). SimT’s precision is highest with 0.91.

For Michael Kohlhaas the results look different.
Lotte achieves the highest recall of 0.90, but SimT
performs best with the highest precision of 0.83
and an Fy-score of 0.79.

5.2 Error Analysis

To better understand the differences in precision
between the approaches and the lower precision

Die Judenbuche Michael Kohlhaas

Approach
Precision Recall F; Precision Recall F,
BLAST 0.59 0.61 0.60 0.37 0.59 045
Copyfind 0.85 0.75 0.79 0.76 0.79 0.78
SimT 0.91 0.64 0.76 0.83 0.74 0.79
TextMatcher 0.69 0.37 048 0.68 042 0.52
Lotte 0.82 0.90 0.86 0.70 0.90 0.78
Lotte-Base 0.96 0.29 045 0.84 0.26 0.40
+ Ol 0.91 0.64 0.75 0.84 0.74 0.79
+ Ol+otm 0.90 0.72 0.80 0.83 0.79 0.81
+ Fuzzy 0.88 0.83 0.85 0.79 0.84 0.81
+ Skip 0.85 0.84 0.84 0.75 0.85 0.79
+ Ellipsis 0.90 0.74 0.82 0.83 0.82 0.82

Table 9: Precision, recall, and F;-score for Die Judenbuche and Michael Kohlhaas.

of Lotte, we analyze the different types of false
positives as shown in Table 10. The second column
shows the total number of false positives, followed
by the counts for three relevant types of false pos-
itives. For example, out of the 279 false positive
matches found by Lotte for Die Judenbuche, 64 are
type other, that is, there is a match in our gold an-
notations which was not annotated as a quote from
the primary literary work but some other text, for
example, other literary works or scholarly works.
For example, Die Judenbuche quotes the Bible and
that same quote is quoted in a scholarly work and
attributed to the Bible by our annotations but, of
course, Lotte counts it as a match. 31 are of type
short, that is, a match with five words or more was
found but the corresponding gold item is only four
words long. O+S is the combination of the two
previous cases. The remaining false positives do
not belong to any category.

Comparing the numbers for Copyfind, Lotte and
SimT, we find that for both literary works, SimT
and Copyfind have less false positives of the three
types. Counting these as true positives Lotte’s pre-
cision would improve relative to the other two ap-
proaches.

Another reason for the high number of false pos-
itives is that a large number of quotations are not
annotated at all because they are not correctly high-
lighted (e.g., with quotation marks). This issue is
worse for Lotte because of the improved handling
of quotation-specific properties which leads to a
higher number of false positives which are actu-
ally true positives but are missing in our data. The
false positives which do not belong to any of the

60

Total Other Short O+S
Approach

J K JK JTK JK
BLAST 227 646 3037 3345 0 1
Copyfind 174 232 4622 2429 0 O
Lotte 279 404 64 47 3147 2 O
SimT 128 186 4022 1225 0 O
TextMatcher 130 112 14 1 413 0 O

Table 10: False positives counts for Die Judenbuche (J)
and Michael Kohlhaas (K).

mentioned types (other, short and O+S) have an
average length of 6.93 words (J) and 5.75 words
(K). Of those matches, 45 (J) and 79 (K) are string
equal when case is ignored. The average normal-
ized Levenshtein distance of the source and target
text string is 0.95 (J) and 0.92 (K). These results
show that it is very likely that most of the false
positives are not actually false positives.

5.3 Ablation Study

The presented approaches differ in the functionality
they support as shown in Table 8. To evaluate the
influence of the different functionalities, we com-
pare the results of different versions of Lotte which
emulate the absence of different functionality (cf.
Table 9).

BLAST is optimized for fuzzy matching of
OCRed text and allows for a high number of mis-
matched characters. This results in a high number
of errors and makes it hard to link specific function-
ality to specific results. Therefore, BLAST will not

be considered in this comparison.

