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Introduction

Welcome to the NAACL 2021 Student Research Workshop!

The NAACL 2021 Student Research Workshop (SRW) is a forum for student researchers in
computational linguistics and natural language processing. The workshop provides a unique opportunity
for student participants to present their work and receive valuable feedback from the international
research community as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for Ph.D. students, Masters students, and
advanced undergraduates to describe completed work or work-in-progress along with preliminary results.
The thesis proposal track is offered for advanced Masters and Ph.D. students who have decided on a thesis
topic and are interested in feedback on their proposal and ideas about future directions for their work.

This year, we received 50 submissions in total. We accepted 22 papers, with an acceptance rate of 44

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 12 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive comments from an
experienced researcher to improve the writing style and presentation of their submissions.

We are deeply grateful to our sponsor, the National Science Foundation. We thank our program
committee members for their careful reviews of each paper and all of our mentors for donating their
time to provide feedback to our student authors. Thank you to our faculty advisors, Nanyun Peng and
Yu Su, for their essential advice and guidance, and to the NAACL 2021 organizing committee for their
support. Finally, thank you to our student participants!
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Sampling and Filtering of Neural Machine Translation Distillation Data

Vilém Zouhar
Institute of Formal and Applied Linguistics, Charles University

zouhar@ufal.mff.cuni.cz

Abstract

In most of neural machine translation distil-
lation or stealing scenarios, the goal is to
preserve the performance of the target model
(teacher). The highest-scoring hypothesis of
the teacher model is commonly used to train a
new model (student). If reference translations
are also available, then better hypotheses (with
respect to the references) can be upsampled
and poor hypotheses either removed or under-
sampled.

This paper explores the importance sampling
method landscape (pruning, hypothesis upsam-
pling and undersampling, deduplication and
their combination) with English to Czech and
English to German MT models using standard
MT evaluation metrics. We show that careful
upsampling and combination with the original
data leads to better performance when com-
pared to training only on the original or syn-
thesized data or their direct combination.

1 Introduction

Model distillation is a process of transferring the
knowledge of one or more, usually larger, model(s)
into another, usually smaller, model (Buciluǎ et al.,
2006). A variation of this is training a new model in
a way that its performance is similar to that of the
already trained one. This is achieved by making use
of either teacher predictions (black-box) or other
products of the workings of the teacher, such as
attention-score or decoder score (grey/glass-box).
Assuming we have access to a parallel corpus, we
focus on sampling the translation hypotheses and
making use not only of the teacher scores but also
of their comparison to the reference.

There are various possible motivations for model
distillation. The student model can be much smaller
than the teacher model, which has the benefit of
faster inference speed (Germann et al., 2020). It
can also be used for model stealing, where an adver-
sary tries to copy the teacher functionality. This is a

practical concern for production-level MT systems
(Wallace et al., 2020).

One of the approaches for knowledge distillation
is to use the teacher model to generate a new dataset
for the student model to train on. Having access
to a trained teacher model, this approach does not
require parallel data and can leverage large mono-
lingual corpora. Reference translations, however,
help with determining which of the teacher’s trans-
lations are good and which are of low quality.

We focus on this approach and propose and com-
pare several importance sampling approaches to
prepare training data for student models that lever-
age access to reference translations. These include
pruning, upsampling and undersampling, dedupli-
cation and their combination. We show that a com-
bination of these methods improves the student
performance over just using the reference or the
best hypothesis (by the decoder score), which is a
common distillation practice.

The experiment code is available open-source.1

1.1 Related work
The general methodology for knowledge distilla-
tion in the form of teacher-student has been pro-
posed by Hinton et al. (2015). For the MT task
specifically, Tan et al. (2019) focus on vastly reduc-
ing the number of parameters, while retaining the
performance of a multi-lingual teacher. Wei et al.
(2019) and Gordon and Duh use distillation during
training to further improve the model performance.

The work of Kim and Rush (2016) shows that
taking either the top sentence with respect to the
teacher decoder score or BLEU (Papineni et al.,
2002) improves the performance. Germann et al.
(2020) presented student models that distil knowl-
edge from a larger teacher model with a negligible
loss in performance. They manipulate the queried
data based on target sentence quality, such as by re-
moving sentences that are not correctly recognized

1github.com/zouharvi/reference-mt-distill
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by a language identifier. For the parallel part of the
data, they extract the best BLEU scoring sentence
out of 8 hypotheses. Freitag et al. (2017) experi-
ment with pruning sentences that are below some
TER (Snover et al., 2006) threshold (lower is bet-
ter). They further document the effect of using an
ensemble of teachers and also reducing the student
model size.

2 Methods

The evaluation of every sampling method follows
the following three-step process. First, the spe-
cific parallel corpus (Section 2.1) is translated by
the teacher model (Section 2.2) for the consid-
ered translation direction. New datasets based on
metrics are then created. The reference is taken
into consideration during the hypothesis selection.
We train new models (students) on these datasets
and measure their performance. There are 12 hy-
potheses (default in Marian NMT) provided by the
teacher using beam search for every source sen-
tence which we consider when composing a new
dataset.

Source 
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Figure 1: Scheme of an example of hypothesis sam-
pling with BLEU metric.

Figure 1 shows an example of the sampling pro-
cess with BLEU. Twelve translations are made of
Source and each receives a score against the pro-
vided reference. The new data contain Translation
2 three times, because of its high score. Transla-
tion 12 is omitted because of its low score. This
upsampling is explained in detail in Section 2.3.

2.1 Data

We make use of the Europarl v10 parallel corpus
(Koehn, 2005) for English-Czech (0.6M sentences)
and English-German (1.8M sentences). The sen-
tences are longer (23 target words per sentence on
average) than in the WMT News Task domain (Bar-
rault et al., 2020). To modern standards, this dataset
is relatively small and very domain restricted. This
was chosen deliberately because of computational
limitations.2 Despite that it demonstrates the re-
sults of the different sampling methods with respect
to each other. These results may not be transferable
to large parallel corpora in which training data is
abundant.

For every language pair, we randomly sample
15k sentences as development dataset (used only
for determining the best epoch and early stopping)
and 15k sentences for final test evaluation which
is reported. The WMT News test dataset is not
used for student evaluation, because the students
are trained on a limited amount of data and on
a different domain. Out of the WMT20 News to-
kens, 0.18% are not present in the Europarl training
set. This would introduce a higher variance into
the WMT News test evaluation, which would be
largely dependent on the diversity of the teacher
vocabulary.

2.2 Models

The teachers3 in this experiment are transformer-
based (Vaswani et al., 2017), speed optimized
and were themselves created by knowledge dis-
tillation from state-of-the-art models (Popel et al.,
2020; Junczys-Dowmunt, 2019), as proposed by
Germann et al. (2020). The Czech↔English
model is described by Germann et al. (2020) and
the English→German model by Bogoychev et al.
(2020). Our student models follow the teacher’s
architecture with half the size of the embedding
vector (256 instead of 512) and half of the attention
heads (4 instead of 8). Student models were trained
with an early stopping of 20 evaluations on vali-
dation data with evaluation performed every 10k
sentences. Vocabularies were not shared from the
teacher because they did not affect the results, and
not using them makes fewer assumptions regarding
the level of access to the teacher model. Marian
NMT (Junczys-Dowmunt et al., 2018) is used for
teacher decoding and student training.

2∼4500 GPU hours in total for the whole experiment
3Version student.base at github.com/browsermt/students
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Table 1 shows the teacher performance measured
on WMT20 News and the test subset of Europarl.
Czech models performed better on the Europarl
than on the News task, while for the German model
the trend was the opposite. This may be caused
by the fact that the models were distilled from a
system that had Europarl as part of the training
data, CzEng 2.0 (Kocmi et al., 2020).

Dataset: CS→EN EN→CS EN→DE

BLEU:
WMT20 News 28.2 35.8 42.7
Europarl 46.1 38.2 32.1

ChrF:
WMT20 News 0.57 0.55 0.66
Europarl 0.69 0.64 0.61

TER:
WMT20 News 0.57 0.71 0.51
Europarl 0.41 0.50 0.61

Table 1: Teacher models BLEU, ChrF and TER scores
on WMT20 News Task dataset and Europarl domain.

2.3 Sampling
Concerning the sampling metrics (always between
the considered hypothesis and the reference), we
make use of BLEU, ChrF (Popović, 2015), TER
(negative), the difference (negative of absolute
value) in subword unit counts by SentencePiece
(Kudo and Richardson, 2018) (SP) and decoder
probability divided by the number of output tokens
(score). TER and SP are negative in Section 3 so
that higher is always better. The motivation for SP
is to capture the difference in length of the hypothe-
ses with respect to the reference. This is a very
naive metric, but we can use it to see the perfor-
mance and the behaviour of all the other metrics.
Although BLEU is a document-level metric, it can
also be used to determine sentence similarity. Stan-
dard machine translation metrics4 are computed
using Sacrebleu (Post, 2018). Different sampling
methods are used even though the goal is to maxi-
mize the BLEU scores of the student models. There
is no reason to assume that sampling only based on
BLEU will lead to the best results.

The number of training sentences differs for ev-
ery method. We define the following notation.

4Sacrebleu metrics version strings:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+v1.4.14
ChrF2+numchars.6+space.false+v1.4.14
TER+tok.tercom-nonorm-punct-noasian-uncased+v1.4.14

• T - top; Tn
metric takes n top translation hypothe-

ses according to metric; equal to S
1,1,...1(n)
metric .

The student model may benefit from seeing e.g.
the second best hypothesis, even though it’s
not the best available. This results in n times
the number of original sentences which are all
different.

• S - skewed; Sk1,k2,...kn
metric takes k1× the top trans-

lation hypotheses according to metric, k2×
the second top translation, etc. As opposed
to Tn

metric, this method tries to preserve the in-
formation of the ordering by setting k1 ≥ k2 ≥
. . . kn. This results in (

∑
ki) times the number

of original sentences but only n times of which
are different sentences.

• Dedup[X] deduplicates sentence pairs of X .
It is used after joining the results of other meth-
ods. This method is useful for emulating the
or operation: Dedup[A+B] then means “all
sentences in either A or B.” The output size is
strictly dependent on their overlap.

• G - greater than;Gm
metric takes all sentence trans-

lations with metric at least m. This results in
sentences that are close to the reference ac-
cording to the metric. The number of output
sentences highly dependent on the threshold
and is discussed in the corresponding section.

Sampling methods can be combined: T 2
bleu +

G−10
score joins the top 2 sentences measured by BLEU

and adds them to the hypotheses with decoder score
of at least −10. Duplicates are intentionally not re-
moved; thus, hypotheses in both sampling methods
are upsampled.

3 Results

Baseline. Table 2 shows results for baseline sam-
pling methods. Original corresponds to training
only to the provided parallel corpus (references).
T 1

score takes only the highest-scoring hypothesis
from the decoder, which is related to the scenario
where the reference is not available, and the de-
coder score is the best measure for hypothesis qual-
ity.5 The sampling method T 12

− takes all available
hypotheses (metric does not matter).

Training on the original data leads to better re-
sults than training on the best scoring hypotheses.

5MT quality estimation tools could be used to approximate
the sentence translation quality or language models to use
sentence fluency in lieu of translation quality.
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Dataset CS→EN EN→CS EN→DE

Original 41.6 31.8 25.1

T 1
score 40.0 31.2 28.5

T 12
− 41.1 31.6 28.4

Table 2: BLEU scores for students trained on baseline
datasets

Training on all hypotheses results in slightly lower
BLEU performance. This may be caused by the
small amount of training data available in which
case taking all hypotheses just improves the vocab-
ulary and language modelling capacity.

Best hypotheses. The results of datasets created
by taking either the best one or the four best hy-
potheses for every source sentence is shown in Ta-
ble 3. In the case of multiple hypotheses having the
same score, the one with the highest decoder score
is chosen. The top one and top four hypotheses
were chosen to show that the optimum is neither
the top one nor the top twelve (all) hypotheses.

On average, the hypothesis overlap6 in sampling
between metrics is 29% for T 1 and 51% for T 4.
This is expected and shows that when more top
hypotheses are taken into the new dataset, the indi-
vidual metrics tend to matter less.

Dataset CS→EN EN→CS EN→DE

T 1
BLEU 42.6 34.4 29.5

T 1
ChrF 43.8 33.9 30.5

T 1
TER 43.0 36.1 28.5

T 1
SP 39.9 29.5 28.2

T 4
BLEU 44.0 33.3 29.3

T 4
ChrF 44.3 34.9 29.6

T 4
TER 44.2 32.0 28.8

T 4
SP 41.8 32.3 27.9

T 4
score 44.2 32.0 28.8

Table 3: BLEU scores for students trained on best-one
and best-four hypotheses datasets

Taking only the top-scoring hypothesis of
reference-based metrics, T 1 showed better results
than the baseline (training on the original data, tak-

6Overlap computed as averagem1 6=m2|T 1
m1 ∩ T 1

m2|/n and
averagem16=m2|T 4

m1 ∩ T 4
m2|/(4n). Original data size is n.

ing the highest decoder scoring hypothesis or tak-
ing all hypotheses). In all cases the T 4 outper-
formed T 1. The main gains were on CS→EN and
EN→CS. Although the results on EN→DE are
only slightly better than the baseline, they are sys-
tematic across all metrics except for SP. The effect
of choosing the metric for the top four hypotheses
seems marginal, even compared to sampling based
on the decoder score. The only exception is the SP
difference, which leads to lower results.

Thresholding. Determining a single threshold
for all datasets leads to a vastly different number
of hypotheses being selected (the use of G65

BLEU re-
sults in 1.3× the original dataset for CS→EN, but
0.6 for EN→DE). Therefore, we establish differ-
ent metric thresholds for every dataset so that the
new datasets are 1× to 1.5× the original size for
consistent results across language pairs.

Some of the source sentences were easier to
translate, and more of their hypotheses were put
into the new dataset. Others had no hypothesis
above a given threshold and were not included in
the new data at all. On average only 25% of orig-
inal sentences were preserved for BLEU, ChrF,
TER and SP. For the decoder score metric, it is
46%. The high loss of source sentences is expected
since most of the hypotheses share large portions of
the target sentence and only differ in a few words.
All of them will then behave similarly with respect
to the metric.

Dataset CS→EN EN→CS EN→DE

GBLEU 39.0 65 30.2 60 27.2 55

GChrF 37.4 0.82 29.2 0.81 26.5 0.80

GTER 37.8−0.2 30.2−0.25 25.2−0.24

GSP 32.5 –1 19.6 –2 23.0 –1

Gscore 39.0 –0.08 32.0 –0.09 27.6 –0.11

Table 4: BLEU scores for students trained on datasets
made of hypotheses above threshold of different met-
rics. Metrics thresholds are in subscript.

The highest performance is achieved using
Gscore which can be explained by how much of the
original sentences were preserved. Gscore shows
that it is possible to achieve a performance com-
parable to T 1

score with less than half of the source
sentences by only taking all hypotheses with a de-
coder score above a threshold. GBLEU gets worse
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results (on average −1.1 BLEU), but with only
27% source sentences preserved.

Better performance could be achieved by lower-
ing the threshold to allow more source sentences
and by intersecting the result with some of the other
sampling methods, thus eliminating only the very
low-quality sentence pairs. This is the approach
(done with 5 hypotheses) done by Freitag et al.
(2017): T 1

score ∩G−0.8
TER.

Upsampling. In the first upsampling case,
S4,3,2,1, the best hypothesis is present four times,
the second-best three times, the third-best two
times and the fourth-best once. The reason for up-
sampling better hypotheses is that we want to force
the optimizer to make bigger steps for sentence
pairs that are of high quality, but at the same time,
we want to present other hypotheses to enlarge
the vocabulary and improve the student’s language
model. The most straightforward approach is to put
multiple copies of the high-quality example into the
dataset. We also experiment with S2,2,1,1, because
the upsampling intensity for every hypothesis rank
is an independent variable as well. Both of these
schemes are relatively conservative so that they can
be compared to each other and to T 4. Results for
upsampling within a single metric are shown in
Table 5.

Dataset CS→EN EN→CS EN→DE

S4,3,2,1
BLEU 45.2 37.1 29.7

S4,3,2,1
ChrF 42.9 36.6 30.1

S4,3,2,1
TER 44.4 36.9 29.8

S4,3,2,1
SP 41.8 30.7 28.5

S4,3,2,1
score 41.4 33.7 27.9

S2,2,1,1
BLEU 44.3 36.5 29.6

S2,2,1,1
ChrF 45.2 36.1 29.8

S2,2,1,1
TER 43.5 33.4 29.6

S2,2,1,1
SP 41.8 33.3 28.9

S2,2,1,1
score 43.5 33.4 29.6

Table 5: BLEU scores for students trained on datasets
made by upsampling top hypotheses within a single
metric using S4,3,2,1 and S2,2,1,1

Both versions of upsampling (S4,3,2,1 and
S2,2,1,1) outperformed all of the previous results.
There seems to be no systematic difference between
S4,3,2,1 and S2,2,1,1. With the exception of SP and

decoder score, the metrics are comparable. A direct
comparison can be made to T 4 = S1,1,1,1 because
both T 4 and the upsampling methods contain all
source sentences and even the same hypotheses.
The only difference is that in the upsampling case,
the better hypothesis is upsampled. In this case
S2,2,1,1 had higher results over T 4 with p < 0.005
by Student’s t-test.7

Combination. For the combination scenarios,
the newly sampled datasets are joined together.
This is shown in Table 6. In the first four cases,
the sampling methods were joined with the original
data. A baseline to this is T 1

score + Original, which
is commonly used for distillation.

