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Abstract

There has been a massive surge of Natural
Language Generation (NLG) models in the re-
cent years, accelerated by deep learning and
the availability of large-scale datasets. With
such rapid progress, it is vital to assess the ex-
tent of scientific progress made and identify
the areas/components that need improvement.
To accomplish this in an automatic and reli-
able manner, the NLP community has actively
pursued the development of automatic evalua-
tion metrics. Especially in the last few years,
there has been an increasing focus on evalu-
ation metrics, with several criticisms of exist-
ing metrics and proposals for several new met-
rics. This tutorial presents the evolution of au-
tomatic evaluation metrics to their current state
along with the emerging trends in this field
by specifically addressing the following ques-
tions: (i) What makes NLG evaluation chal-
lenging? (ii) Why do we need automatic evalu-
ation metrics? (iii) What are the existing auto-
matic evaluation metrics and how can they be
organised in a coherent taxonomy? (iv) What
are the criticisms and shortcomings of existing
metrics? (v) What are the possible future di-
rections of research?

1 Tutorial Content Description

Natural Language Generation (NLG) encompasses
various tasks that require an automatic generation
of human-understandable text such as Machine
Translation, Abstractive Summarization, Question
Answering, Data-to-text Generation, Dialogue Sys-
tems, etc. Each of these tasks has several use-cases
with numerous models proposed over the years.
The successful application of machine learning and
deep learning techniques has transformed the main-
stream models for NLG from rule-based systems
to data-driven, end-to-end trainable systems. The
easier availability of datasets and access to power-
ful computing resources has led to the wide-spread
adoption of these techniques and rapid develop-
ments in the field. To track the developments and
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understand the scientific progress made, these NLG
systems need to be evaluated carefully. The ideal
way to do so would be to employ expert human
evaluators. However, this option would be very
time-consuming and expensive, and is thus infea-
sible. Hence the community has settled for auto-
matic evaluation metrics to track scientific progress
in this field.

Automatic Evaluation metrics such as BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and Lavie,
2005), ROUGE (Lin, 2004) have been around
for several years and are still predominantly used.
They have also been readily adopted for newer
tasks in NLG such as Question Generation, Image
Captioning, etc, due to the lack of any other rele-
vant metrics. However, there has been heavy criti-
cism for such an adoption of metrics across tasks,
corroborated by their poor correlations with human
judgements (Liu et al., 2016; Nema and Khapra,
2018; Dhingra et al., 2019). Several new metrics
are being proposed to address the shortcomings of
the existing ones (Sai et al., 2020b). The emerging
metrics also explore the idea of using the context
provided for the task (such as a document, image,
passage, or tabular data, and so on), unlike BLEU,
METEOR, ROUGE, etc. This has lead to the devel-
opment of ‘context-dependent metrics’ alongside
the ‘context-free metrics’.

Both the context-free and context-dependent
metrics can be categorized based on their underly-
ing technique into trained metrics and untrained
(i.e., rule-based/ heuristic-based) metrics. Un-
trained metrics can be further classified depend-
ing on whether they are word-based (Papineni
et al., 2002; Banerjee and Lavie, 2005; Lin, 2004;
Snover et al., 2006; Druck and Pang, 2012; Dhingra
etal., 2019), character-based (Popovic, 2015; Wang
et al., 2016), or embedding-based (Rus and Lintean,
2012; Forgues et al., 2014; Kusner et al., 2015;
Mathur et al., 2019; Zhang et al., 2019). Similarly,
trained metrics are sub-categorized depending on
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whether they need input features (such as preci-
sion, recall, number of words in a sentence, etc,)
(Stanojevic and Sima’an, 2014; Ma et al., 2017;
Nema and Khapra, 2018) or whether they extract
the features from the input sentences in an end-to-
end manner (Lowe et al., 2017; Tao et al., 2018;
Cui et al., 2018; Shimanaka et al., 2018; Wieting
et al., 2019; Sellam et al., 2020; Sai et al., 2020a).
In this tutorial, we provide an overview of these
different techniques that have been used to formu-
late automatic evaluation metrics. We also discuss
the studies that analyze/inspect these metrics and
report their shortcomings. The major criticisms
on the metrics include the uninterpretability of the
scores (Zhang et al., 2004; Callison-Burch et al.,
2006), bias towards specific models (Dusek et al.,
2020) or scores (Sai et al., 2019), and their inability
to capture all the nuances in a task (Ananthakrish-
nan et al., 2006). We conclude by presenting the
possible next directions of research in automatic
evaluation metrics.

1.1 Relevance to computational linguistics
community

There is a necessity to compare the myriad of mod-
els being proposed for various NLG tasks and scru-
tinize the progress carefully. Towards this objective,
the topic of evaluation metrics has been highly rel-
evant to the linguistics community, in general, and
to researchers working on various tasks in NLG, in
particular. The number of research papers that crit-
ically examine the existing metrics and/or propose
new metrics has been rapidly increasing. For ex-
ample, at least 40 new metrics have been proposed
since 2014 for various NLG tasks. We thus believe
that the topic of automatic evaluation metrics is
garnering more interest in the recent years. This
tutorial aims to bring new and existing researchers
up-to-speed on the developments related to this
topic.