Lotte-(base) is Lotte with all five functionali-
ties (cf. Table 8) disabled. This results in low
recalls of 0.29 (J) and 0.26 (K). Lotte-(OI) is the
base system with order independent matching en-
abled. This more than doubles the recalls to 0.64
(J) and 0.74 (K) and explains why TextMatcher
has the lowest recall of all systems as it is the only
system that does not support order-independent
matching. SimT on the other hand only supports
order-independent matching and achieves a rather
high recall. Lotte-(Ol+otm) is the Ol-system with
one-to-many matching added. This again improves
recall significantly.

The last three systems Lotte-(fuzzy), Lotte-(skip),
and Lotte-(ellipsis) are all based on Lotte-(OI+otm)
with one functionality added. The improvement in
recall for Lotte-(skip) explains the better perfor-
mance of Copyfind over SimT.

Although around 16 % (J) and 19 % (K) (cf. Ta-
ble 6) of quotations contain ellipses, the perfor-
mance of Lotte-(ellipsis) is not a lot better. This
might be because even without explicitly handling
ellipses, a system will still find at least some part
of the full match.

One more notable result is the high precision
for all the different variants of Lotte. As discussed
earlier, our data makes it hard to accurately evaluate
the precision. We therefore decided to optimize for
recall and assume a higher precision based on our
findings in Section 5.2.

6 Visualizing and Exploring Key Passages

Here, we describe how the results of Lotte are in-
tegrated into an interactive website for visualizing
and exploring key passages.*

6.1 Segmentation to Identify Key Passages

We process the output of Lotte to identify key pas-
sages by combining overlapping matches and gen-
erating minimal non-overlapping segments with
frequency counts. Figure 2 sketches the segmenta-
tion process. The example contains the source text
wi wp ... wg wig and different sequences which
quote the source to a varying extent. We segment
the source text into non-overlapping segments and

4The website is available at https://hu.berlin/
annette-en. The source code of a white-label version
is available at https://scm.cms.hu-berlin.de/
schluesselstellen/lottevizex licensed under the
Apache License 2.0.

61

Wl WZ W3 W4 WS W6 W7 WS W9 WIO

g

e

=

w2

(5]

g <

23 | \

5%

3 Z w, W, W,

R

g g2 www WsWoWio

o 2

Literature wllw2|W3IW4|w5wﬁw7Iw8w9|wm

Quotation frequency 2 | 31 4 | 3| 2 I3 12

Figure 2: Visualization of the segmentation process.

count the frequency for each segment. For exam-
ple, the sequence w1 appears in two texts, sequence
wy in three texts, sequence ws wg w7 in two texts,
and so on. This results in the quotation frequency
shown at be bottom of Figure 2. The result of this
segmentation process is used to visualize the liter-
ary text and the scholarly texts as described next.

6.2 Annette — A Visualization and
Exploration Website

A screenshot of the website is shown in Figure 3.
On the left, a heatmap of the complete literary text
shows the distribution of quoted passages. The
darker the text, the more often it has been quoted
and thus the more important it is assumed to be.
Next to the heatmap, the literary work is shown.
The grayscale is determined by how many scholarly
works quote some part of a key passage. That is,
the color is always the same for the whole key
passage. The font size is determined by how often
a minimal segment is quoted. At the bottom, next
to the literary text, a list of all scholarly works is
shown. On the right, the top ten key passages are
shown.

Starting from the initial screen, we can choose
between different paths. The first option is to select
a key passage by clicking on it. At the bottom,
next to the literary text, a list of scholarly works
which contribute to the selected key passage is then
shown along with a preview of the quoted text. By
clicking on one of the quoted texts, we can select a
specific scholarly work. The text of that scholarly
work is then shown at the top right. We can then go
through that text and select other quoted passages.
The bottom right shows how often the selected key
passage was quoted and by how many scholarly
works. Below, we can find the top ten most quoted
segments of that passage. We can go back to the
initial screen by clicking on the title at the top.
From there, the other option is to select one of the

https://hu.berlin/annette-en
https://hu.berlin/annette-en
https://scm.cms.hu-berlin.de/schluesselstellen/lottevizex
https://scm.cms.hu-berlin.de/schluesselstellen/lottevizex

I Annette von Droste-Hiilshoff: Die Judenbuche

iScholarly work

l

Wo ist die Hand so zart, daB ohne Irren

Sie sondern mag beschriinkten Hirnes Wirren,

So fest, daB ohne Zittern sie den Stein

Mag schleudern auf ein arm verkiimmert Sein?
Wer wagt es, eitlen Blutes Drang zu messen,
Zu wiigen jedes Wort, das unvergessen
In junge Brust die zihen Wurzeln trieb,
Des Vorurteils geheimen Seelendieb?