Deduplicating the top four hypotheses accord-
ing to BLEU or decoder score and adding them to
the original data did not improve over the baseline.
Combining the upsampling according to the de-
coder score with the original data also did not help.
Replacing the decoder score with BLEU resulted
in a significant improvement. The original data is
upsampled so that the ratio of synthetic to original
data is 4:1 in the first case and 2:1 in the second
one.

For the rest of the cases, the methods are com-
bined without the original data. Baselines are
shown in Table 2. The combination of the top
four hypotheses (T 4

BLEU or T 4
score) with all of the

hypotheses, T 12
− , improved over the baseline, in-

cluding T 12
− , but performed poorly with respect to

the other methods. Taking hypotheses that are in
the top four according to either BLEU or decoder
score leads to the best results in this section. The
top one hypothesis, according to BLEU, is upsam-
pled at least two and at most four times. This seems
to work best for EN→DE where the training data
were three times larger.

Bigger student model. To demonstrate the data
sampling method behaviour on slightly larger mod-
els, the common distillation baseline (T 1

score +
Original) and the best performing proposed sam-
pling method (S4,3,2,1

BLEU +4×Original) were used to
train a student of the same size as the used teacher
(embedding vector dimension 512 and 8 attention
heads). The results are shown in Table 7. They are
systematically higher than for the smaller models,
and the difference between the baseline and the
best sampling is preserved.

7Average was subtracted from the three directions so that
T 4 and S2,2,1,1 could be treated as only two distributions.
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Dataset CS→EN EN→CS EN→DE

T 1
score + Original 44.4 36.4 28.3

Dedup[T 4
BLEU + T 4

score] + Original 43.7 35.3 29.1

S4,3,2,1
score + 2× Original 43.9 36.1 28.3

S4,3,2,1
BLEU + 2× Original 45.5 37.3 28.8

S4,3,2,1
BLEU + 4× Original 45.5 ? 37.4 ? 28.9

T 4
score + T 12

− 41.6 33.2 28.3

T 4
BLEU + T 12

− 42.6 33.9 28.7

T 4
BLEU + T 4

score 43.3 33.2 28.9

Dedup[
∑
T 2

metric] 43.6 34.7 29.1

Dedup[
∑
T 2

metrics] + T 12
− 40.8 32.0 27.2

Dedup[T 4
BLEU + T 4

score] + T 1
BLEU + T 1

score 43.5 34.7 29.2

Dedup[T 4
BLEU + T 4

score] +Dedup[T 1
BLEU + T 1

score] 42.6 34.9 29.6 ?

Dedup[T 4
BLEU + T 4

score] 43.5 35.0 29.3

Table 6: BLEU scores for students trained on datasets made of combination of sampling methods.
∑

metric sums
over all used metrics (BLEU, ChrF, TER, SP, score).

Dataset CS→EN EN→CS EN→DE

T 1
score + Original 44.7 36.2 28.3

Dedup[T 4
BLEU + T 4

score]+ Original 44.3 36.2 28.5

S4,3,2,1
BLEU + 2× Original 46.9 38.5 28.8

S4,3,2,1
BLEU + 4× Original 47.4 ? 38.9 ? 28.9

Table 7: BLEU scores for students trained on datasets made of combination of top hypothesis and original data.
Trained with parameters equal to the teacher’s: embedding vector dimension 512 and 8 attention heads.

4 Summary
Although widely used, taking only the highest-
scoring sentence (with respect to the decoder score
or any reference-based metrics, such as BLEU)
does not lead to the best results. In the context of
the proposed experiments, these are achieved by
a combination of top hypotheses and the original
data, such as S4,3,2,1

BLEU +4×Original (upsampling ac-
cording to BLEU and joining with the original data
duplicated four times). Here, an improvement of an
average +2 BLEU points against T 1

score + Original
was achieved.

The choice of the sampling metric does not sig-
nificantly influence the results, especially in cases
where more than the top one hypothesis is sampled.
Because of this, in most scenarios the decoder score
can be used instead, reducing the need for transla-
tion references.

Future work. We worked with only two upsam-
pling schemes: S4,3,2,1 and S2,2,1,1. However, the
two vectors are arbitrary and more of the vast vec-
tor space should be explored, especially with more
than the top four hypotheses considered or more
skewed towards the best hypothesis. More sophis-
ticated methods based on the value of the metric
instead of just the ordering could also be tried out.

The effects of large models (both teacher and
student) and data access should be explored to ver-
ify the transferability of the results of the current
setup. Specifically, the teacher model should not
be a distilled model itself. The robustness of the
training should also be established.

Even though this paper focused solely on MT,
the importance sampling methods could also be
applied and verified on other NLP tasks, possibly
even on more general machine learning problems.
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Abstract

Automatic Text Summarization (ATS) is the
task of generating concise and fluent sum-
maries from one or more documents. In
this paper, we present IceSum, the first Ice-
landic corpus annotated with human-generated
summaries. IceSum consists of 1,000 online
news articles and their extractive summaries.
We train and evaluate several neural network-
based models on this dataset, comparing them
against a selection of baseline methods. The
best model obtains a ROUGE-2 recall score
of 71.06, outperforming all baseline methods.
Furthermore, we evaluate how the amount of
training data affects the quality of the gener-
ated summaries. Our results show that while
the corpus is sufficiently large to train a well-
performing model, there could still be signifi-
cant gains from increasing the size of the train-
ing set. We release the corpus and the models
with an open license.

1 Introduction

Due to the increasing number of articles being pub-
lished online every day, there is a growing need
for robust Automatic Text Summarization (ATS)
systems, which provide readers with a concise and
fluent summary of their contents.

ATS systems are often divided into two main
types (Gambhir and Gupta, 2017). First, based on
the number of source documents used to generate
a given summary, i.e. either single-document or
multi-document summarization. In single docu-
ment summarization, a single document is used
for generating the summary, whereas in multi-
document summarization many documents are
used as the source for the generated summary.

The second type is based on the method used to
generate the individual sentences in the summary,
i.e. either extractive or abstractive summarization.
Extractive summaries typically consist of sentence-
level excerpts from the source document(s), and

therefore tend to be grammatically correct and flu-
ent. In contrast, abstractive summaries may contain
words, phrases and sentences that do not occur in
the original text. These summaries may also in-
troduce grammatical errors and contain statements
that are inconsistent with the source text.

Research on ATS for Icelandic has been lim-
ited to the evaluation of simple statistical methods
(Christiansen, 2014) (described in Section 2). Fur-
thermore, to our best knowledge, no ATS system
is currently in use in companies or institutions in
Iceland.

In this paper, we present IceSum, a corpus of
1,000 Icelandic news articles that can be used to
train and evaluate Icelandic ATS systems. We
continue previous work on summarizing Icelandic
text by evaluating more recently proposed meth-
ods for extractive summarization, using neural
network-based encoder-decoder models and pre-
trained language models. We benchmark several
single-document ATS models on this dataset and
compare them against previously published meth-
ods. The best performing model obtains a ROUGE-
21 (Lin, 2004) recall score of 71.06. This is the
first ATS model for Icelandic which obtains a bet-
ter result than the Lead baseline method (described
in Section 4), which obtains a score of 69.14.

Lemmatization is often employed as a pre-
processing step for NLP tasks in Icelandic, as it
dramatically reduces the size of the vocabulary.
Although it has been shown to be beneficial for
tasks such as named entity recognition (Ingólfs-
dóttir et al., 2020), information extraction (Ste-
ingrímsson et al., 2020) and machine translation
(Barkarson and Steingrímsson, 2019), previous ex-
periments with non-neural network-based models
failed to show any improvement for extractive text
summarization. We find that the same holds true for
neural network-based models. Finally, we examine

1ROUGE-n refers to the overlap of n-grams between the
system and the gold summaries.
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the relationship between the size of the training set
and the quality of the generated summaries and find
that increasing the size of the corpus would likely
lead to significantly better results. We release the
corpus2 and the models3 with an open license.

The rest of this paper is structured as follows. We
discuss related work in Section 2 and present the
summarization corpus in Section 3. The methods
are presented in Section 4 and the experimental
setup in Section 5. We present and discuss the
evaluation results in Section 6, and, finally, we
conclude in Section 7.

2 Related Work

A standard approach to extractive summarization
involves allocating a score to each sentence, tak-
ing into account certain features, and selecting the
most important sentences according to this score.
Many different approaches have been proposed for
this task, including statistical-based methods such
as TF-IDF (Salton and McGill, 1986) and graph-
based methods such as TextRank (Mihalcea and Ta-
rau, 2004). Other methods include supervised ma-
chine learning approaches like Support Vector Ma-
chines (Hirao et al., 2002; Begum et al., 2009), Hid-
den Markov Models (Conroy and O’Leary, 2001),
Conditional Random Fields (Shen et al., 2007), and
genetic algorithms (Mendoza et al., 2014). These
approaches obtain better results than purely statisti-
cal or graph-based methods (Gambhir and Gupta,
2017), but often require some feature engineering
or rely on additional language resources, such as
WordNet-like databases (Hirao et al., 2002), which
may not be available for many low or medium-
resource languages.

The use of neural network-based methods has be-
come commonplace in ATS in recent years. One of
the advantages of these methods is that the features
are normally inferred automatically as opposed to
being learnt with the help of hand-crafted feature
templates as in feature-engineered systems. Cheng
and Lapata (2016) proposed a neural network-
based encoder-decoder model for extractive sum-
marization. In their model, a Convolutional Neu-
ral Network (CNN) encoder is used to generate
sentence representations which are fed to a Recur-
rent Neural Network (RNN) encoder that chooses
which sentences to extract for the summary. This
approach has been improved upon by Nallapati

2http://hdl.handle.net/20.500.12537/96
3https://github.com/cadia-lvl/icesum

et al. (2017), who instead use a two-layer, bidirec-
tional RNN, and later by Kedzie et al. (2018) who
use a sequence-to-sequence model with attention.
Encoder-decoder models have been shown to per-
form well, even with small training sets (Kedzie
et al., 2018). More recently, Liu and Lapata (2019)
use a pre-trained language model to generate sen-
tence representations, and a two-layer transformer-
based sequence classifier to determine which sen-
tences should appear in the summary.

To date, there has been very limited research
on text summarization for Icelandic. Christiansen
(2014) evaluated the TF-IDF and TextRank (Mihal-
cea and Tarau, 2004) algorithms on a collection of
20 Icelandic news articles. Despite attempts at im-
proving their performance through pre-processing
(e.g., lemmatization and part-of-speech filtering),
both algorithms were outperformed by a baseline
summarizer which always selects the first few sen-
tences of a document.

As presented in (Dernoncourt et al., 2018), the
vast majority of existing text summarization cor-
pora are in English. Of the 21 data sets listed in
that paper, only two contain summaries in other lan-
guages than English, i.e. Arabic and Chinese. Our
work, of compiling an Icelandic text summariza-
tion corpus, thus increases the pool of languages
available to researchers and developers of ATS sys-
tems.

3 The Corpus

Our summarization corpus, IceSum, consists of
1,000 news articles from mbl.is, an Icelandic
news site. This corpus is similar in size to manu-
ally annotated datasets for other languages, such
as the DUC-2001 and DUC-2002 single document
summarization datasets which contain 607 and 657
news texts, respectively (Kedzie et al., 2018). The
goal was originally to assemble around 600 news
articles, using the DUC-2001 dataset as a model.
The summaries were generated by two annotators
who are native speakers with a background in gen-
eral linguistics and Icelandic literature. Ultimately,
the total number of summarized news articles was
1,000, as mentioned above. The articles were split
evenly among the two annotators, with each gener-
ating a single summary for 500 articles.

The articles in IceSum span a period of 22 years,
published between 1998 and 2019, and the dataset
was weighted towards more recent articles. It con-
sists of four news categories: local (50%), world
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(26%), business (14%) and sports news (10%). The
summaries, generated by the two annotators, are ex-
tractive, consisting of full sentences or independent
clauses from the source text. The majority of the
summaries consist of full sentences, i.e. unaltered
strings, ending in a full stop.

The sentences were carefully selected based on
their informative value. The sentences extracted
from the text more often than not contained nouns,
especially proper nouns, that were of high impor-
tance for the context of the summary. If the agent
of a sentence was a pronoun, the referent had to be
included in earlier sentences in the summary. In
this manner, the summaries always needed to be
considered as a whole, rather than a series of sen-
tences, functioning as independent entities. In the
case of exceptionally long sentences, independent
clauses were extracted from the sentence. In these
cases, clauses were cut off right before or after
a conjunction, so that the extracted clause would
make an independent grammatical sentence in a
summary.

The original goal was to compose summaries
of 3–6 sentences for each article. Moreover, each
summary was meant to contain no more than 50%
of the original word count of the article itself. In
the case of exceptionally long articles, the total
number exceeded the original limit of 6 sentences,
resulting in the upper limit of 8 sentences. This
resulted in an average of 102 words per summary
where the average length of the full articles was
302 words, or roughly three times longer.

4 Methods

We evaluated two types of models. First, three non-
machine learning based models, which we refer
to as the baseline models. Second, several neural
network-based encoder-decoder models.

4.1 Baseline methods

Lead is a simple baseline method that creates a sum-
mary consisting of the first several sentences of a
document. Despite its simplicity, it has historically
proven to be extremely challenging for ATS mod-
els to outperform when summarizing news articles
(Nenkova, 2005).

We also compared the neural network-based
models against the two methods evaluated by Chris-
tiansen (2014) on Icelandic news articles, i.e. Text-
Rank and TF-IDF. The graph-based TextRank al-
gorithm is language-independent and requires no

training. It uses co-occurrences in the text to iden-
tify similarities between sentences and uses the
PageRank (Page et al., 1998) algorithm to rank each
sentence. The TF-IDF algorithm assigns weights to
words based on their frequency, typically obtained
from a large text corpus. Sentence weights can be
calculated as the average weight of the words they
contain.

4.2 Encoder-decoder models
We evaluated an encoder-decoder model using four
different extractors implemented in the nnsum4 li-
brary:

• Cheng & Lapata: a unidirectional sequence-
to-sequence based model where the inputs are
weighed by the previous extraction probabili-
ties (Cheng and Lapata, 2016).

• SummaRuNNer: a bidirectional, two-layer
RNN-based sequence classifier that calculates
the extraction probability based on several dif-
ferent sources, such as salience and position
(Nallapati et al., 2017).

• RNN: a bidirectional, RNN-based tagging
model (Kedzie et al., 2018).

• Seq2Seq: a bidirectional, sequence-to-
sequence model with attention (Kedzie et al.,
2018).

We additionally evaluate an encoder-decoder
model trained using the TransformerSum5 library,
which is heavily based on the BertSum extractive
text summarization model (Liu and Lapata, 2019).
Sentence vectors are generated using a pre-trained
language model, which is then fine-tuned with an
additional classification layer.

5 Experimental Setup

We used 70% of the corpus for training, 15% for
validation and 15% for testing. Each set consists
of articles from the same time range and contains
approximately the same proportion of news cate-
gories.

For models trained using the nnsum library, we
use an averaging encoder, which obtains sentence
representations by averaging out word embeddings.
We used pre-trained GloVe embeddings (Penning-
ton et al., 2014) with 300 dimensions, trained on

4https://github.com/kedz/nnsum
5https://github.com/HHousen/

TransformerSum
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the Icelandic Gigaword Corpus (IGC) (Steingríms-
son et al., 2018), which contains approximately 1.5
billion tokens. All models are trained for 50 epochs,
and we report results obtained on the test set for the
model that achieved the highest ROUGE-2 recall
score on the validation set.

The Transformer model was trained using Ice-
BERT (Símonarson et al., 2021), which is fine-
tuned using the TransformerSum library. We use
a linear classifier and train for 5 epochs. Default
settings were used for all experiments, unless other-
wise noted. Like Kedzie et al. (2018), we continue
adding sentences to our summary until it contains
at least 100 words, and truncate summaries to 100
words when computing ROUGE scores.

We also investigated whether lemmatizing the
text improves the quality of the summaries. For
lemmatization, we first used ABLTagger (Stein-
grímsson et al., 2019) to assign part-of-speech tags
to each token and then Nefnir (Ingólfsdóttir et al.,
2019) to lemmatize the text. The Tokenizer6 library
was used to tokenize the source text. For models
trained using nnsum, we use GloVe embeddings
trained on a lemmatized version of the IGC.

The summarization methods we evaluated ex-
tract full sentences from a single document. Dur-
ing training, input sentences are labelled as 1 if
they should be extracted and 0 otherwise. As the
sentences in the gold summary contain both inde-
pendent clauses and full sentences, we generated a
sentence-level oracle summary for each document,
using the same algorithm as Kedzie et al. (2018).
For a given document, we greedily select the sen-
tences which result in the highest possible ROUGE-
2 score against the gold summary, which are then
used to label the training data. We report ROUGE
recall scores, calculated without stemming.

6 Results

The results of the evaluation are summarized in
Table 1. The encoder-decoder model with the
sequence-to-sequence extractor achieves the best
performance, obtaining a ROUGE-2 score of 71.06,
outperforming the Lead baseline as well as other
previously evaluated methods.

For the first time, we have demonstrated an
ATS system for Icelandic that outperforms base-
line methods. Although Transformer-based mod-
els have obtained state-of-the-art performance for
extractive summarization (Liu and Lapata, 2019;

6https://github.com/mideind/Tokenizer

Model R-1 R-2 R-L
Oracle 92.04 89.31 91.92
Lead 76.19 69.14 75.67
TextRank 60.43 47.09 59.07
TF-IDF 63.46 51.77 62.30
Cheng & Lapata 76.60 69.34 76.10
SummaRuNNer 76.98 69.80 76.43
RNN 76.84 69.79 76.26
Seq2Seq 77.98 71.06 77.48
TransformerSum 76.80 69.59 76.23

Table 1: ROUGE scores for all evaluated models.
Scores in bold are statistically indistinguishable from
the best model (paired t-test; p < 0.05).