2 Type of the Tutorial

Cutting-edge: This tutorial will follow the growth
of automatic evaluation metrics over the years,
starting with the initial metrics that are still pop-
ularly used today, and building up to the more
recent metrics. Substantial emphasis will be
given to the recent trends and emerging direc-
tions of research on this topic. To the best of
our knowledge such a tutorial on evaluation met-
rics has not been conducted so far in any of the
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ACL/EACL/TICNLP/EMNLP/NAACL venues.

3 Tutorial Structure and Schedule
Outline

We plan a 3 hour tutorial based on the following
content and associated time estimates.

e Introduction (20 min)

— NLG (A brief history)

— Have we made progress?

— Quantifying progress
+ Human/Manual Evaluation
+ Automatic Evaluation

— Tutorial Roadmap

* Challenges of Automatic Evaluation of NLG
tasks (20 min)

— Breakdown of evaluation criteria for dif-
ferent tasks
+ Machine Translation
+ Abstractive Summarization
+ Question Answering

*

Question Generation
Data-to-Text Generation
Dialogue Generation

* Kk ¥

Image Captioning

— Summary of the Challenges

* Taxonomy of Automatic Evaluation Metrics
in use (10 min)
— Context-free v/s Context-dependent met-
rics
— Trained metrics v/s Untrained (/heuristic-
based) metrics

— Task-specific v/s Task-agnostic metrics

¢ Context-free metrics (30 min)

— Untrained metrics
+ Word or character based metrics
+* Embedding based metrics
— Trained metrics
+ Feature-based metrics
+ End-to-end trained metrics

* Context-dependent metrics (30 min)

— Untrained metrics

— Trained metrics



* Shortcomings identified in existing metrics
(40 min)

— Poor correlations

— Uninterpretability of scores

— Bias in the metrics

— Poor adaptability across tasks

— Inability to capture all nuances in a task

¢ Conclusions and future research directions (10
min)

4 Prerequisites

We aim to present the tutorial in a self-contained
manner, accommodating audience with various
backgrounds. However, it would be helpful to have
basic knowledge about Natural Language Process-
ing, Machine Learning, and Deep Learning meth-
ods (such as Word embeddings, Recurrent Neu-
ral Networks, Sequence-to-sequence models, and
Transformers).

5 Presenters

Mitesh M. Khapra, Assistant Professor, Indian
Institute of Technology Madras

Email: miteshk @cse.iitm.ac.in

Site: http://www.cse.iitm.ac.in/~miteshk/
Mitesh M. Khapra is an Assistant Professor
in the Department of Computer Science and
Engineering at II'T Madras and is affiliated with
the Robert Bosch Centre for Data Science and Al.
He co-founded One Fourth Labs, with a mission
to design and deliver affordable hands-on courses
on Al and related topics. He is also a co-founder
of Al4Bharat, a voluntary community with an aim
to provide Al-based solutions to India-specific
problems. His research interests span the areas
of Deep Learning, Multimodal Multilingual
Processing, Natural Language Generation, Dialog
systems, Question Answering and Indic Language
Processing. He has publications in several top
conferences and journals including TACL, ACL,
NeurIPS, ICLR, EMNLP, EACL, AAAI, etc.
He has also served as Area Chair or Senior PC
member in top conferences such as ICLR and
AAAI. Prior to IIT Madras, he worked as a
Researcher at IBM Research India for four and
half years. While at IBM, he worked on several
interesting problems in the areas of Statistical
Machine Translation, Cross Language Learning,
Multimodal Learning, Argument Mining and Deep
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Learning. Prior to IBM, he completed his PhD
and M.Tech from IIT Bombay in Jan 2012 and
July 2008 respectively. His PhD thesis dealt with
the important problem of reusing resources for
multilingual computation. During his PhD he was
a recipient of the IBM PhD Fellowship (2011) and
the Microsoft Rising Star Award (2011). He is also
a recipient of the Google Faculty Research Award
(2018), the IITM Young Faculty Recognition
Award (2019), and the Prof. B. Yegnanarayana
Award for Excellence in Research and Teaching
(2020). He has previously presented tutorials
at NAACL 2016 on “Multilingual Multimodal
Language Processing Using Neural Networks™ and
“Statistical Machine Translation between Related
Languages”.

Ananya B. Sai, PhD student, Indian Insti-
tute of Technology Madras

Email: ananya@cse.iitm.ac.in

Site: https://ananyasaib.github.io/

Ananya Sai is currently a PhD student in the
Department of Computer Science and Engineering
at [IT Madras working with Dr. Mitesh M. Khapra.
Her research interests include Natural Language
Processing, Deep Learning, Adversarial Attacks,
and Dialog Systems. Some of her recent research
works are related to adversarial attacks on trained
evaluation models. These include whitebox
attacks and synthetic or human crafted adversarial
modifications of the input sentences to fool the
models. She has co-created a multi-reference
dialogue dataset and has explored the benefits of
task-specific pretraining for evaluating dialogue
systems. She is a recipient of Google PhD Fellow-
ship (2019) and the Prime Minister Fellowship
for Doctoral Research (2020). She has published
papers in TACL, AAAI, and IJCAL
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