Du Gliicklicher, geboren und gehegt
Im lichten Raum, von frommer Hand gepflegt,

Leg hin die Waagschal, nimmer dir erlaubt!

LaB ruhn den Stein — er trifft dein eignes Haupt!

.+ Selected
key passage

Friedrich Mergel, geboren 1738, war der cinzige Sohn eines E oder G
geringerer Klasse im Dorfe B.. das, so schlecht gebaut und rauchig es sein mag, doch das Auge jedes Reisenden
fesselt durch die iiberaus malerische Schonheit seiner Lage in der griinen Waldschlucht eines bedeutenden und
geschichtlich merkwiirdigen Gebirges. Das Lindchen, dem es angehdrte, war damals ciner jener abgeschlossenen

hatte sich neben dem gesetzlichen ein zwcllc: Recht gebildet, ein Recht der 6ffentlichen Meinung, der
G it und der durch Verjahrung. Dic Gutsbesitzer, denen die niedere

ihm ausfiihrbar und mit einem etwas weiten Gewissen vertriiglich schien, und nur dem Verlierenden fiel es zuweilen ein, in
alten staubichten Urkunden nachzuschlagen.

sic nicht begreift.
gkeit

albern gelobt worden, da den, der sie erlebte, zuviel teure E blenden und der S
Soviel darf man indessen behaupten, daB die Form schwiicher, der Kern fester, Vergehen hiufiger, Gewissenl

Ein unruhiger und
manches weit greller hervortreten als anderswo unter gleichen Umstinden. Holz- und Jagdfrevel waren an der
Tagesordnung, und bei den hiiufig vorfallenden Schliigereien hatte sich jeder selbst seines zerschlagenen Kopfes zu

Forsten gewacht, aber weniger auf gesetzlichem Wege als in stets emeuten Versuchen, Gewalt und List mit gleichen
Wafen zu iiberbieten.

DreiBig, vierzig Wagen zogen zugleich aus in den schénen Mondnéichten mit u
Mannschaft jedes Alters, vom halbwiichsigen Knaben bis zum siebzi

den Zug mit eleich stolzem BewuBtsein anfiihrte. als er seinen Sitz in der €

seltener waren. Denn wer nach seiner Uberzeugung handelt, und sei sie noch so mangelhaft, kann nie ganz zugrunde
gehen, wogegen nichts seelentdtender wirkt, als gegen das innere Rechtsgefiihl das duBere Recht in Anspruch nehmen.
als alle seine Nachbarn, lieB in dem kleinen Staate, von dem wir reden,

Erdwinkel ohne Fabriken und Handel, ohne HeerstraBen, wo noch ein fremdes Gesicht Aufsehen erregte und eine
Reise von dreiBig Meilen selbst den Vornehmeren zum Ulysses seiner Gegend machte - kurz, ein Fleck, wie es
deren sonst so viele in Deutschland gab, mit all den Miingeln und Tugenden, all der Originalitit und Beschriinktheit,
wie sie nur in solchen Zustinden gedeihen. Unter hichst einfachen und héiufig unzulinglichen Gesetzen waren die
Begriffe der Einwohner von Recht und Unrecht einigermaBen in Verwirrung geraten, oder vielmehr, es

Gerichtsbarkeit zustand, straften und belohnten nach ihrer in den meisten Fillen redlichen Einsicht; der Untergebene tat, was