Zhong et al., 2020), the TransformerSum model
does not outperform the Seq2Seq or SummaRuN-
NeR models in our experiments. This may be due
to lack of hyperparameter tuning or the small size
of the training set.

As shown in Table 2, we find that lemmatizing
the input text results in lower ROUGE scores. Our
results are consistent with those of Christiansen
(2014), who also finds that lemmatization has a
negative impact on the quality of generated sum-
maries.

Model R-1 R-2 R-L
Oracle 92.04 89.31 91.92
Lead 76.19 69.14 75.67
TextRank 60.40 47.02 59.00
TF-IDF 62.25 50.21 61.24
Cheng & Lapata 75.98 68.67 75.43
SummaRuNNer 75.82 68.17 75.20
RNN 76.17 69.07 75.64
Seq2Seq 76.33 69.19 75.80

Table 2: ROUGE scores for all evaluated models when
the text has been lemmatized. The TransformerSum
model is omitted as it was pre-trained on unlemmatized
text. Scores in bold are statistically indistinguishable
from the best model (paired t-test; p < 0.05).

To estimate how the ROUGE score is affected
by the size of the training set, we split it into 7
equally sized portions, each containing the same
proportion of news categories. Figure 1 shows the
ROUGE-2 recall score for the Seq2Seq model on
the test set for a varying number of articles in the
training set.

Notably, the Seq2Seq model almost matches the
ROUGE-2 recall score of the Lead baseline method
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Figure 1: ROUGE-2 recall scores of the Seq2Seq
model with varying amounts of training data.

with a training set of only 100 news articles. Fur-
thermore, the ROUGE-2 score is still rising at a
steady pace with a training set of 700 articles, sug-
gesting that there may be significant benefits to
enlarging the size of the corpus.

7 Conclusion

We presented the first Icelandic corpus annotated
with human-generated summaries and showed that
it can be used to to create an ATS system that out-
performs baseline methods. We also showed that
lemmatizing the source text does not result in im-
proved performance. Finally, we evaluated how the
size of the training corpus affects the quality of the
generated summaries. The corpus and models have
been released with an open license.

For future work, we intend to experiment further
with Transformer-based models, performing hyper-
parameter tuning for a selection of Transformer
models, such as RoBERTa-Base and ELECTRA-
Base. We also plan to experiment with abstractive
summarization using a much larger, unannotated
corpus of Icelandic news articles. We also hope to
add more summaries to the IceSum corpus in the
future, and to examine inter-annotator agreement.
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Abstract

Negation is a linguistic universal that poses dif-
ficulties for cognitive and computational pro-
cessing. Despite many advances in text ana-
lytics, negation resolution remains an acute
and continuously researched question in Na-
tural Language Processing. Reliable negation
parsing affects results in biomedical text min-
ing, sentiment analysis, machine translation,
and many other fields. The availability of
multilingual pre-trained general representation
models makes it possible to experiment with
negation detection in languages that lack an-
notated data. In this work we test the perfor-
mance of two state-of-the-art contextual rep-
resentation models, Multilingual BERT and
XLM-RoBERTa. We resolve negation scope
by conducting zero-shot transfer between Eng-
lish, Spanish, French, and Russian. Our best
result amounts to a token-level F1-score of
86.86% from Spanish to Russian. We corre-
late these results with a linguistic negation ty-
pology and lexical capacity of the models.

1 Introduction

Negation continues to occupy the minds of many
researchers. It is a fascinating and complicated lin-
guistic phenomenon that is still not entirely under-
stood or conceptualized. Moreover negation is an
important thought process. The ability to negate is
a deeply human trait that is also universal, there-
fore any given language is bound to have negation
(Horn, 2001).

Negation has the power to change the truth value
of a proposition. Thus its identification in text is of
utmost importance for the reliability of results since
negated information should either be discarded or
presented separately from the facts. This is parti-
cularly relevant for biomedical text mining and
sentiment analysis but is also important for most
Natural Language Processing (NLP) tasks. The

identification of negated textual spans, however, is
far from trivial. Negation exhibits great diversity
in its syntactic and morphological representation.

Like many other NLP tasks, most work on nega-
tion detection has been done on the English lan-
guage, though there is a growing amount of re-
search on negation detection in Spanish, Chinese
and some other languages. Despite the need for
quality text analytics around the world, annotated
data is still sparse in many languages. This mo-
tivates the further exploration of approaches like
transfer learning where models are trained on avail-
able resources and subsequently tested on a differ-
ent target language.

In this paper we use a cross-lingual transfer-
learning approach for negation scope detection
using two state-of-the-art general purpose repre-
sentation models: mBERT (Multilingual BERT,
Devlin, 2018) and XLM-R (XLM-RoBERTa, Con-
neau et al., 2020). We fine-tune the models on
freely accessible annotated corpora in English,
Spanish, and French and test them cross-lingually.
Additionally we test the models on a small dataset
in Russian which was specially annotated for the
experiment. Our research is guided by three objec-
tives:

• We compare the performance of two state-of-
the-art models on the task of cross-lingual zero-shot
negation scope resolution in Spanish, French, and
Russian;

• We experiment with Russian which is an under-
sourced and under-researched language regarding
the task of negation detection;

• We study the four involved languages typologi-
cally and correlate our findings with the experiment
results.

In Section 2 we perform a brief typological
analysis of the languages in relation to negation.
Additionally, we overview previous work on cross-
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lingual negation scope resolution. Section 3 dis-
cusses the datasets and highlights their annota-
tion differences. We describe the experiments and
present the results in Section 4, and in Sections 5
and 6 we discuss the results and draw conclusions.

2 Negation and its processing

Linguistics and typology. A number of psy-
cholinguistic studies show that humans require ex-
tra time in order to process negation during lan-
guage comprehension (Gulgowski and Błaszczak,
2020). This is attributed to the fact that humans
first construct a positive counterpart of the argu-
ment and only then embed its negative aspect as an
extra step (Tian and Breheny, 2016). Indeed, nega-
tive sentences exhibit a more complicated, marked-
up structure on a lexico-syntactic level which is a
universal feature (Barigou et al., 2018). The main
building blocks of this markup are negative words
and expressions, also known as negative markers,
cues, or triggers.

When a sentence contains more than one nega-
tion trigger, Negative Concord (NC) languages
treat them as one, letting relevant negative markers
intensify one another. The majority of languages
including French, Spanish, and Russian belong to
the NC group. Standard English, on the other hand,
is a Double Negation (DN) language where each
negative marker is interpreted separately.

Hossain et al. (2020) compared English to a num-
ber of languages in regards to negation features
drawn from the World Atlas of Language Struc-
tures (WALS)1. They showed that the number of
negation-related errors in machine translation corre-
sponds to how close the languages are in a typology
based on negation.

Inspired by their discoveries we construct a
negation-based typology for our languages and
merge it with the classification from Dahl (1979).
Even though English, French, Spanish, and Rus-
sian are in the same linguistic family and feature
the same subject-verb-object pattern, the typology
based on negation assigns them to different cate-
gories (Table 1).

We expect a negation-based linguistic typology
to help us predict and interpret our results. Accord-
ing to our classification, Russian is most similar
to Spanish and least similar to English. Thus we
hypothesise that zero-shot transfer from Spanish
into Russian will be most successful.

1https://wals.info/

Lang predNeg symm NC/DN Dahl et al.
RU yes symm NC S11 12

ES mixed symm NC S11 12

FR no symm NC S112 12/22

EN no both DN S11/S3 22

Table 1: Negation-based typology of languages. Pred-
Neg indicates whether negative indefinite pronouns re-
quire an additional negative particle. Symmetricity of
negation (symm) shows whether the presence of a nega-
tion marker causes grammatical changes in the sen-
tence. NC/DN means Negative Concord vs. Double
Negation. In Dahl’s typology S11 represents a class of
languages where an uninflected particle must be added
while the finite verb does not change. S112 signals
the use of double particles. Number 12 categorizes lan-
guages where a negative marker immediately precedes
a finite element (verb) whereas 22 indicates that the
marker immediately follows it. S3 shows the use of
noninflected markers together with dummy auxiliaries.

Automated negation detection consists of two
tasks: identification of negation cues, and detection
of sentence parts that are affected by these cues.
The latter is called negation scope resolution, the
task that interests us most.

Negation detection began in the medical domain
with the goal of improving information retrieval
from Electronic Health Records (EHRs). Rule-
based algorithms such as NegExpander (Aronow
et al., 1999), NegFinder (Mutalik et al., 2001),
NegEx (Chapman et al., 2001), and their adapta-
tions were used in order to find medical concepts
and then determine whether they are negated. The
scope of negation was often understood as a dis-
tance between a negation cue and a medical term
that it affects.

These algorithms were successful and some are
still in wide use due to their explainability, cus-
tomizability, and independence from annotated
data. NegEx is incorporated into various modern
computational libraries2 and is successfully used
for biomedical texts (Cotik et al., 2016; Elazhary,
2017). Despite the aforementioned qualities, rule-
based algorithms suffer from an inherent inability
to generalize (Wu et al., 2014; Sergeeva et al., 2019;
Sykes et al., 2020).

The release of the BioScope corpus (Szarvas
2cTAKES:https://pypi.org/project/ctakes-parser/, pyCon-

TextNLP:https://github.com/chapmanbe/pyConTextNLP,
negspaCy: https://spacy.io/universe/project/negspacy, etc.
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et al., 2008; Vincze et al., 2008) became a piv-
otal moment for negation detection by providing
data for machine learning. Negation scope reso-
lution was formalized by Morante et al. (2008);
Morante and Daelemans (2009), who established
it as a problem of sequence classification. Using
gold-standard cues and an ensemble of three differ-
ent classifiers, they achieved the best F1-score of
84.71% on the Full Papers subcorpus of BioScope
and 90.67% on the Abstracts subcorpus. The latter
result was later surpassed by Fancellu et al. (2017)
who employed neural networks and reached a score
of 92.11%.

The Shared Task on Resolving the Scope and
Focus of Negation (Morante and Blanco, 2012)
addressed the issue of negation scope resolution
directly and released another annotated corpus
(ConanDoyle-neg, Morante and Daelemans, 2012).
The best system (Packard et al., 2014) used an en-
hanced hybrid model by Read et al. (2012) and
a semantic parser. They reached an F1-score of
88.2% using gold-standard cues. These results
were surpassed by Li and Lu (2018) who used the
Conditional Random Fields classifier and reached
an F1-score of 89.4%.

Additionally, Fancellu et al. (2016) secured an
F1-score of 89.93% on the SFU Review-NEG cor-
pus (Konstantinova et al., 2012), another publicly
available corpus annotated for negation scope. The
results on these three corpora remained the bench-
mark for negation scope resolution until the Bidi-
rectional Encoder Representation from Transform-
ers (BERT, Devlin et al., 2019) became the new
state of the art. Moreover, BERT became widely
used for transfer learning due to its enhanced ability
to generalize using attention and general purpose
language representations. NegBERT (Khandelwal
and Sawant, 2020) set new records for negation
scope resolution on all three publicly available cor-
pora.

Cross-lingual negation scope work. Many lan-
guages remain under-researched regarding nega-
tion detection and particularly scope resolution.
One of the main problems is the lack of annotated
data. There currently exist a handful of corpora in
English, two in Spanish, and one corpus each in
Swedish, German, Dutch, Chinese, Italian, and
Portuguese which are not all publicly available
(Jiménez-Zafra et al., 2020).

Negation work on Spanish has been growing
in recent years but it has mostly concerned senti-

ment analysis (Brooke et al., 2009; Vilares et al.,
2013; Jimenez Zafra et al., 2019). Rivera Zavala
and Martinez (2020) are the first ones to work
with sense embeddings to detect negation cues and
scopes in the Spanish biomedical and general do-
main texts. They also worked with mBERT but in
a monolingual setting. The research on negation
in French is particularly limited. Aside from a few
papers describing rule-based approaches (Deléger
and Grouin, 2012; Abdaoui et al., 2017) and the im-
plementation of BiLSTMs by Dalloux et al. (2019,
2020), there is barely any other research available
on the topic.

Cross-lingual work on negation detection is even
more limited. Fancellu et al. (2018) developed a
truly cross-lingual system that uses no language
specific features. They worked with English and
Chinese and used universal dependencies to ab-
stract away from the word order. Their Bidirec-
tional Dependency LSTM model reached an F1-
score of 72.46%.

Finally, Shaitarova et al. (2020) employed Mul-
tilingual BERT to perform zero-shot transfer for
negation scope resolution and showed good prelim-
inary results. We build on this work and compare
mBERT with a new multilingual general purpose
representation model, XLM-R. Unlike mBERT,
XLM-R was pre-trained on more than two terabytes
of filtered data collected by CommonCrawl. In-
stead of WordPiece units it uses SentencePiece
(Kudo and Richardson, 2018) units and features
a bigger size of shared vocabulary (250K).

3 Data

In our experiments we work with a corpus of clini-
cal texts in French (Dalloux et al., 2020), and SFU
ReviewSP-NEG, a Spanish corpus of online reviews
(Jiménez-Zafra et al., 2018). The English data in-
cludes the biological paper abstracts and full scien-
tific articles in the domain of bioinformatics from
BioScope (Vincze et al., 2008), all available subcor-
pora of the ConanDoyle-neg corpus (Morante and
Daelemans, 2012) as well as SFU (SFU Review-
NEG, Konstantinova et al., 2012), a large multi-
domain corpus of product reviews.

We use the English corpora separately and also
combine them into one training dataset. The three
corpora belong to different domains and feature
certain variations in scope annotation guidelines.
Despite these significant problems we combine
the datasets based on the successful cross-corpora
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knowledge transfer described by Khandelwal and
Sawant (2020).

The BioScope annotators set the precedent by
ultimately basing scope annotation on syntax. They
employed a maximal scope size strategy and ex-
tended annotation to the biggest syntactic unit pos-
sible. The normal direction of scope was assumed
to be to the right of the cue. The subject is not
included in the scope, unless the sentence has a
passive voice.

Morante et al. (2011) argued that semantically
the subject should be always annotated within
the scope. Thus, unlike the BioScope corpus,
ConanDoyle-neg includes the subject yet excludes
the cue. Additionally, it features morphological
negations. The SFU corpus mostly adheres to the
BioScope’s annotation guidelines but does not in-
clude cues into the scope of negation.

The French data is described in Dalloux et al.
(2020) and is publicly available on request3. It
combines two subcorpora of clinical narratives. Its
format and annotations are loosely modeled on the
ConanDoyle-neg corpus. The data in the Spanish
SFU ReviewSP-NEG corpus can be requested from
Simon Fraser University. Its annotations reflect the
guidelines of the English corpora but are also based
on Spanish grammar.

In our experiments we only use sentences that
contain at least one negation. We duplicate sen-
tences with multiple negations into several copies
containing a single negation. Table 2 shows the
statistics for all the corpora. For the sake of con-
sistency we excluded cues from scope annotation
across all corpora.

ConDo BioScope SFU SP FR

uniq 1215 1935 3112 3258 1682

negs+ 1421 2095 3528 4327 1870

Table 2: Corpora statistics. uniq indicates the origi-
nal number of unique sentences with negations. neg+
shows the number of negation sentences after the dupli-
cation of sentences with multiple negations.

3.1 The Russian test set
To the best of our knowledge, there are no pub-
licly available negation corpora in Russian or any
other Slavic language. Thus, there is almost no
available research on negation detection in Russian

3http://people.irisa.fr/Clement.
Dalloux/

on either the English or Russian speaking Internet,
with Funkner et al. (2020) being the only relevant
publication.

In order to work with Russian in our experiments,
we created a small dataset annotated with negation
cues and negation scopes4. It is a Russian counter-
part to one of the ConanDoyle-neg’s test sets, The
Adventure of the Cardboard Box. The number of
sentences containing negation amounts to 120.

The annotation was performed by one native
Russian speaker using Prodigy5, an annotation tool
created by explosion.ai. Since there are no known
publications about negation detection for Russian,
the annotation was based on linguistic intuition,
Russian grammar, and a generalization of annota-
tion schema from the other corpora.

In accordance with the guidelines, the scope in
the Russian test set corresponds to a syntactic com-
ponent. A maximal scope rule was implemented as
in BioScope. The subject is included in the scope
when the negation cue directly affects the main
verb. Cues are not included in the scope. Since
morphological cues appear only in ConanDoyle-
neg, they were not considered during annotation.

Figure 1: Annotation of negation cues and scopes in a
Russian sentence with the use of the Prodigy annotation
tool.

4 Experiments and results

We used NegBERT (Khandelwal and Sawant,
2020) as the main architecture and em-
ployed bert-base-multilingual-cased and
xlm-roberta-base-model models. We fine-tuned
the two models on the three datasets: English
(en), Spanish (es), and French (fr). All the models
were trained with the same set of hyperparameters.
Early stopping method with patience set to 9 was
used to prevent overfitting. The maximum input
length was adjusted to 250 to prevent truncated
sentences.

The word-level token class is determined by us-
ing the argmax function on the averaged softmax

4https://doi.org/10.5281/zenodo.
4537833

5(Montani and Honnibal, 2018)
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probabilities of all subword units. We use gold-
standard negation cues and report token-level F1-
scores for negation scope resolution (Table 3).

Despite the fact that the English corpora are of
different domains, models fine-tuned on the com-
bined English data brought better cross-lingual re-
sults than models that were fine-tuned on each cor-
pus individually. Even the model fine-tuned on the
ConanDoyle-neg corpus did not perform better on
the Russian version of the text. Thus, we only dis-
cuss the results of the model trained on the entirety
of the English data.

Since the datasets differ in size, we ran additional
experiments where we equalized the number of
training examples to the smallest corpus (French).
We drew a random sample of 1870 sentences from
the English and the Spanish data and retrained the
models. Row ru2 in Table 3 shows these evaluation
results.

EN FR ES
fr 82.61 83.22 – – 79.33 79.79

es 78.62 78.83 76.81 78.17 – –
ru 83.47 86.49 76.50 80.07 81.40 86.73

ru2 80.07 85.35 76.50 80.07 81.24 86.86

Table 3: Evaluation results for mBERT (grey columns)
and XLM_RoBERTa (white columns). The models
were fine-tuned on English (EN), French (FR), and
Spanish (ES) and tested on French (fr), Spanish (sp),
and Russian (ru). Row ru2 shows evaluations of mod-
els that were fine-tuned on equal size data.

5 Discussion and error analysis

There have been many debates on whether BERT-
like models truly “understand” negation. Zhao
and Bethard (2020) showed evidence for shallow
encoding of this phenomenon in both BERT and
RoBERTa. Meanwhile Staliūnaitė and Iacobacci
(2020) demonstrated that these models lack linguis-
tic abstraction abilities and fail when confronted
with compositional semantic aspects of language.

In our experiments, the XLM-R model per-
formed significantly better than mBERT for all
language pairs. As an additional metric, we mea-
sured how well both models identified scopes with
100% precision. Averaged across all languages,
both models performed equally well, with mBERT
solving 46.23% of exact scopes, and XLM-R -
46.66%. The best result for Russian was produced
by the XLM-R model fine-tuned on Spanish (53%
of exact scopes).

In fact, Russian benefited most from a transfer
from Spanish and least from French, irrespective
of training data size or model type. We can assume
that the success of the Spanish-Russian transfer
is partially due to the commonalities described in
Table 1. Nevertheless, the negation typology does
not explain the poor results of the French-Russian
pair.

We investigated several factors that might have
negatively affected the French-Russian knowledge
transfer. For example, we examined the vocabu-
laries of the models and calculated lexical overlap
between the datasets based on a model-specific to-
kenization. The comparison in Table 4 shows a
lower percentage of lexical overlap between the
Russian and the French datasets than between Rus-
sian and other languages. According to this obser-
vation, however, English-Russian transfer should
have been the most successful one.

vocab size shared vocab
SubW SentP en fr es

en 10550 10592 – – 23 21 28 26

es 8453 8934 35 31 22 17 – –

fr 5101 5032 47 44 – – 36 31

ru 1280 1329 35 31 23 21 28 26

Table 4: Vocabulary distribution across the data. Num-
bers in grey are calculated on the basis of mBERT’s
SubWord units. White columns show XLM-R’s Senten-
cePiece units. Numbers in the shared vocab section in-
dicate percentages. For example, the French data shares
47% of its WordPieces and 44% of its SentencePieces
with the English dataset, while only 23% of the English
SubWords and 21% of its SentencePieces appear in the
French dataset.

Next, we took a closer look at our negation ty-
pology. We investigated a prominent phenomenon
that emerges in several categories, namely negative
indefinite pronouns (words like nothing, nowhere,
nobody). The way a languages handles these pro-
nouns is reflected in both the predNeg and the
NC/DN columns in Table 1. This phenomenon
classifies Russian and English as polar opposites.

We found 19 sentences in the Russian dataset
that contain negation structures with negative indef-
inite pronouns. Despite the fact that these pronouns
are always marked as cues, the English XLM-R
model included them into the scope 9 times. The
English mBERT model made that same mistake
3 times. On the other hand, neither Spanish, nor
French models had this problem. We can hypothe-
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sise that a model fine-tuned on English could not
coordinate a negative particle with an indefinite
negative pronoun in the same sentence since this
does not occur in English.

During the examination of these 19 sentences
we stated that the models fine-tuned on the French
data persistently omit the subject of a sentence in
the annotation of scope. The English models also
suffered from this problem but to a lesser extent.
This can be traced to the difference in annotation.
The subject is not annotated in the French corpus
while only part of the English data features that
annotation. Figure 2 illustrates the issue of nega-
tive indefinite pronouns as well the annotation of a
sentence’s subject.

Figure 2: A Russian sentence with a negative indef-
inite pronoun featuring annotations by three XLM-R
models fine-tuned on Spanish (ES), English (EN), and
French(FR). The fourth line contains a literal transla-
tion. The bottom line is the original sentence and anno-
tation from the ConanDoyle-neg corpus.

Additionally we investigated scope annotations
which were precisely identified by one type of
model but not the other. We chose to look at
the highest scoring language pair Spanish-Russian
where the models were trained on 1870 sentences.
There are 15 sentences where the XLM-R model
found scope with a perfect precision while mBERT
did not. In most cases mBERT made a mistake in
the leftward direction from a negation cue.

We found only four cases where mBERT scored
perfectly while XLM-R made a mistake. The mis-
takes are rather random and do not seem to belong
to a particular pattern. Overall, we detected sev-
eral situations where mistakes made by the models
could be scrutinized due to questionable annota-
tion. We acknowledge that the lack of additional
annotators and an inter-annotator agreement is a
weakness that should be addressed in further work.

6 Conclusion

The short excursion into negation scope resolu-
tion in Russian using zero-shot model transfer has
shown good preliminary results. Despite contro-

versial previous findings, multilingual general pur-
pose representation models perform rather well on
negation scope resolution. XLM-RoBERTa scored
consistently better than mBERT in all language
pairs.

We constructed a typology that classifies En-
glish, Spanish, French, and Russian according to
their negation-based features. Since indefinite neg-
ative pronouns play a role in several typological
categories, we investigated their effect on zero-shot
transfer. We found that fine-tuning models on En-
glish compromises their performance with this phe-
nomenon when transferring to Russian, which cor-
relates with the negation typology.

Transferring syntactic negation knowledge from
Spanish brought the most benefit for Russian. This
result is fully in line with the negation typology of
the four languages. Despite the clear correlation be-
tween the negation typology and the results of the
Spanish-Russian transfer, not all outcomes are eas-
ily explainable. The relatively poor performance
of the French-Russian transfer might be related to
the domain mismatch and the difference in annota-
tion schemes. A lower lexical overlap between the
vocabularies could have had an effect as well.

Future work involves growing the Russian cor-
pus of negations, ideally benefiting from multiple
annotators. It may prove beneficial to perform a
systematic examination of all the categories con-
stituting the negation typology and to expose their
effects on knowledge transfer across languages.
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Abstract
Neural networks are the state-of-the-art method
of machine learning for many problems in natu-
ral language processing (NLP). Their success in
machine translation and other NLP tasks is phe-
nomenal, but their interpretability is challeng-
ing. We want to find out how neural networks
represent meaning. We will focus on lexical
semantics in the embedding layer of the net-
work. We propose to examine the distribution
of meaning in the vector space representation
of words in neural networks trained for NLP
tasks. Furthermore, we propose to consider var-
ious theories of meaning in the philosophy of
language and to find a methodology that would
enable us to connect these areas.

1 NLP, Language, and Meaning

Language has been one of the central topics of
artificial intelligence (AI) research ever since Tur-
ing (1950) considered the question “Can machines
think?” and proposed to replace it with the “imi-
tation game”, based purely on textual communica-
tion.

Even though language is still one of the hard-
est problems in AI, there has been a tremendous
development in recent years in NLP. Machine trans-
lation systems achieve super-human performance
(at least in a competition setting) (Barrault et al.,
2019; Popel et al., 2020). Voice assistants are get-
ting better and better. Some text generation models
are so powerful that their authors consider them to
pose a danger to society (Radford et al., 2019a).

Artificial neural networks are behind a lot of
these achievements. The models that are used in
NLP can have billions of parameters. The same
architecture is often used for various tasks. Con-
sequently, neural networks are often regarded as
black boxes, and interpretation of the trained mod-
els presents a major scientific challenge (Belinkov
et al., 2019).

Certain specific questions, such as whether a
layer of a particular model contains information

about part of speech (POS) can be answered with
various methods. Other, more general questions,
are proving more difficult. How do neural ma-
chine translation (NMT) systems achieve the level
of translation quality comparable to humans? Are
there any fundamental limitations in language un-
derstanding for artificial neural networks? Do neu-
ral networks represent meaning and if they do, then
how?

It is the last question we are interested in. The
nature of meaning is itself a subject of debate in
the philosophy of language. This presents a chal-
lenging methodological problem: on the one hand,
we need a definition of meaning for the question to
make sense; on the other hand, we do not want to re-
strict our research to a predefined concept of mean-
ing, because then we are in danger of assuming the
conclusion and presenting a circular argument. The
solution would be to refine the sought-after concept
of meaning gradually, based on careful justification
supported by empirical observations.

The focus of this work is on lexical semantics
in the embedding layer the neural network. We
believe that this is a good place to start, as it is
the interface between the input text and the net-
work. Furthermore, there are interesting models
for obtaining words embeddings without any hid-
den layers.

1.1 Thesis Proposal

The thesis will consist of two parts. In the first
part, described in Section 2, we will consider var-
ious theories and properties of meaning from the
point of view of philosophy of language. We will
find which aspects of these theories are useful to
describe the process of representing meaning in
neural networks in NLP.

In the second part, described in Section 3, we
will examine the distribution of word representa-
tions in the embedding spaces with respect to mean-
ing. We propose to use mostly unsupervised meth-
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ods, such as clustering, principal component analy-
sis (PCA), independent component analysis (ICA)
and unsupervised mapping of embedding spaces.

The goal of the thesis is to show which theo-
ries of meaning offer a conceptual framework that
would be useful for understanding the empirical
results of the analysis of the embeddings.

2 NLP and Philosophy of Language

There is no agreed-upon general definition of
‘meaning’ (or ‘sense’, ‘semantics’, . . . ; see e.g.
Stokhof (2013), Bender and Koller (2020)).

To be able to talk about representations of mean-
ing, we will have to review different conceptual-
izations of meaning and find one that is useful for
describing the phenomena we encounter when we
examine how neural networks work in NLP. We
will contrast meaning representations in neural lan-
guage models with representations in other appli-
cations, with emphasis on NMT.

There is very little related work that con-
nects NLP with the philosophy of language.
Honkela (2007) links neural language models, self-
organizing maps and Quine’s semantic holism. The
works of Melby (1994, 1995) are discussed in Sec-
tion 2.5.

2.1 The Distributional Hypothesis

Many NLP applications only use raw text for train-
ing data (language models, models for embedding
pretraining, arguably even NMT models, although
the alignment in parallel corpora may be consid-
ered an additional source of information). If they
represent meaning, the information must be derived
from the training corpus, usually presented to the
model through a sliding window of tokens. This
may be the reason behind the popularity of the
distributional hypothesis in neural language model
(LM) literature. The famous saying by Firth (1957),
“You shall know a word by the company it keeps!”,
is quoted in most papers concerned with vector
space models of language.

The general distributional hypothesis states that
the meaning of a word is given by the contexts
in which it occurs. It is, however, worth noticing
that in Firth’s theory, collocation is just one among
multiple levels of meaning, and his text does not
support the idea of meaning being based on the
context alone.

The distributional hypothesis would explain why
word embeddings capture meaning. However, by

itself it tells us nothing about what meaning is and
how it relates to the world or people who are using
the language.

2.2 The Use Theory of Meaning

The use theory of meaning can be summed up as
“the meaning of a word is its use in the language”
(Wittgenstein, 1953, § 43). It is associated with late
Wittgenstein’s concept of language game. Mean-
ing determines which combinations of words are
“in circulation”, excluding the senseless combina-
tions and therefore “bounding of the domain of
language” (Wittgenstein, 1953, § 499), which is
precisely what a LM does; therefore, the use theory
may be one way to connect language modelling
and semantics.

That “knowledge of language emerges from lan-
guage use” is also one of the main hypotheses of
cognitive linguistics (Croft and Cruse, 2004).

This approach tells us a bit more about how
meaning relates to entities outside language: peo-
ple are using language to accomplish something in
the world.

2.3 Structuralism

In structuralism, the meaning of a word is given
by its relation to the other words of the language
(de Saussure, 1916). The nature of the sign is arbi-
trary. This holds for word representations in arti-
ficial neural networks as well. Due to the random
initialization, the vectors are different every time
the model is trained. The individual dimensions of
an embedding vector do not have any preconceived
interpretation and their values are arbitrary. The
embedding vectors do not have any meaning other
than their position among the rest of the vectors,
and a single vector does not have any significance
outside the model.

2.4 Semantic Holism and Atomism

Semantic holism (or meaning holism) is “the thesis
that what a linguistic expression means depends on
its relations to many or all other expressions within
the same totality. [. . . ] The totality in question may
be the language to which the expressions belong or
a theory formulation in that language” (Fodor and
Lepore, 1992). The opposing view is called seman-
tic atomism, and it claims that there are expressions
(typically words), whose meaning does not depend
on the meaning of other expressions. The meaning
of these expressions is given by something outside
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language (e.g. their relation to physical or mental
objects).

2.5 Objectivism and Experientialism

Study of metaphor and its connection to experi-
ence led Lakoff and Johnson (1980) to criticize
what they call the objectivist approach to language.
Melby (1994) applies this critique to machine trans-
lation (MT) and says that “most work in machine
translation is explicitly or implicitly based on [the
objectivist framework].” He lists the following be-
liefs as characteristic for objectivism:

1. Words and expressions are mapped to senses.

2. Each sense exists independently and has the
properties of mathematical sets.

3. The meaning of a sentence can be obtained
by combining the word senses from the bot-
tom up.

Melby (1995) claimed that then-current tech-
niques of machine translation will never be ex-
tended to handle general language texts and that
entirely new techniques that avoid the assumptions
of objectivism will be needed; the systems need
to understand dynamic metaphor and exhibit flex-
ibility in handling new situations. If Lakoff and
Johnson’s theory of metaphor holds, this is a triv-
ial consequence: since understanding metaphor is
based on experience and contemporary translation
systems do not experience anything, they cannot
understand and translate metaphors. The experi-
entialist view of language places emphasis on the
shared experience of the world, which is structured
by metaphors.

More than 25 years later, NMT is based on prin-
ciples that can hardly be construed as an extension
of the old techniques. They are more flexible and
produce significantly better translations. Do neu-
ral networks somehow evade the pitfalls of objec-
tivism? Maybe going repeatedly through the enor-
mous quantity of textual data constitutes a kind
of experience; perhaps it is possible to extract the
experience of others from the data? May that be
one of the reasons for their sudden success in MT
and other NLP applications?

2.6 Meaning and Understanding

Can a LM really understand natural language? Ben-
der and Koller (2020) argue that methods based
only on text cannot learn meaning. They define
meaning as mapping from words to communica-
tive intent. Because text itself does not contain

communicative intent, it is impossible to learn to
understand it from a textual corpora alone.

Our approach works in the opposite direction:
instead of picking a theory of meaning and project-
ing restrictions on technical possibilities, we want
to start with what is already achieved in NLP. We
will analyse the models and find out which aspects
of language use are they able to understand. We
will then find a theory of meaning that explains the
results of the analysis well.

The way a computer solves the NLP tasks does
not necessarily correspond to what a person does
when solving the same. Therefore our results may
not be usable for explaining how we experience lan-
guage. However, the results would still be useful
for understanding the linguistic behavior of black-
box neural models. Comparing our results with
neurological findings about biological representa-
tions of meaning would be interesting, however it
is outside the scope of the proposed thesis.

2.7 Conclusion: Properties of Meaning

Based on the properties of word embeddings men-
tioned in the preceding sections, we want the con-
cept of meaning that we are looking to be compat-
ible with the distributional hypothesis, structural-
ism, and semantic holism. Based on the arguments
given by Lakoff and Johnson (1980); Melby (1995)
and others, we believe that the correct account of
meaning should not be objectivist.

We propose to investigate a possibility of a con-
cept of meaning of an expression as a combina-
tion of various components. These components
would emerge from the use of the expression in con-
text (semantic holism, distributional hypothesis).
Each of them would represent a specific relation to
other expressions (structuralism). The components
would be continuous and will not form a simple tree
hierarchy, therefore avoiding the most problematic
aspects of objectivism. Instead of definition or enu-
meration, the components would be described by
prototypes (experientialism, cognitive linguistics).
ICA of word embeddings is a plausible candidate
for such conceptualization.

3 Properties of Word Embeddings

In this section, we present methods for analysis of
words embeddings and provide examples of results
obtained with these methods.

We will concentrate on embeddings from un-
supervised learning algorithms, language models
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and NMT. Unsupervised learning algorithms for
obtaining word representations, such as Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014) or FastText (Bojanowski et al., 2017), have
the advantage of being simple, both conceptually
and regarding computational costs. Language mod-
elling is the most general language task. Pre-
trained models, such as masked LMs from the
BERT family (Devlin et al., 2018), can be fine-
tuned for many NLP tasks. Large generative LMs
can even be used for various tasks with little or no
fine-tuning (Radford et al., 2019b; Brown et al.,
2020). NMT is a mature NLP application and the
task itself is closely connected to the concept of
meaning. By comparing embeddings from differ-
ent models, we hope to distinguish between prop-
erties of the specific model and general properties
of continuous word representations.