Es ist schwr,jene Zeit unparteiisch ins Auge zu fassen; sic it scitihrem Verschwinden entweder hochmiitg getadelt oder

trosten. Da jedoch groBe und ergiebige Waldungen den Hauptreichtum des Landes ausmachten, ward allerdings scharf iiber die

um cine Art Eigenbewegung des Stoffes handelt.Paul Ernst: SchluBwort zur Judenbuche, in: Der Weg zur Form, Miinchen
1928, 5. 97. Heinz Réllcke versteht dic Erzihlung gar als das Resultat ciner halb- bzw. unbewuBten psychischen Dynamik: [...]
daB man [...] von ciner Art Eigenbewegung der Idec sprechen kann, der sich die Dichterin mehr oder weniger bewuBt
iiberlassen hat. Rollcke [Anm. 1], S. 420.
I

G isse und unhei G sind dic Faktoren in der Judenbuche . Der Text beginnt mit
cinem Gedicht, das cinerseits den Einflu ungeklirter psychlschc{ Vorgiinge beschreibt (Wo st die Hand so zart, da8 ohne
Irren / Si sondern mag Hirnes Wirren) un ‘Trennung zwischen dem Sclbst und dem Anderen
problematisiert (La8 ruhn den Stcin — er trifft dein clgncs Haupt).Annette von Droste-Hiilshoff: Dic Judenbuche, in: Werke in
cinem Band, Miinchen 1989, S. 629-683; Zitat: S. 629. Alle weiteren Scitenangaben werden in Klammern angegeben. Dic
Zeilen: Zu wiigen jedes Wort, das unvergessen / In junge Brust dic zihen Wurzeln trich / Des Vorurteils geheimen Seclendicb?
beschreiben dic Kraft cines verborgenen Wissens, das unter der Oberfliche des BewuBtseins, in der Metapher der Warzel , der
Seele cin fremdes Eigentum zufiihrt. Der Begriff Scelendicb veranschaulicht dic Gewal, die dic Anwescnheit fremden Wisscns
der cigenen Seele antut. Diese Gewalt wird verursacht durch cin Wort , das sich unvergessen in der Psyche des Empfingers
cinnistet. Im Unterschied zu der schlichten Negation nicht vergessen weist dic Wortwahl unvergessen auf cine aktive, virulente
Rolle dieses Wissens hin, denn in der Vorsilbe un wird der Unterschicd zwischen vergessen und nicht vergessen in der
Spannung gehalten. Diese Vorsilbe tritt in der Erzihlung auffallend hiufig auf und 138t sich, besonders durch das oft genannte
Wort unheimlich , thematisch aufs engste mit der problematischen Trennung von Vertrautem und Fremdem verkniipfen. Wie
Freud in seinem Aufsatz iiber das Unheimliche aufzeigt, sind die beiden Bedeutungen von heimlich (vertraut, zum Hause
gehirend. bzw. geheim, verborzen. fremden Augen entzogen) nicht cindeutiz von ihrer lexikalischen Negation unheimlich zu

Krauss, Das offene Geheimnis (1995)
= Wo st die Hand so z[[..] dnkten Himes Wirren
= LaB ruhn den Stein — .| ft dein eignes Haupt
= Zu wigen jedes Wort, [..] geheimen Seelendicb?
= In junge Brust die zihen Wurzeln tricb
Palmieri, Die Judenbud (1995)
1., geboren und gehegt
t dein eignes Haupt!

Informationen zur Stelle
= Stelle wird 77 Mal von 30 Werken zitiert.

10 wichtigste Segmente der Stelle
= LaB ruhn den Stein — [....] t dein cignes Haupt!
= Wer wagt es, citlen [....] utes Drang zu messen
= cin arm verkimmert Scin?
= Gliicklicher, geboren [....] rommer Hand gepflegt
= Wo ist die Hand so
= Leg hin dic Waagscha [...] nimmer dir erlaubt!
= In junge Brust die zihen Wurzeln tricb
= Zu wigen jedes Wort , das unvergessen
= zart ,da ohne frre [...] éinkten Hirnes Wirren
= So fest, dab ohne Zi [..] n Mag schlcudern auf

= LaB ruhn den Stein — [..] t dein cignes Haupt.
Klauser, Annette von Droste-Huelshoff (1996)

= Wo ist die Hand so [...] ein — er trifft dein
Ribbat, Stimmen und Schriften (1998)

= Du Gliicklicher, gebo [....] ommer Hand gepflegt.
Fricke, Verschleierung (1999)

= Leg hin die Wagschal [...] t dein eignes Haupt!
Renneke, Zwei Inschrift (000)

= LaB ruhn den Stein — [...] t dein eignes Haupt!