We will also investigate contextual representa-
tions in current Transformer models (e.g. Radford
et al., 2019a). It is possible to reduce contextual
embedding to static embeddings (Bommasani et al.,
2020) and apply the methods for analyzing static
embeddings.

In this section we present methods for analyzing
word embeddings and their results. Related work
on examining vector representations in NLP was
surveyed by Bakarov (2018). Further information
can also be found in the overview of methods for an-
alyzing deep learning models for NLP by Belinkov
and Glass (2019). For more on interpretation in
general and unsupervised methods in examining
word embeddings, see Mareček et al. (2020, Chap-
ters 3 and 4).

Probing is the most common approach for ex-
amining linguistic properties in neural network
components (Belinkov and Glass, 2019). It is the
method of using a supervised classifier to predict
these properties from activations of the neural net-
work. The methodology may present problems
with train/test overlap (Rosa et al., 2020).

Probing is most useful when there are high qual-
ity annotated data for the property that is being
probed. Even though we plan to occasionally use
probing in such cases, we will generally emphasize
unsupervised methods of interpretation, because
we do not want to bias the results by restricting the
possible outcome by probing for specific features.

Component Analysis is an unsupervised method
for factoring the vector space of embeddings into

meaningful components.
PCA is a generally well known example. It is

often used for dimensionality reduction. The result-
ing components are ordered by their importance
and they maximize variance of the data given all
the previous components.

ICA (Jutten and Herault, 1991; Comon, 1994;
Hyvärinen and Oja, 2000) is an algorithm originally
developed for finding separate sources in a mixed
signal, such as a recording of multiple people in
the same room speaking at the same time. It was
used, for example, to extract features from distri-
bution representations of the words (Honkela et al.,
2010). The ICA algorithm consists of: optional
dimension reduction, usually with PCA; centering
the data and whitening them (setting variance of
each component to 1); iteratively finding directions
in the data that are the most non-Gaussian. The last
step is based on the assumption of the central limit
theorem: the mixed signal is a sum of indepen-
dent variables, therefore it should be closer to the
normal distribution, than the variables themselves.

Clustering is another unsupervised method for
examining embeddings. The t-SNE clustering al-
gorithm is often used for visualizing embeddings
(e.g. Maaten and Hinton, 2008). Word embeddings
are clustered according to meaning in t-SNE (Liu
et al., 2018).

We show elsewhere (Musil et al., 2019) that
clusters of embeddings of derivational relations
mostly match manually annotated semantic cate-
gories of these relations (e.g. the relation ’bake–
baker’ belongs to the category ’actor’, and a correct
clustering puts it into the same cluster as ’govern–
governor’).

Unsupervised Mapping There are unsupervised
methods for finding a mapping between two embed-
ding spaces that can be used for simple word-for-
word translation, as a starting point for creating an
unsupervised NMT system (Lample et al., 2017).

Mapping of embedding spaces from different
corpora of the same language can lead to inter-
esting insights, as demonstrated by KhudaBukhsh
et al. (2020), who show polarization in US political
comments by highlighting different use of specific
words or phrases by supporters of different political
parties.

We have found that a neural translation model
divides words into POS classes (Musil, 2019). It
also distinguishes between proper names and gen-
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eral nouns. The structure of representation varies
between the encoder and the decoder of the NMT
system.

The structure of the representation of the same
data in the word2vec model is different, for exam-
ple, in that it distinguishes infinitive forms of verbs
or modal verbs. A completely different structure
is found in the space of representations of words
in the neural model for sentiment analysis. All of
these facts can be shown without annotated data
and thus without deciding beforehand what we will
look for in the space of representations. For this
reason, we find these results more convincing than
if they had been obtained through probing.

3.1 Semantic properties

Hollis and Westbury (2016) have found that prin-
cipal components of word2vec embedding space
are correlated with various psycholinguistic and
semantic properties of words.

One example of a semantic property we have
found is that the shape of the space of word em-
beddings in a convolutional neural network (CNN)
model trained for sentiment analysis is triangular
Musil (2019).

With the help of PCA, we show that the first
principal component represents the polarity of the
words (good/bad); the second component repre-
sents intensity (strong/neutral). The triangular
shape may be explained by the fact that words
that are far from the center on the polarity axis
are always of high intensity. This is an example of
component analysis showing more than a probing
classifier about the structure of the representation.

This may in fact be all the information that the
CNN uses to classify the sentiment. We propose to
test this empirically by projecting the embeddings
on the first two principal components, retraining
the rest of the network and measuring the impact
of this on its performance.

3.2 Word2vec and Semantic Holism

Word representations obtained from the word2vec
model (Mikolov et al., 2013a) exhibit interesting se-
mantic properties. They obey the vector arithmetic
of meanings illustrated by the following equation:

vking − vman + vwoman ≈ vqueen,

meaning that if we start with the word “king”,
by subtracting the vector for the word “man” and
adding the vector for the word “woman” we arrive

at a vector that is nearest in the vector space to the
one that corresponds to the word “queen”. This
means that queen is to woman as king is to man.

This is usually explained by referring to the gen-
eral distributional hypothesis. We propose a more
specific approach based on Frege’s holistic and
functional approach to meaning.

CBOW Skip-gram

∑
w3

w1

w2

w4

w5

...

w3

w1

w2

w4

w5

...

Figure 1: CBOW and Skip-gram language models ac-
cording to (Mikolov et al., 2013a).

There are two variants of the word2vec model
(Mikolov et al., 2013a). The CBOW variant pre-
dicts a missing word based on the context; the
Skip-gram variant predicts context words based
on a single word (see Figure 1). The Skip-gram
variant performs better in analogy tasks (Mikolov
et al., 2013b). We show that the training process
the Skip-gram variant of word2vec is analogous to
a holistic definition of meaning.

Taking Tugendhat’s formal reinterpretation of
Frege’s holistic approach to meaning (Tugendhat,
1970) as a starting point, we demonstrate that it
is analogical to the process of training the Skip-
gram model and it offers a possible explanation of
its semantic properties. Tugendhat’s definition of
meaning as truth-value potential is:

[T]wo expressions ϕ and ψ have the
same truth-value potential if and only if,
whenever each is completed by the same
expression to form a sentence, the two
sentences have the same truth-value.

This definition has one crucial aspect in common
with the Skip-gram version of the word2vec model:
while we examine the meaning of an expression,
the expression is fixed, and the context is chang-
ing for comparison. Therefore, it presupposes the
context as the source of meaning, in the same way,
that Skip-gram learns the representation of a word
from the representation of the context. The fact
that the holistic Skip-gram version of word2vec
works better in analogy tasks than the complemen-
tary atomistic CBOW version supports the holistic
approach to meaning.
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3.3 Independent Component Analysis
Our preliminary experiments with ICA indicate,
that the independent components represent both
morpho-syntactic and semantic features. For our
data, we are able to explain roughly 10% of the di-
mensions by morphological/syntactic features (by
using correlations with annotated data). The other
90% seem to be semantic, although the distinction
between syntactic and semantic properties is blurry
in this context.

ICA of word embeddings seems to be a good
candidate for a non-hierarchical system for describ-
ing relations between words, as expressed in Sec-
tion 2.7.

4 Conclusion and Future Work

Interpretability is an important challenge for neural
networks in NLP. There is a limited amount of find-
ings about linguistic phenomena that we are able
to predict from embeddings. Much less is known
about the semantic properties of the embedding
space. The proposed approach to finding a de-
scription of the process of representing meaning in
neural networks for NLP both from the technologi-
cal and philosophical perspective would contribute
to our understanding of the technology and of the
concept of meaning.

Future work could also address the relation be-
tween neural networks for natural language infer-
ence and the philosophy of inferentialism (Bran-
dom, 1994).

This proposal leaves out important methodologi-
cal questions: we are using machine learning meth-
ods to run experiments on the results of other ma-
chine learning methods. It may be a challenging
task to interpret experiments correctly and attribute
the discovered properties to the original model or to
the model we are using to examine it. The question
of how to incorporate results of machine learning
into the scientific workflow is starting to come up in
other sciences as well, e.g. biology (Currie, 2019).

This question is perhaps too broad and general
to be solved as a part of this thesis. However, we
hope to at least formulate in detail the challenges
that we are facing when performing this kind of
research, as we encounter them while completing
the work proposed in the previous sections.
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Abstract

In this thesis proposal, we explore event extrac-
tion and event representation on literary texts.
Due to its variety of genres and varying doc-
ument length, literature is a challenging do-
main, yet the representation of literary con-
tent has received relatively little attention. As
most individual events contribute little to the
overall semantics of literary documents, we
model events at different granularities. On the
conceptual level, we adapt the previous defi-
nition of schemas as sequences of events, all
describing a single process connected through
shared participants, and extend the notion to
allow modeling a document’s content using se-
quences of schemas. Technically, the segmen-
tation of event sequences into schemas is ap-
proached by modeling such sequences, mak-
ing use of the narrative cloze task, which is the
prediction of masked events in event sequence
contexts. We propose building on sequences
of event embeddings to form schema represen-
tations, thereby summarizing sections of doc-
uments using a fixed-size representation. This
approach will give rise to comparisons of sec-
tions such as chapters up to the comparison
of entire literary works on the level of their
schema structure, paving the way to a com-
putational approach to quantitative literary re-
search.

1 Introduction

Events generally describe any change of state
(Hogenboom et al., 2016) and are often used in
information extraction scenarios (Gaizauskas and
Wilks, 1998; Niklaus et al., 2018). The modeling
of sequences of events has the potential of aiding
literary scientists in understanding narrative pat-
terns and devices. Determining which events in a
narrative are crucial is challenging and relates to
a variety of related tasks, such as summarization,
comparison, or even story generation. Understand-
ing the contexts of an event requires modeling its
arguments and semantics. A simple representation

can be the subject and object relating to a given
verb, in conjunction with the verb’s lemma (Cham-
bers and Jurafsky, 2008).

If one only wants to include events involving a
single character in a story, it is necessary to con-
sider only those predicates with arguments core-
ferring to the character. The narrative coherence
assumption says that “verbs sharing coreferring ar-
guments are semantically connected by virtue of
narrative discourse structure” (Chambers and Juraf-
sky, 2008). Verbs connected in this way are, under
the assumption, considered to be part of the same
so-called narrative chain (Chambers and Jurafsky,
2008). Previous work has focused on finding chains
as representations of narratives in short documents,
combining individual narrative chains, each fo-
cused on one character, into a schema involving
multiple chains and thereby multiple characters
(Chambers and Jurafsky, 2009). While the overall
narrative in a long document could be regarded as
a large schema, a variety of sub-schemas exists de-
scribing each scene using individual events. As a
result, a typical document in our domain contains
multiple schemas.

Figure 1 illustrates a potential separation of an
event sequence into schemas. For each event EC

n

in any given text we know, based on coreference
resolution, which entities C are involved with it
(i.e.: occur as its arguments). Intuitively a sepa-
ration boundary is preferably found between non-
connected events. The verbs “leaving” and “arriv-
ing”, for example, are strongly connected events;
we expect them to often appear in sequence. After
modeling the likelihood of different events occur-
ring in sequence, we can calculate the model’s per-
plexity with regard to a specific event and use this
information for the separation of chains. Even in
our simple example (Fig. 1) it is not clear where
exactly to place separations, E7 could, for example,
form a social gathering schema with E5 and E6

instead of a separate transportation schema.
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Figure 1: One possible separation of the events into
four schemas splits the event up into a shopping, a
transportation, a social gathering, and another trans-
portation schema.

2 Related Work

2.1 Event Processing

The detection of events has mostly focused on do-
mains outside of literature, such as news (Dodding-
ton et al., 2004; Chambers and Jurafsky, 2008).
More recently, Sims et al. (2019) created a new
dataset of annotated literary texts.

2.2 Semantic Frame Induction

Semantic frames, in the context of FrameNet
(Baker et al., 1998), are definitions of word senses
where each sense can be evoked by multiple dif-
ferent words. The “Commerce_buy” frame, for ex-
ample, can be evoked by the verbs “buy”, “aquire”
and “purchase”, among others. FrameNet is an
annotated dataset, marking for each predicate the
frame that it evokes. A German frame resource
called SALSA (Burchardt et al., 2006) builds on
the frame lexicon provided by FrameNet.

The induction of specific frames has received
much attention (Gildea and Jurafsky, 2000; Das
et al., 2014). Generally, frame-semantic parsing is
split into two sub-tasks of relevance to us: (i) tar-
get detection, the discovery of predicates evoking
frames, and (ii) frame induction, the classification
tasks of deciding which frame a predicate evokes
(Das et al., 2014, p. 19). For the SemEval-2007
shared task (Pradhan et al., 2007), the work by Jo-
hansson and Nugues (2007) relies on the FrameNet
lexicon specifying all possible frames for a predi-
cate, with their model only deciding between the
defined options. To handle predicates not covered

by FrameNet but occurring in the evaluation data
they map uncovered verbs to existing ones using
WordNet (Fellbaum, 1998).

Our proposal is closely related to QasemiZadeh
et al. (2019), who introduce a shared task for un-
supervised frame induction. Unlike the FrameNet
dataset, they only provide frame annotations for
verbs.

2.3 Event Sequences
Chambers and Jurafsky (2008) worked on learn-
ing narrative chains, sequences of events sharing a
common protagonist. They operate on news data,
introducing the narrative cloze task (the task of,
given its surrounding events, predicting an event in
a narrative chain). Chambers and Jurafsky (2009)
extend the concept of narrative chains to narrative
schemas, which involve more than one character
and capture the interactions of different chains. Our
approach is an extension of this work in that we
aim to extract multiple schemas from a single long
document. We assume that a document contains
the descriptions of multiple processes or scenarios
where each forms a schema.

Distinguishing real from generated event chains
has been used in discriminative setups for story gen-
eration. Goldfarb-Tarrant et al. (2020) use event
sequences as a building block to allow language
models to generate globally consistent stories based
on short prompts. Their model is trained to discern
shuffled event sequences (using different shuffling
strategies) from real ones. Guan et al. (2020) gener-
ate common-sense stories based on external knowl-
edge bases. To our knowledge, no existing event
modeling literature operates on longer chains of
events as found in the domain of long-form litera-
ture.

Our approach is closely related to the one by
Chambers and Jurafsky (2008) and Chambers and
Jurafsky (2009), extending their approach to use
vector representations over verb forms and to the
operation on longer texts with multiple schemas.

2.4 Coreference Resolution
Coreference resolution is the task of identifying
spans of text referring to the same entity within
a document. Spans of text that refer to an entity
are called mentions, in the sentence “[Alice] got
up to greet [her] friend.”, for example, both “Al-
ice” and “her” refer to the same entity. The output
of a coreference system is a set of mentions for
each entity in the text. With the recent success of
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contextual embedding based coreference resolution
approaches (Xu and Choi, 2020; Joshi et al., 2019,
2020) and its adaptation to longer documents on En-
glish data (Xia et al., 2020; Toshniwal et al., 2020),
it seems possible that learning-based approaches
could outperform rule-based ones, even on docu-
ments the length of entire novels. For English, the
CoNLL-2012 shared task, based on the OntoNotes
5.0 dataset, is universally used for evaluation (Prad-
han et al., 2012). The improvement in performance
on this task in the recent past has largely been at-
tributed to the improvements in underlying embed-
dings (Xu and Choi, 2020). Existing approaches
on German news-domain data (Roesiger and Kuhn,
2016) are based on rule-based systems.

LitBank (Bamman et al., 2020) is a dataset of
English novels with coreference annotations. Re-
cent approaches by Xia et al. (2020) and Toshni-
wal et al. (2020) have evaluated their approach on
this dataset. Krug et al. (2015) have approached
the domain of German literature using rule-based
coreference resolution. They point out issues with
machine learning approaches, namely the fact that
literary text is very different from the news data
usually used for training, and provide a corpus for
evaluation (Krug et al., 2018). The availability and
quality of pre-trained embeddings as well as the
absence of very large annotated German literary
datasets are hindrances to applying state-of-the-
art English approaches. Recently neural networks,
however, have been found to perform similarly to
rule-based approaches in our domain, with weak-
nesses in global consistency (Krug, 2020, chap. 8).

3 Research Questions

Generally, the proposed thesis seeks to model
broader narratives by building up from single
events. We aim to build two-layered models,
building from events to schemas by segmenting
chains of events into semantically related sub-
chains. Those sub-chains sharing coreferring argu-
ments form what we call a schema. Over a simple
sequence model of events, this has the potential
benefits of allowing for human analysis and simpli-
fying comparisons between multiple texts.

RQ 1: How can events be represented? We
approach the detection of events by processing verb
occurrences. We aim to make use of dense vector
representations of frames instead of using discrete
frames. This is motivated by coverage concerns as
well as the intuitive insight that frames have vary-

ing semantic distances between each other, which
we hope can be represented by vector space dis-
tances. The approach will be evaluated on existing
semantic frame resources as well as regarding their
contribution towards schemas.

RQ 2: How can schemas be represented?
Through the use of sequence models, we will at-
tempt to find semantically related sequences of
events. This may mean finding common-sense
event sequences. For example “take cart” – “take
fruit” – “queue up” – “pay” clearly is a sequence
of events typical for grocery shopping, even though
no individual event is uniquely indicative of gro-
cery shopping. In this way, we may find semantic
structures in texts that only emerge from the com-
bination of several events.

We will experiment with different approaches
to transforming sequences of events into schema
representations. A simple approach may be av-
eraging of event representations; more advanced
approaches involving neural sequence models are
also to be explored.

RQ 3: Which role does coreference play in
schema representations? Coreference allows us
to resolve the arguments of frames to their enti-
ties. Predicates that share corefering arguments
may, depending on the segmentation, be part of
the same schema. Entities will be chosen based on
their prevalence, only entities with multiple occur-
rences are of interest. As a result, all predicates
not involved with entities of interest are discarded
immediately; this is an implied filtering step remov-
ing many predicates that do not constitute events.
Descriptions of scenery for example would usually
be discarded in such a scenario. The evaluation
of coreference resolution can be performed on ex-
isting datasets. Literary datasets generally only
annotate characters, rather than all entities.

It is conceivable that representation learning on
events in text order may, in our case, be an appro-
priate replacement for coreference resolution. In
this case, the presence of multiple events in prox-
imity would be modeled rather than an explicit
interaction. Initial filtering of non-event predicates
is, in this case, required to not include predicates
irrelevant to the story at large.

RQ 4: How can event and schema represen-
tations be adapted to literary works. We hypoth-
esize to encounter the following challenges in our
approach to literary works: document length, vo-
cabulary mismatch with pre-trained models, and
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a diversity of domains (i.e.: different literary gen-
res). To address these, we will explore the role of
segmentation for processing documents in sections,
the viability of incremental processing, and the
role of pre-training and unsupervised fine-tuning.
Aside from intrinsic evaluations of schemas based
on their similarity and predicates based on them
constituting events, we plan to derive summaries
from the schema structure and compare them to
human-generated summaries in literary lexicons
(e.g. Arnold, 2009).

4 Methodology

From the research questions, two immediate direc-
tions emerge: event extraction, including corefer-
ence, and event representations. Later in the re-
search process, we plan to build two-layer models
transforming sequences of events into schemas.

4.1 Datasets

We operate on historical German literature in the
form of the d-Prose dataset (Gius et al., 2020).
Event annotations will, in cooperation with liter-
ary scientists, be created on a small subset of this
data. In this subset, all verbs will be annotated,
indicated whether or not they represent an event.
For any verb that does represent an event, a set of
binary features will be recorded, indicating several
binary features based on concepts from narratology
(Schmid, 2014). These features capture such crite-
ria as reversibility, unexpectedness, and relevance
of events.

4.2 Frame Identification for Event
Representation

Initially, we assume each verb to evoke a frame and
to represent an event, thereby addressing target de-
tection using a parser-based heuristic. One notable
exception, to the assumption of all verbs evoking
frames, is stative verbs, “Water is cold” does not
describe an event. Other cases such as inductive
generalizations like “Metal expands in the heat”
are more difficult to handle and may require ma-
chine learning approaches. Our initial approaches
will only rely on the text order of events; we choose
not to apply temporal ordering approaches (Mir-
roshandel et al., 2009; Mostafazadeh et al., 2016).

Concerns over insufficient coverage in the frame
annotation data are motivated by an assumed di-
verse vocabulary in the domain of German litera-
ture. We separate coverage issues with frame re-

sources into two categories, expecting both to occur
with our data: (i) missing frames where, as pointed
out by Yong and Torrent (2020), some semantics
may not be covered, and (ii) missing lexical units
where not-before-seen verbs evoke known frames.

While previous work by Yong and Torrent (2020)
addressed missing frame coverage concerns by gen-
erating new frames, our approach does not neces-
sitate discrete frame representations, rather we see
multiple potential benefits to using continuous rep-
resentations instead. Vector representations for dif-
ferent frames may model their semantic distances,
different frames of communication such as “State-
ment” and “Reporting”, for example, are relatively
closely related. Further, continuous representations
may cover gradual distinctions between frames.
The lexical unit “say” will typically evoke the

“Statement” frame, while the verb “scream” will
evoke the “Communication_noise” frame; gradual
decisions could be made as to which frame the ex-
ample “she spoke loudly” should evoke. Lastly,
continuous representations are a good fit for pro-
cessing neural models, no additional embedding
layer is needed.

Our initial approach mirrors the one described as
“Bottom-up Prototype” by Sikos and Padó (2019).
In this approach, for each frame, the average vector
representation of all training examples is computed,
with the resulting centroid representing the entire
frame. With this approach, using BERT-based em-
beddings, assigning frames based on the closest
centroid embedding, (Devlin et al., 2019) we only
barely reached double-digit results (in terms of
frame classification F1-score) without lexical unit
filtering while predicting German SALSA frames.
These current results are not comparable with ex-
isting ones that we are aware of but we will make
sure to apply our approach to existing datasets (e.g.
Pradhan et al., 2007) in the future to facilitate com-
parisons. To retain the wider applicability of our
embeddings, while improving results, we decided
to use an approach similar to the “Bottom-up plus
Top-down Prototype” one taken by QasemiZadeh
et al. (2019). We train a BERT network to decide
if a pair of lexical units in their contexts evoke the
same frame. Unlike QasemiZadeh et al. (2019), we
rely on embedding similarity to frame centroids at
evaluation time.
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Model Name Max F1-Score

bert-german 71.73
bert-dbmdz 72.71
multilingual-bert 73.36
bert-electra 75.86
IMS HotCoref DE1 48.54

Table 1: Preliminary F1 scores for German coreference
resolution on the TüBa-D/Z 10 validation set for differ-
ent underlying embeddings using early stopping, with
previous results listed for comparison.

4.3 Coreference Resolution

Coreference resolution is required to extract chains
of events sharing a specific entity. Our initial re-
sults are promising, showing that current neural ap-
proaches using modern embeddings perform very
well on German data.

In the experiments we present in this proposal,
we train and evaluate German coreference mod-
els on the TüBa-D/Z dataset (Telljohann et al.,
2004), adapting English approaches that are trained
on OntoNotes (Pradhan and Ramshaw, 2017).
We intend to train and evaluate further on the
DROC (Krug et al., 2018) and DraCor (Pagel and
Reiter, 2020) datasets adapting our models to per-
form character based coreference resolution. In
the context of event extraction, the focus on char-
acters could benefit us by irrelevant events being
discarded, on the other hand, the removal of non-
character related events relevant to the plot (e.g.:
an earthquake) could be detrimental.

Table 1 shows our best results for each model on
the validation set (with which early stopping is per-
formed). All models were tested in their base vari-
ant. We use the training, validation, and test splits
suggested by Roesiger and Kuhn (2016). Multilin-
gual BERT (Devlin et al., 2019) performs about
on par with the two older German models but is
outperformed by the more recently released Electra
model2.

On the test set, our approach also performs well,
reaching an F1 score of 75.44 using the evaluation
script by Pradhan et al. (2014). Existing German
results on the same data, using the same prediction
setup (i.e. without using gold mentions), reach a
maximum F1 score of 48.54 (Roesiger and Kuhn,

1Result from Roesiger and Kuhn (2016)
2https://huggingface.

co/german-nlp-group/
electra-base-german-uncased

2016). Our preliminary results show that the exist-
ing approach by Xu and Choi (2020) adapts well to
German data, out-performing previous rule-based
systems. We attribute this clear improvement over
the current state of the art mostly to the improve-
ments in word embeddings; previous approaches
on German data have not made use of transformer-
based models. Comparisons with English provide
limited insight due to the difference in datasets.

In our context tuning coreference systems for
precision could be an option, but it remains to be
seen how this would affect overall performance.

4.4 Narrative Schemas

As mentioned in Section 1, as a first step a schema
segmentation needs to be performed. From surface-
level features (like paragraphs) to content-based
ones (like perplexity of event sequence models),
we will openly explore different approaches. The
evaluation of segmentations will pose a challenge,
due to the lack of evaluation data; we will start
with manual evaluation, potentially extending it to
metric-based evaluation later on. There is also the
issue of unclear definitions of schema boundaries,
it is not clear, for example, if a social gathering
schema should contain events for transportation to
said social gathering (recall the example in Fig-
ure 1).

When considering the document from the per-
spective of an entity e, we get a sequence of events
E

{e,...}
0 through E{e,...}

n where each ellipsis in the
superscript may represent any number of additional
entities involved with the event. Splitting event
chains from each entities’ perspective (based on,
for example, a sequence model’s perplexity) could
be a suitable first step in creating schemas, result-
ing in a set of event chains for each entity. The
second step would then unify all event chains shar-
ing common events into schemas. Taking a more
global approach involving all events in sequence,
in conjunction with the entities related to them will
also be considered.

After segmentation, each individual chain will
be processed into a single fixed-size vector repre-
sentation. We intend to evaluate the naïve approach
of averaging event representations. Sequence mod-
els, such as LSTMs (Hochreiter and Schmidhuber,
1997), will also be evaluated, training them on the
narrative cloze task we hope to use their state vec-
tors as representations for schemas. Such schema
vectors would, ideally, be close, in vector space,
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to semantically similar schemas. Due to the pre-
sumed length of event sequences, we will focus
on recurrent models that allow for arbitrary input
sizes.

5 Conclusion

We proposed segmenting chains of events to form
multiple schemas in long documents, mentioning
different approaches to the representation of events
and to their segmentation. Further, we discussed
the options for representing schemas to allow for
their analysis and thereby the comparison of differ-
ent documents. An open question for us is if the
two-layer approach to schemas and events is suffi-
cient, if needed a hierarchical approach involving
levels of schemas will be considered.

As part of the event extraction process in this
thesis, work on both semantic frame induction and
coreference resolution for German language con-
tent will be advanced. The representation of events
using continuous frame embeddings is a new ap-
proach in the domain of information extraction.

Specifics of sequence modeling and feature
learning on events are vague, iterations on the pro-
posed concepts are planned. The open question of
how exactly schemas boundaries are to be defined
still needs to be explored.

We intend to help enable the computational anal-
ysis of literary texts. Schema representations may
be used for finding previously hard to find similari-
ties in different documents, whereas event features
can be used to identify events that are important
to the narrative. Statistical and machine-learning-
based approaches to event modeling will advance
the understanding of events in a domain that yet
received relatively little attention.
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Abstract

Text simplification is a growing field with
many potential useful applications. Train-
ing text simplification algorithms generally re-
quires a lot of annotated data, however there
are not many corpora suitable for this task. We
propose a new unsupervised method for align-
ing text based on Doc2Vec embeddings and
a new alignment algorithm, capable of align-
ing texts at different levels. Initial evaluation
shows promising results for the new approach.
We used the newly developed approach to cre-
ate a new monolingual parallel corpus com-
posed of the works of English early modern
philosophers and their corresponding simpli-
fied versions.

1 Introduction

There has been a clear growth in research in the
field of text simplification in recent years (Shard-
low, 2014). Text simplification has many potential
advantages, such as helping people who suffer from
impairments like dyslexia (Alva-Manchego et al.,
2020). Most recent approaches are data-driven and
require learning text simplification transformations
such as sentence splitting or word substitution from
a parallel corpus.

Such a parallel corpus consists of a source docu-
ment and a target document, which is the simplified
version of it. The most widespread parallel corpora
for text simplification are the parallel English Sim-
ple Wikipedia corpus (Zhu et al., 2010) and the
more recent Newsela corpus (Xu et al., 2015).

A parallel corpus is obtained by aligning the
units of text between the original-simplified pairs.
The alignment can be done at different levels, how-
ever most research in the field is focused on sen-
tence simplification (Alva-Manchego et al., 2020),
thus sentence level alignments is the gold standard.
Automated methods which can asses text similar-
ity are highly desirable in order to produce such
parallel corpora.

There are few tools that can easily align text in
an unsupervised way. MASSAlign1 by Paetzold
et al. (2017) is a Python library which can pro-
duce alignments at both paragraph and sentence
level in an unsupervised manner using a TF-IDF
model. However, according to Campr and Ježek
(2015), a Doc2Vec model would yield results which
would imitate human estimates closer than a TF-
IDF model when computing text similarity.

The current work has a twofold contribution.
Firstly, we extend the existing MASSAlign tool
with a Doc2Vec language model to better capture
text similarity and a new alignment algorithm to
complement the language model. We manually la-
bel two pairs of original-simpliefied documents and
use these pairs to evaluate the performance of the
Doc2Vec-based method. We find some promising
results, however more evaluation is needed in order
to draw a strong conclusion.

Secondly, we create a novel monolingual parallel
corpus from philosophical texts. The novelty lies in
the type of texts that constitute the corpus, specifi-
cally original philosophical works written by early
modern English philosophers and their simplified
variants re-written by a group of editors, with the
scope to make the texts more accessible while pre-
serving the meaning. The newly developed parallel
corpus is created using the improved text alignment
tool and is intended to be used as training data for
existing text simplification systems. We sample
alignments at random to get an idea of the quality
of the corpus. Our initial findings show that the
generated corpus seems to be of high quality.

2 Related Work

Paetzold et al. (2017) have proposed and developed
an easy-to-use text alignment tool in the form of
a Python library. Their approach relies on a sim-
ple TF-IDF model coupled with a Vicinity-Driven

1Github.com/ghpaetzold/massalign
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alignment method described in Paetzold and Specia
(2016). Their alignment relies on the assumption
that the order in which the information appears is
consistent in both text pairs. Their system can iden-
tify one-to-many, many-to-one and many-to-many
alignments, as opposed to the method proposed by
Xu et al. (2015). This allows for capturing of text
simplification operations such as splitting and com-
pressing. Additionally, they employ a two stage
approach, in which they first align paragraphs and
then align sentences in the already aligned para-
graphs. Our research expands and builds upon the
work of Paetzold and Specia (2016).

Štajner et al. (2018) have presented CATS2, a
tool for the alignment of text simplification corpora.
They employ two alignment methods, one which
works under the same assumption as Paetzold et al.
(2017), namely that the order of information is
consistent in both pairs of text, and one which re-
laxes that assumption. Both approaches use the
same strategy of aligning each sentence from the
simplified-version of the document with the most
similar sentence from original document, on the
basis of textual similarity metrics. Similarly, their
tool also allows for one-to-many and many-to-one
alignments, and offers the option for a two staged
alignment approach. One of their findings is that
employing the assumption of consistent informa-
tion ordering leads to an increase in the number
of partial matches, at the cost of the number of
full matches. However, this allows for the better
capturing of the deletion operation specific to text
simplification.

Xu et al. (2015) argue that the Simple Wikipedia
corpus is a bottle neck for the text simplification
field because the corpus is prone to automatic align-
ment errors, has inadequate simplifications and
does not transfer well to other styles of texts. They
present a new parallel corpus, Newsela, as an al-
ternative to the Simple Wikipedia dataset. This
new corpus improves on the shortcomings of the
Wikipedia corpus since it consists of news arti-
cles professionally rewritten by editors. Our work
provides an additional, novel corpus in order to
advance the field of text simplification.

3 Dataset

The parallel dataset created is built from the works
of four early modern philosophers, whose works
were originally written in English: George Berke-

2Github.com/neosyon/SimpTextAlign

ley, David Hume, John Locke and John Stuart Mill.
We obtained the original documents, which were
in the public domain, from Project Gutenberg3.
We obtained their simplified counter-parts of from
Early Modern Texts4. The simplified version of
texts were re-written by a team of editors, with the
specific goal of making the original document more
accessible while keeping the original ideas intact.

In order to be able to generate the parallel corpus,
we cleaned-up and pre-processed the gathered data
such that each document consists of a sentence
per line, while empty lines represent the paragraph
boundaries.

The pre-processing pipeline consists of multiple
steps. First, using regular expressions we remove
unwanted characters from the texts such as hash-
tags or underscores, or in the case of the simplified
versions, characters that mark omissions or that are
used for formatting purposes, which were added by
the editors. The next step was to remove the new-
line characters found in the middle of sentences.
This was also done by means of regular expressions.
At the end of this step, the documents were format-
ted such that each line of the document represents
a paragraph. Once this was achieved, a paragraph
was split into sentences by using the Punkt Tok-
enizer provided in the NLTK5 Python library. A
list of common encountered abbreviations was sup-
plied to the tokenizer such that sentences are not
split midway.

4 Method

We use the open-source Python library, MAS-
SAlign, developed by Paetzold et al. (2017) as the
base for our new alignment algorithm. We expand
the tool with a Doc2Vec language model and a new
alignment algorithm which can take advantage of
the new language model. Subsection 4.1 describes
the language model, while Subsection 4.2 describes
the alignment algorithm.

4.1 Language Model

Campr and Ježek (2015) evaluated a number of lan-
guage models for the task of computing document
similarity and found that TF-IDF embeddings are
outperformed by Doc2Vec embeddings. This is in
line with the intuition that a paragraph vector would
capture meaning better than a simple bag of words

3Gutenberg.org
4EarlyModernTexts.com
5NLTK.org
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approach since it makes better use of the context
around words. Therefore, we decided to extend the
MASSAlign tool with a Doc2Vec model.

The Doc2Vec model is used to create a vector
embedding for the text unit to be aligned. In order
to measure how similar two text units are, we use
the cosine distance metric of the two vectors. We
train a new Doc2Vec model each time an original-
simplified pair of documents is to be aligned. The
intuition behind is that this approach will better
capture the specific style of the document.

We chose the parameters of the Doc2Vec model
based on the insights from Lau and Baldwin (2016).
Their empirical evaluation has shown that from the
two methods employed by Doc2Vec, dmpv and
dbow, the latter one yields better results, despite
being less complex. They also find that instead of
initializing word embeddings with random vectors,
as it is typical with Doc2Vec, a step of skip-gram
being performed before dbow leads to improvement
in performance.

Therefore, the model is initialized with a vector
size of 300, a window size of 15 and a negative
sample of 5. The two parameters that are different
from the findings of Lau and Baldwin (2016) are
the number of training epochs and the minimum
word count. Since some of the texts to be aligned
are relatively short, a larger number of epochs and
a smaller minimum word count is used in order to
achieve more consistent results.