= LaB ruhn den Stein - [...] t dein eignes Haupt!
Keilbach-Sabath, Judenbuche (2001)

= Woist die Hand so z [...] t dein eignes Haupt!

= 1a8 ruhn den Stein — [....] ft dein cignes Haupt
Bonheim, Von der Wuerde (2002)

= Woist die Hand s0 z [..] t dein eignes Haupt!

= in junge Brust die zihen Wurzeln

= Wo ist die Hand so zart, daB ohne Irren
Goessmann, Die Judenbuche (2002)

= Leg hin die Waagscha [...] t dein eignes Haupt!
Grywatsch, Literaturgeschichte (2002)

= Wer wagt es, eitlen [...] tes Drang zu messen?
Laufhuette, Annette von Droste (2002)

= Leg hin die Wagschaa [...] t dein eignes Haupt!

Most quoted
segments

Scholarly works that
quote the selected
key passage

—

Figure 3: A screenshot of the website for visualizing and exploring key passages.

scholarly works from the list of all works. This will
show the text of the selected work in the top right
with all quotations highlighted.

7 Conclusion

We presented an approach for finding and visual-
izing key passages in literary works using schol-
arly works. For finding the quotations, we devel-
oped a system called Lotte by adapting Sim_text
(Grune and Huntjens, 1989). Our approach out-
performs prior approaches for text reuse detection.
The matches are further processed to identify key
passages by combining overlapping matches. We
also presented Annette, a website that visualizes
the literary work and scholarly articles together
with the found quotations and thus allows us to
explore the identified key passages and their ori-
gin. The current system only considers matches of
length five and greater. In the future, we want to
also identify shorter quotations and investigate how
much information these add compared to longer
ones. Another limitation of the current system is
the missing suppport for handling ambiguous quo-
tations. We have shown that this becomes more
relevant the longer the source texts are. One solu-
tion to resolve such cases could be to utilize page
references about the quoted passage, which are of-
ten included in the scholarly text. Furthermore,

62

we aim to identify and analyze paraphrases and
renarrations of literary works.

Acknowledgements

Parts of this research were funded by the German
Research Foundation (DFG) priority programme
(SPP) 2207 Computational Literary Studies project
What matters? Key passages in literary works
(grant no. 424207720).

References

Stephen F. Altschul, Warren Gish, Webb Miller, Eu-
gene W. Myers, and David J. Lipman. 1990. Basic
local alignment search tool. Journal of Molecular
Biology, 215(3):403-410.

Lou Bloomfield. Copyfind [online].

Marco Biichler. TRACER: A text reuse detection ma-
chine [online]. 2016.

Annette von Droste-Hiilshoff. 1979. Die Judenbuche.
Insel Verlag, Frankfurt am Main.

Dick Grune and Matty Huntjens. Detecting copied
submissions in computer science workshops [online].
1989.

Timothy C. Hoad and Justin Zobel. 2003. Methods for
identifying versioned and plagiarized documents. J.
Am. Soc. Inf. Sci. Technol., 54(3):203-215.

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://plagiarism.bloomfieldmedia.com/software/copyfind/
https://doi.org/21.11101/0000-0007-C9CA-3
https://doi.org/21.11101/0000-0007-C9CA-3
https://www.projekt-gutenberg.org/droste/judenbch/index.html
https://dickgrune.com/Programs/similarity_tester/Paper.pdf
https://dickgrune.com/Programs/similarity_tester/Paper.pdf
https://doi.org/10.1002/asi.10170
https://doi.org/10.1002/asi.10170

Sofia Kalaidopoulou. 2016. similarity texter: A text-
comparison web tool based on the “simtext” al-
gorithm. Bachelor’s thesis, Hochschule fiir Tech-
nik und Wirtschaft, Berlin. Source code avail-
able at https://people.f4.htw-berlin.
de/~weberwu/simtexter/app.html.