4.2 Alignment Algorithm

We developed an alignment algorithm to comple-
ment the Doc2Vec language model. The alignment
algorithm is heavily inspired by the already existing
Vicinity-Driven algorithm of (Paetzold and Specia,
2016). The need for another alignment algorithm
was motivated by way the TF-IDF language model
was used to determine whether two paragraphs are
aligned. In the initial Vicinity-Driven method the
similarity score of two paragraphs is given by the
pair of sentences within the paragraph that have the
highest similarity score. With the Doc2Vec model,
a similarity score can be computed directly for the
entire paragraph.

The new alignment algorithm starts from the be-
ginning of the documents and looks for the first
(original, simplified) pair of text units that are simi-
lar enough to consider. Once this candidate align-
ment pair is found, the next step is to try to improve
alignment score, by expanding the initial alignment

and looking for potential one-to-many and many-to-
one alignments. Expanding the initial alignment is
done by concatenating the current text units being
considered with the next text unit from the original
document, and, respectively, from the simplified
document and computing new similarity scores.
This expansion process continues until the newly
computed similarity score stops improving. At this
point the expansion process is stopped and the sim-
ilarity score of this expanded candidate alignment
pair is evaluated against a threshold. If the score
is above the threshold, the candidate pair is consid-
ered aligned, otherwise, the algorithm looks for the
next pair of text units which could be considered
similar enough to try to align. The process contin-
ues until the end of both documents is reached. The
algorithm allows for skipping of text units, to allow
for the situation in which a particular text unit is
not aligned to any text unit in the other document
of the pair.

Similar to the original Vicinity-Driven method,
the developed algorithm is capable of identifying
one-to-one, many-to-one, one-to-many and many-
to-many alignments. While it relies on the same as-
sumptions as the original alignment algorithm, the
approach described in this paper is able to relax one
assumption, namely that the first paragraphs of the
pair of documents are definitely aligned. Moreover,
while the Vicinity-Driven approach employs two
slightly different methods for aligning paragraphs
and aligning sentences, the new method uses the
same logic for both paragraph and sentence levels.
This, coupled with the Doc2Vec model, makes the
aligner capable of aligning text at different levels.

Unlike the already existing method, the new al-
gorithm makes use of three different threshold lev-
els. This is done for a number of reasons. First
of all, a certain threshold is used to identify one-
to-one alignments with a very high degree of sim-
ilarity. A second, hard threshold is used to de-
termine whether an alignment is good enough. A
third threshold, soft threshold is employed in order
to identify potential one-to-many, many-to-one or
many-to-many alignments.

The thresholds are determined automatically by
considering the distribution of the best similarity
scores for each of the paragraphs or sentences of
the simplified document from the initial similar-
ity matrix. The soft threshold is determined by
the lowest value of the similarity score distribu-
tion. Next, the 95% confidence interval where the
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median value of the similarity score falls is deter-
mined. The hard threshold is determined by taking
the lower boundary of the confidence interval and
subtracting the standard deviation of the distribu-
tion, while the certain threshold is determined by
considering the upper boundary of the confidence
interval and adding the standard deviation of the
distribution.

5 Results

5.1 Doc2Vec algorithm

In order to evaluate the performance of the pro-
posed alignment algorithm, we have manually
aligned two pairs of documents and created a
ground-truth document for each pair of texts. The
document which were used for evaluation are
George Berkeley’s "Essay Towards a New The-
ory of Vision" (Berkeley1709) and John Locke’s
"A Letter Concerning Toleration" (Locke1689b).
We compared the performance of the original TF-
IDF based Vicinity-Driven algorithm against the
Doc2Vec based proposed algorithm.

Due to the statistical nature of Doc2Vec, running
the alignment algorithm multiple times with the
same parameters leads to small jitters in the results.
The variation from run to run is determined by the
quality of the Doc2Vec model, in particular for the
number of epochs the model is trained. If the model
is under-trained, there will be large variations in
results between runs, thus it is important to have a
model adjusted to the particularities of the text.

In order to evaluate the two methods, we con-
sider the task of aligning sentences as a binary
classification task, where each pair of sentences or
paragraphs considered are either classified as cor-
rectly aligned or incorrectly aligned. We report the
performance in terms of precision, recall and F1
measure. For sentences we consider two cases, one
where the alignment is fully correct and one where
the alignment is partial. In addition, we provide
descriptive statistics about the one-to-one (1-to-
1), many-to-one (n-to-1) and one-to-many (1-to-n)
alignments. A one-to-many alignment implies that
one unit of text from the original document maps
to more than one unit of text from the simplified
document, hence the original unit of text was split
into multiple units in the simplified version.

The results are shown in Table 1. As it can be
observed, for the Berkeley pair of documents, the
Doc2Vec-based method seems to be slightly su-
perior to TF-IDF, however the Doc2Vec-based ap-

Berkeley Locke
TF-IDF Doc2Vec TF-IDF Doc2Vec

Paragraph
Detected 155 153 75 71
Correct 147 146 70 59
1-to-1 122 121 52 49
n-to-1 1 0 5 1
1-to-n 24 25 13 9

Precision 0.948 0.954 0.933 0.830
Recall 0.936 0.929 0.945 0.797

F1 0.942 0.941 0.939 0.813
Sentences

Detected 540 557 414 350
Correct 459 482 307 227
1-to-1 384 397 279 203
n-to-1 21 22 15 15
1-to-n 54 63 13 9

Precision 0.850 0.865 0.741 0.648
Recall 0.796 0.836 0.685 0.506

F1 0.822 0.850 0.712 0.568
Partial Sentences

Precision 0.948 0.935 0.908 0.797
Recall 0.888 0.904 0.839 0.622

F1 0.917 0.919 0.872 0.699

Table 1: Evaluation of TF-IDF model and original
alignment algorithm against Doc2Vec model and our

alignment algorithm for two pairs of documents

proach performs worse in the case of the Locke
pair of documents. Since the evaluation was per-
formed on a limited sample of documents, there is
not enough data to be able to infer anything cate-
gorically about the Doc2Vec-based approach.

Table 2 contains examples which illustrate both
successful and unsuccessful sentence alignments.
Examples 1, 3.1 and 3.2 are from Berkeley’s work
(Berkeley1709), while examples 2 and 4 are from
Locke’s work (Locke1689b). Example 1 show-
cases a one-to-many type of alignment, in which
the original sentence corresponds to two sentences
from the simplified version. Example 2 showcases
a many-to-one type of alignment, where two sen-
tences of the original version correspond to a single
sentence from the simplified document. Unsuccess-
ful alignments can be classified as either partial or
erroneous. With partial alignments there is some
overlap between the original and simplified sen-
tences, however the alignment fails to capture the
full semantic similarity. A partial alignment can
introduce offset in the alignment process and can
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Ex. Original Document Simplified Document

Successful alignments

1 to which i answer, it is not faintness anyhow applied that
suggests greater magnitude, there being no necessary
but only an experimental connexion between those two
things.

i answer that what suggests larger size is not faintness
as such but faintness of a kind and in circumstances that
have been observed to accompany the vision of large
sizes. we’re not dealing with a necessary connection
here, but only an experimental connection between those
two things.

2 nay, we must not content ourselves with the narrow mea-
sures of bare justice; charity, bounty, and liberality must
be added to it. this the gospel enjoins, this reason directs,
and this that natural fellowship we are born into requires
of us.

indeed, we should go beyond mere justice, adding benev-
olence and charity; the gospel commands this, reason
urges it, and it is favoured by the natural fellowship we
are born into.

Unsuccessful alignments

3.1 but, say you, the picture of the man is inverted, and
yet the appearance is erect: i ask, what mean you by the
picture of the man, or, which is the same thing, the visible
man’s being inverted?

you object: the picture of the man is inverted, yet the
appearance is erect.

3.2 you tell me it is inverted, because the heels are uppermost
and the head undermost?

what do you mean by the picture of the man? or, the
same question, what do you mean by the visible man’s
being inverted? you tell me that it’s inverted because the
heels are uppermost and the head undermost?

4 another more secret evil, but more dangerous to the com-
monwealth, is when men arrogate to themselves, and to
those of their own sect, some peculiar prerogative cov-
ered over with a specious show of deceitful words, but in
effect opposite to the civil right of the community.

for if these were proposed thus nakedly and plainly, they
would soon attract the attention of the magistrate and
arouse the commonwealth to be on its guard against the
spreading of such a dangerous evil.

Table 2: Examples of successful and unsuccessful alignments.

cause the following sentence pair to also be only
partially aligned, as illustrated by examples 3.1
and 3.2, which are consecutive pieces of text in
the documents. With erroneous alignments, illus-
trated by example 4, the sentences convey different
messages.

5.2 Parallel Corpus

The gathered documents have been aligned using
the Doc2Vec aligner method. In Table 3 it is shown
what percentage of the paragraph and sentence of
the simplified documents have been aligned. This
value gives an indication of how much of the docu-
ment could be aligned, however it does not reflect
the recall performance of the aligner since the total
number of alignments will always be less or equal
to the number of initial paragraphs or sentences,
due to many to one alignments.

It can be observed that the coverage percentage is
very low for larger documents. The cause of this is
two-fold. Firstly, the Doc2Vec model is most likely
under-powered since the hyperparameter values
have been tuned on the Berkeley1709 pair which is
shorter than for instance Berkeley1732. Secondly,

Paragraphs Sentences
Doc ID Total Det. Cov. Total Det. Cov.

Berkeley1709 157 154 0.98 576 547 0.94

Berkeley1710 185 173 0.93 1046 800 0.76

Berkeley1713 223 211 0.94 331 290 0.87

Berkeley1732 291 42 0.14 4228 865 0.12

Hume1739 1378 248 0.17 6687 865 0.12

Hume1748 277 114 0.41 1158 488 0.42

Hume1751 364 129 0.35 1348 422 0.31

Hume1779 264 254 0.96 1237 1140 0.91

Locke1689a 309 119 0.38 948 325 0.34

Locke1689b 88 71 0.80 616 350 0.56

Mill1843 1556 168 0.10 68686 426 0.06

Mill1859 140 124 0.88 1263 1109 0.87

Mill1863 111 91 0.81 696 602 0.86

Mill1869 96 85 0.88 1186 755 0.63

Mill1873 208 181 0.87 1879 1625 0.86

Table 3: Total and detected (Det.) paragraph (P) and
sentence (S) alignments using Doc2Vec alignment

method. Coverage (Cov.) shows the percentage of the
total number of paragraphs and sentences that have

been aligned.
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by inspecting the documents with a low coverage,
it was observed that there were a large number of
short paragraphs and short sentences, of few words.
These short paragraphs or sentences affect the per-
formance of the Doc2Vec model since there is a lot
less context when compared to longer paragraphs.

The alignments have been manually inspected
by randomly sampling alignments from the differ-
ent documents. While the sampling and inspection
have not been performed in a structured manner,
this was sufficient to determine that the text pairs
which achieved a low coverage score were not op-
timally aligned. Therefore it would be detrimental
to include these document pairs in the final corpus.
Conversely, the text pairs which achieved a high
coverage score appeared to be well aligned.

Therefore, we concatenated together the doc-
ument pairs with a coverage value of above 0.3
to form a new corpus. Two files are created, for
aligned paragraphs and for aligned sentences. The
sentence alignment file consists of 8453 aligned
sentences comprised of 636652 words in total. An-
other random sampling inspection is performed
on the resulting corpus made of aligned sentences.
Out of 100 sentence alignments extracted, 98 align-
ments can be classified as good, while 2 alignments
can be classified as partial. A partial alignment
means that there is an overlap between the aligned
sentences, however, one of the sentence contains
additional information which is not present in the
other sentence.

6 Discussion

The current work has a number of limitations. One
of the biggest limitations is that the evaluation of
the performance of the Doc2Vec model is done
with limited data points. While, it shows some
promising results, the limited evaluation is not
enough to allow for a strong conclusion to be drawn.
To overcome this, a more extensive intrinsic and
extrinsic evaluation should be performed by test-
ing with parallel corpora that have already been
aligned, such as the Simple Wikipedia corpus or
the Newsela corpus and compare the number and
quality of alignments obtained against already es-
tablished methods.

In addition to a better evaluation of the model, a
method for determining the hyperparameters of the
Doc2Vec model based on the characteristics of the
texts to be aligned, such as number of sentences
or number of words, would be highly beneficial

and would improve the alignment process in terms
of both quality and time investment. Moreover,
more recent, neural-network based language mod-
els, such as Sentence-BERT or Universal Sentence
Encoder, could be considered as an alternative to
Doc2Vec.

Another limitation of the current work is the
lack of evaluation of the produced parallel corpus.
While the limited random sampling shows very
promising results, this is not enough in order to
draw a conclusion regarding the quality of the re-
sulted dataset. A more structured approach to the
random sampling method could give better insight
into the quality of the dataset.

Another point of improvement is the pre-
processing stage. Ensuring that all text formatting
elements, such as chapter numbers or titles are re-
moved, would result in a more robust Doc2Vec
model being trained on those documents. More-
over, very short paragraphs or sentences are detri-
mental to the quality of the Doc2Vec embeddings
and do not add a lot of value for the text simplifica-
tion process, thus they should be filtered out.

7 Conclusion

An approach to unsupervised text alignment was
presented in this paper which makes use of
Doc2Vec text embeddings in order to asses sim-
ilarity between two pieces of texts. Additionally,
an alignment method derived from the Vicinity-
Driven approach of Paetzold and Specia (2016)
has been presented. Initial results have shown the
current work has slightly better performance com-
pared to the original approach when evaluated on
a specific pair of texts, but it has worse results
on a different pair of texts. However, due to the
limited evaluation, the outcome cannot be readily
generalized and more testing is required in order
to draw a definitive conclusion. The MASSAlign
Python library has been extended to include this
new Doc2Vec model.

A new monolingual parallel corpus has been
created from documents consisting of works of En-
glish early modern philosophers and their simpli-
fied, corresponding, versions, which were redacted
by a group of editors with the goal of making the
original documents easier to follow and understand,
while preserving meaning.

The newly created parallel corpus, together with
the extended version of MASSAlign are available
at: github.com/stefanpaun/massalign.
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Abstract

We present a simple method for extending
transformers to source-side trees. We define
a number of masks that limit self-attention
based on relationships among tree nodes, and
we allow each attention head to learn which
mask or masks to use. On translation from En-
glish to various low-resource languages, and
translation in both directions between English
and German, our method always improves
over simple linearization of the source-side
parse tree and almost always improves over
a sequence-to-sequence baseline, by up to
+2.1% BLEU.

1 Introduction

The transformer model for machine translation
(Vaswani et al., 2017) was originally defined as
a mapping from sequences to sequences. More re-
cent work has explored extensions of transformers
to other structures: a tree transformer would be able
to make use of syntactic information, and a graph
transformer would be able to make use of semantic
graphs or knowledge graphs.

There have been a number of proposals for
transformers on trees, including phrase-structure
trees and dependency trees for natural languages,
and abstract syntax trees for programming lan-
guages. One common strategy is to linearize a tree
into a sequence (Ahmad et al., 2020; Currey and
Heafield, 2019). Another strategy is to recognize
that transformers are fundamentally defined not
on sequences but on bags; all information about
sequential order is contained in the positional en-
codings, so all that is needed to construct a tree
transformer is to define new positional encodings
on trees (Shiv and Quirk, 2019; Omote et al., 2019).

In this paper, we present a third approach, which
is to enhance the encoder’s self-attention mech-
anism with attention masks (Shen et al., 2018),
which restrict the possible positions an attention
head can attend to. We extend this idea in two new

ways. First, our attention masks are based on re-
lationships among tree positions (for example, “is
an ancestor of” or “is a descendant of”) rather than
sequence positions (“is left of” or “is right of”).
Second, instead of pre-assigning different masks to
each attention head, we allow each attention head
to learn separately which mask or masks to use.

We experiment on machine translation of several
low-resource language pairs (Section 3). Compared
to linearization without masks, our method always
improves accuracy, by up to +1.7 BLEU (all BLEU
reported as percen t). Compared with a sequence-to-
sequence baseline, our method improves accuracy
by up to +2.1 BLEU. On tasks where linearization
hurts, our method is usually, but not always, able
to turn the loss into a gain.

2 Methods

Like several previous approaches, we use linearized
syntax trees. But whereas the usual linearization
traverses a node both before and after its descen-
dants, we use a preorder traversal of the tree. In
other words, our linearization does not have closing
brackets. Our linearization does not have enough
information to reconstruct the original tree; this
information is contained in the attention masks,
which we describe next.

Shen et al. (2018) introduce the idea of using
masks in a string transformer to allow attention
heads to attend only to the left or only to the right.
We apply this idea to tree transformers, with two
modifications. First, instead of masking out the
left or right context, we use masks based on the
structure of the tree. Second, instead of allocating
a fixed number of heads to each mask, we let the
model learn which mask(s) to use for each attention
head.

Given a query Q ∈ Rn×dk , key K ∈ Rn×dk , and
value V ∈ Rn×dv (where n is the number of input
tokens and dk = dv is dmodel divided by the number
of attention heads), scaled dot-product attention is
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normally computed as

α = softmax
QKT

√
dk

Att(Q,K,V) = αV

where α ∈ Rn×n is the matrix of attention weights,
and the softmax is performed per row. We modify
the definition of α to

α = softmax


QKT

√
dk
− exp

∑

m

smMm



where, for each m, the matrix Mm ∈ {0, 1}n×n is
a fixed mask and sm is its corresponding strength,
which is learnable. If [Mm]i j = 1 and sm is large,
then the attention at position i is prevented from
attending to position j. If [Mm]i j = 0 or sm is very
negative, then position i is free to attend to posi-
tion j. With multiple attention heads, each head has
its own strength parameters.