Heinrich von Kleist. 1978. Michael Kohlhaas. In
Michael Holzinger, editor, Werke und Briefe in vier
Binden, pages 7-113. CreateSpace Independent Pub-
lishing Platform.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10(8):707-710.

Derek Miller. To Quote or Not to Quote [online].

C. D. Paice. 1980. The automatic generation of liter-
ature abstracts: An approach based on the identifi-
cation of self-indicating phrases. In Proceedings of
the 3rd Annual ACM Conference on Research and
Development in Information Retrieval, SIGIR ’80,
page 172-191, GBR. Butterworth & Co.

Jonathan Reeve. Jonathanreeve/text-matcher: First zen-
odo release [online]. 2020. version 0.1.6.

M. Scott and C. Tribble. 2006. Textual Patterns: Key
Words and Corpus Analysis in Language Education.
Studies in corpus linguistics. J. Benjamins.

Malcolm Slaney and Michael Casey. 2008. Locality-
sensitive hashing for finding nearest neighbors. IEEE
Signal Processing Magazine, 25(2):128-131.

David A. Smith, Ryan Cordell, Elizabeth Maddock Dil-
lon, Nick Stramp, and John Wilkerson. 2014. Detect-
ing and modeling local text reuse. In Proceedings of
the 14th ACM/IEEE-CS Joint Conference on Digital
Libraries, JCDL ’14, page 183-192. IEEE Press.

TEI Consortium, eds. TEI P5: Guidelines for electronic
text encoding and interchange [online].

Aleksi Vesanto, Filip Ginter, Hannu Salmi, Asko Nivala,
and Tapio Salakoski. 2017a. A system for identify-
ing and exploring text repetition in large historical
document corpora. In Proceedings of the 21st Nordic
Conference on Computational Linguistics, pages 330—
333, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Aleksi Vesanto, Asko Nivala, Heli Rantala, Tapio
Salakoski, Hannu Salmi, and Filip Ginter. 2017b.
Applying BLAST to text reuse detection in Finnish
newspapers and journals, 1771-1910. In Proceed-
ings of the NoDaLiDa 2017 Workshop on Process-
ing Historical Language, pages 54-58, Gothenburg.
Linkdping University Electronic Press.

Simone Winko. The making of plausibility in inter-
pretive texts. Analyses of argumentative practices in
literary studies [online]. 2017-2020. DFG-funded
research project (grant no. 372804438).

63

Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. 2017. Re-
cent advances in document summarization. Knowl-
edge and Information Systems, 53(2):297-336.

https://people.f4.htw-berlin.de/~weberwu/simtexter/522789_Sofia-Kalaidopoulou_bachelor-thesis.pdf
https://people.f4.htw-berlin.de/~weberwu/simtexter/522789_Sofia-Kalaidopoulou_bachelor-thesis.pdf
https://people.f4.htw-berlin.de/~weberwu/simtexter/522789_Sofia-Kalaidopoulou_bachelor-thesis.pdf
https://people.f4.htw-berlin.de/~weberwu/simtexter/app.html
https://people.f4.htw-berlin.de/~weberwu/simtexter/app.html
http://www.zeno.org/nid/2000516902X
http://shakespeare.visualizingbroadway.com/index.html
https://doi.org/10.5281/zenodo.3937738
https://doi.org/10.5281/zenodo.3937738
https://doi.org/10.1109/MSP.2007.914237
https://doi.org/10.1109/MSP.2007.914237
http://www.tei-c.org/Guidelines/P5/
http://www.tei-c.org/Guidelines/P5/
https://www.aclweb.org/anthology/W17-0249
https://www.aclweb.org/anthology/W17-0249
https://www.aclweb.org/anthology/W17-0249
https://www.aclweb.org/anthology/W17-0510
https://www.aclweb.org/anthology/W17-0510
https://gepris.dfg.de/gepris/projekt/372804438?language=en
https://gepris.dfg.de/gepris/projekt/372804438?language=en
https://gepris.dfg.de/gepris/projekt/372804438?language=en
https://doi.org/10.1007/s10115-017-1042-4
https://doi.org/10.1007/s10115-017-1042-4