The strength parameters are initialized to zero
and learned by backpropagation with the rest of the
model. In this way, each attention head can learn
separately which mask or masks to use.

It remains to define the masks Mm. A mask can
be defined for any imaginable string or tree rela-
tionship. Because the model can always choose not
to use a mask, we can add as many masks as we
want. We use the following set:

self position i is equal to position j

parent position i is the parent of position j

child position i is a child of position j

left-sib position i is a left sibling of position j

right-sib position i is a right sibling of position j

anc position i is an ancestor (but not a parent) of
position j

desc position i is a descendent (but not a child) of
position j

left-other position i has none of the above relation-
ships with position j, but is left of position j

right-other position i has none of the above rela-
tionships with position j, but is right of posi-
tion j

Task Lines Avg. source
train dev test words nodes

En-Vi 131k 1,553 1,268 22.9 36.4
En-De 100k∗ 3,000 3,003 28.5 45.5
De-En 100k∗ 3,000 3,003 29.6 34.6
En-Tu 59k 1,114 544 28.7 39.1
En-Ha 45k 914 497 26.5 39.3
En-Ur 11k 1,271 652 22.5 30.7

Table 1: Dataset statistics. Nodes: average number of
interior nodes. ∗The original German–English dataset
had 4.5M lines, but we only trained on subsets of up to
100k lines.

Although none of the above masks overlap, there
would be no problem with defining masks that do.

Please see Figure 1 for an example. In (a) is an
English tree; (b) shows the same tree after applying
byte pair encoding (BPE) subword segmentation
(see Section 3 below); and (c) shows the relation-
ships of all the nodes with the second NP (the one
dominating my father).

3 Experiments

3.1 Data
We tested on the following datasets:

en-vi English to Vietnamese, from the IWSLT
2015 shared task.1 To test for dependence of
our method on training data size, we also used
random subsets of 20k and 50k.

de-en, en-de German↔English, from the WMT
2016 news translation task.2 For training, we
used random subsets of 20k, 50k, and 100k.
We used news-test2013 for validation and
news-test2014 for testing.

en-tu, en-ha, en-ur English to Turkish, Hausa,
and Urdu, from the DARPA LORELEI pro-
gram.

Some statistics of the datasets are shown in Table 1.
This table lists the average number of source words
and source interior nodes, from which the aver-
age number of tokens in the linearized and mask
systems can be derived.

We tokenized using the Moses tokenizer, then
divided words into subwords using BPE (Sennrich

1https://nlp.stanford.edu/projects/nmt/
2https://www.statmt.org/wmt16/

translation-task.html
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Figure 1: (a) Example tree. (b) With BPE. (c) Relationships of all nodes to the second NP (dominating my father).

et al., 2016). For en-vi, en-tu, en-ha, and en-ur, we
used 8k joint BPE operations, and for en-de and
de-en, we used 32k operations.

To parse English or German sentences, we used
the Berkeley Neural Parser (Kitaev and Klein,
2018; Kitaev et al., 2019) with the included
benepar_en2model for English and benepar_de
for German. The parser reads in untokenized
strings and writes out tokenized trees; we used the
parser’s tokenization, but applied BPE to the leaves,
as shown in Figure 1b.

3.2 Evaluation

We compare against two baselines: Sequence is
a standard sequence-to-sequence model, run on
words only. Linearized is a standard sequence-to-
sequence model, run on linearized trees. A leaf
node w is linearized as w. An interior node X is
linearized as (X followed by the linearization of
its children followed by ) . Against these baselines,
we compare our model, Mask, which uses a pre-
order traversal of the tree together with the masks
described above in Section 2.

All systems are implemented on top of
Witwicky,3 an open-source implementation of the
transformer. We use all default settings; in particu-
lar, layer normalization is performed after residual
connections (Nguyen and Salazar, 2019).

3https://github.com/tnq177/witwicky

We score detokenized system outputs using case-
sensitive BLEU against raw references (except on
en-vi, where we use tokenized outputs and refer-
ences), using bootstrap resampling (Koehn, 2004;
Zhang et al., 2004) for significance testing.

3.3 Results

The results are shown in Table 2. Relative to the
linearized baseline, our method (mask) always im-
proves, by up to +1.7 BLEU for English–Turkish.
The difference is statistically significant (p < 0.05)
except for English–Urdu.

Relative to the sequence baseline, the story is
more complex. Whenever linearized helps over se-
quence, our method helps more, up to a total of
+2.1 BLEU for German↔English (50k). But when
linearized hurts, our method sometimes helps over-
all (all tasks with 20k lines of training) and some-
times doesn’t (e.g., English–Urdu, with only 11k
lines of training). A simple possible explanation
is that additional tokens make training more diffi-
cult on the very smallest datasets, and the effect is
stronger for linearized, which has twice as many
extra tokens.

4 Analysis

4.1 Which masks get used

Figure 3 shows a heatmap of mask strengths for the
English–German task (100k lines), and Figure 2
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Figure 2: English–German attention masks. The cell in row i, column j shows the strength of the attention mask
for node i attending to node j. Light is the strongest (least attention) and dark is the weakest (most attention); see
Figure 3 for scale.

Figure 3: English–German mask strengths. Light is the
strongest (least attention) and dark is the weakest (most
attention).

displays the resulting sum of the masks for each
attention head for the parse tree of the sentence,
“He is my father.” There’s a strong left-right asym-
metry, with heads 2–4 and 7 attending to the left
and heads 1 and 5–6 attending to the right. There’s
also a strong preference to attend to nodes that are
nearby in the tree, with strongest weights on the
child, left-sib, and right-sib relations.

4.2 Usefulness of masks

Figure 4 shows the minimum, maximum, and range
of the mask strengths learned for various tasks.
Generally, a mask’s range correlates with its useful-
ness to the model. In particular, on Urdu–English,
where we saw the syntax-based models perform the

Dataset Min Max Range ∆BLEU

en-vi (full) −7.52 3.32 10.84 −0.24
en-de (100k) −5.77 2.96 8.73 1.49
de-en (100k) −6.29 2.59 8.88 1.41
en-tu −6.88 3.03 9.91 1.89
en-ha −4.49 2.41 6.90 1.16
en-ur −0.32 0.23 0.55 −1.32

Figure 4: Minimum, maximum, and range of mask
strengths. ∆BLEU = Change in test BLEU relative to
Sequence baseline.

worst, we also see the masks being used the least
and distinguished the least. English-Vietnamese
is clearly an exception to this, however, with the
highest maximum and widest range, but a small
(insignificant) loss in BLEU.

5 Conclusion

In this paper, we’ve shown that syntax can be both
helpful and easy to incorporate into low-resource
neural machine translation. We introduced learn-
able attention masks for the transformer that al-
low each attention head to focus more narrowly on
certain node relationships in the syntax tree, im-
proving translation across a variety of low-resource
datasets by up to +2.1 BLEU.
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English–Vietnamese (en-vi)

lines
20k 50k 131k

Sequence 19.44 27.23 31.99
Linearized 19.20 25.92 31.06
Mask 21.41 26.34 31.75

English–German (en-de)

lines
20k 50k 100k

Sequence 2.77 10.83 15.45
Linearized 2.18 11.78 16.42
Mask 2.88 12.95 16.94

German–English (de-en)

lines
20k 50k 100k

Sequence 4.19 13.37 18.64
Linearized 3.57 13.81 19.54
Mask 4.73 15.45 20.05

English to Other Languages

target language / lines
tu ha ur

59k 45k 11k

Sequence 22.30 23.46 12.98
Linearized 22.47 23.16 11.52
Mask 24.19 24.62 11.66

Table 2: Experiment results. In each column, the best
score and any scores not significantly different from the
best (p ≥ 0.05) are printed in boldface.
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Abstract

One of the ways blind people understand their
surroundings is by clicking images and relying
on descriptions generated by image captioning
systems. Current work on captioning images
for the visually impaired do not use the textual
data present in the image when generating cap-
tions. This problem is critical as many visual
scenes contain text. Moreover, up to 21% of
the questions asked by blind people about the
images they click pertain to the text present in
them (Bigham et al., 2010). In this work, we
propose altering AoANet, a state-of-the-art im-
age captioning model, to leverage the text de-
tected in the image as an input feature. In ad-
dition, we use a pointer-generator mechanism
to copy the detected text to the caption when
tokens need to be reproduced accurately. Our
model outperforms AoANet on the benchmark
dataset VizWiz, giving a 35% and 16.2% per-
formance improvement on CIDEr and SPICE
scores, respectively.

.

1 Introduction

Image Captioning as a service has helped people
with visual impairments to learn about images they
take and to make sense of images they encounter
in digital environments. Applications such as (Tap-
TapSee, 2012) allow the visually impaired to take
photos of their surroundings and upload them to
get descriptions of the photos. Such applications
leverage a human-in-the-loop approach to generate
descriptions. In order to bypass the dependency
on a human, there is a need to automate the im-
age captioning process. Unfortunately, the current
state-of-the-art (SOTA) image captioning models
are built using large, publicly available, crowd-
sourced datasets which have been collected and
created in a contrived setting. Thus, these models
perform poorly on images clicked by blind people

∗ Equal contribution

largely because the images clicked by blind peo-
ple differ dramatically from the images present in
the datasets. To encourage solving this problem,
Gurari et al. (2020) released the VizWiz dataset, a
dataset comprising of images taken by the blind.
Current work on captioning images for the blind do
not use the text detected in the image when gener-
ating captions (Figures 1a and 1b show two images
from the VizWiz dataset that contain text). The
problem is critical as many visual scenes contain
text and up to 21% of the questions asked by blind
people about the images clicked by them pertain to
the text present in them. This makes it more impor-
tant to improvise the models to focus on objects as
well as the text in the images.

With the availability of large labelled corpora,
image captioning and reading scene text (OCR)
have seen a steady increase in performance. How-
ever, traditional image captioning models focus
only on the visual objects when generating cap-
tions and fail to recognize and reason about the text
in the scene. This calls for incorporating OCR to-
kens into the caption generation process. The task
is challenging since unlike conventional vocabu-
lary tokens which depend on the text before them
and therefore can be inferred, OCR tokens often
cannot be predicted from the context and therefore
represent independent entities. Predicting a token
from vocabulary and selecting an OCR token from
the scene are two rather different tasks which have
to be seamlessly combined to tackle this task.

In this work, we build a model to caption im-
ages for the blind by leveraging the text detected
in the images in addition to visual features. We
alter AoANet, a SOTA image captioning model
to consume embeddings of tokens detected in the
image using Optical Character Recognition (OCR).
In many cases, OCR tokens such as entity names or
dates need to be reproduced exactly as they are in
the caption. To aid this copying process, we employ
a pointer-generator mechanism. Our contributions
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are 1) We build an image captioning model for the
blind that specifically leverages text detected in the
image. 2) We use a pointer-generator mechanism
when generating captions to copy the detected text
when needed.

(a) Model: a bottle of water
is on top of a table
Ground Truth: a clear plas-
tic bottle of Springbourne
brand spring water

(b) Model: A piece of paper
with text on it
Ground Truth: In a yellow
paper written as 7259 and to-
tally as 7694

2 Related Work

Automated image captioning has seen a significant
amount of recent work. The task is typically han-
dled using an encoder-decoder framework; image-
related features are fed to the encoder and the de-
coder generates the caption (Aneja et al., 2018; Yao
et al., 2018; Cornia et al., 2018). Language model-
ing based approaches have also been explored for
image captioning (Kiros et al., 2014; Devlin et al.,
2015). Apart from the architecture, image cap-
tioning approaches are also diverse in terms of the
features used. Visual-based image captioning mod-
els exploit features generated from images. Multi-
modal image captioning approaches exploit other
modes of features in addition to image-based fea-
tures such as candidate captions and text detected
in images (Wang et al., 2020; Hu et al., 2020).

The task we address deals with captioning im-
ages specifically for the blind. This is different
from traditional image captioning due to the authen-
ticity of the dataset compared to popular, synthetic
ones such as MS-COCO (Chen et al., 2015) and
Flickr30k (Plummer et al., 2015) . The task is rel-
atively less explored. Previous works have solved
the problem using human-in-the-loop approaches
(Aira, 2017; BeSpecular, 2016; TapTapSee, 2012)
as well as automated ones (Microsoft; Facebook).
A particular challenge in this area has been the lack
of an authentic dataset of photos taken by the blind.
To address the issue, Gurari et al. (2020) created

VizWiz-Captions, a dataset that consists of descrip-
tions of images taken by people who are blind. In
addition, they analyzed how the SOTA image cap-
tioning algorithms performed on this dataset. Con-
current to our work, Dognin et al. (2020) created
a multi-modal transformer that consumes ResNext
based visual features, object detection-based tex-
tual features and OCR-based textual features. Our
work differs from this approach in the following
ways: we use AoANet as our captioning model and
do not account for rotation invariance during OCR
detection. We use BERT to generate embeddings of
the OCR tokens instead of fastText. Since we use
bottom-up image feature vectors extracted using
a pre-trained Faster-RCNN, we do not use object
detection-based textual features. Similarly, since
the Faster-RCNN is initialized with ResNet-101
pre-trained for classification, we do not explicitly
use classification-based features such as those gen-
erated by ResNext.

We explored copy mechanism in our work to
aid copying over OCR tokens from the image to
the caption. Copy mechanism has been typically
employed in textual sequence-to-sequence learning
for tasks such as summarization (See et al., 2017;
Gu et al., 2016). It has also been used in image
captioning to aid learning novel objects (Yao et al.,
2017; Li et al., 2019). Also, Sidorov et al. (2020)
introduced an M4C model that recognizes text, re-
lates it to its visual context, and decides what part
of the text to copy or paraphrase, requiring spatial,
semantic, and visual reasoning between multiple
text tokens and visual entities such as objects.

3 Dataset

The Vizwiz Captions dataset (Gurari et al., 2020)
consists of over 39, 000 images originating from
people who are blind that are each paired with five
captions. The dataset consists of 23, 431 training
images, 7, 750 validation images and 8, 000 test
images. The average length of a caption in the train
set and the validation set was 11. We refer readers
to the VizWiz Dataset Browser (Bhattacharya and
Gurari, 2019) as well as the original paper by Gu-
rari et al. (2020) for more details about the dataset.

4 Approach

We employ AoANet as our baseline model.
AoANet extends the conventional attention mecha-
nism to account for the relevance of the attention
results with respect to the query. An attention mod-
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ule fatt(Q,K, V ) operates on queries Q, keys K
and values V . It measures the similarities between
Q andK and using the similarity scores to compute
a weighted average over V .

ai,j = fsim(qi, kj), α =
eai,j∑
j e

ai,j
(1)

v̂i =
∑

j

αi,jvi,j (2)

fsim(qi, kj) = softmax(
qik

T
j√
D

)vi (3)

where qi ∈ Q is the ith query, kj ∈ K and vj ∈ V
are the jth key/value pair, fsim is the similarity
function, D is the dimension of qi and v̂i is the
attended vector for query qi.

The AoANet model introduces a module AoA
which measures the relevance between the attention
result and the query. The AoA module generates
an "information vector", i, and an "attention gate",
g, both of which are obtained via separate linear
transformations, conditioned on the attention result
and the query:

i =W i
qq +W i

vv̂ + bi (4)

g = σ(W g
q q +W g

v v̂ + bg) (5)

where W i
q ,W

i
v, b

i,W g
q ,W

g
v , bg are parameters.

AoA module then adds another attention by ap-
plying the attention gate to the information vector
to obtain the attended information î.

î = g � i (6)

The AoA module can thus be formulated as:

AoA(fatt, Q,K, V ) = σ(W g
qQ+W g

v fatt(Q,

K, V ) + bg)� (W i
qQ+W i

vfatt(Q,K, V ) + bi)

(7)

The AoA module is applied to both the encoder
and decoder. The model is trained by minimizing
the cross-entropy loss:

L(θ) = −
T∑

t=1

log(pθ(y
∗
t |y∗1:t−1)) (8)

where y∗1:T is the ground truth sequence. We refer
readers to the original work (Huang et al., 2019)
for more details. We altered AoANet using two
approaches described next.

4.1 Extending Feature Set with OCR Token
Embeddings

Our first extension to the model was to increase
the vocabulary by incorporating OCR tokens. We
use an off-the-shelf text detector available - Google
Cloud Platform’s vision API (Google). After ex-
tracting OCR tokens for each image using the API,
we use a standard stopwords list1 as part of neces-
sary pre-processing. We use this API to detect text
in an image and then generate an embedding for
each OCR token that we detect using a pre-trained
base, uncased BERT (Devlin et al., 2019) model.
The image and text features are fed together into the
AoANet model. We expect the BERT embeddings
to help the model direct its attention towards the
textual component of the image. Although we also
experiment with a pointer-generator mechanism ex-
plained in Section 4.2, we wanted to leverage the
model’s inbuilt attention mechanism that currently
performs as a state of the art model and guide it
towards using these OCR tokens.

Once the OCR tokens were detected, we con-
ducted two different experiments with varying sizes
of thresholds. We first put a count threshold of 5 i.e.
we only add words to the vocabulary which occur 5
or more times. With this threshold, the total words
added were 4, 555. We then put a count threshold
of 2. With such a low threshold, we expect a lot of
noise to be present in the OCR tokens vocabulary -
half-detected text, words in a different language, or
words that do not make sense. With this threshold,
the total words added were 19, 781. A quantita-
tive analysis of the OCR tokens detected and their
frequency is shown in Figure 2.

Figure 2: Word counts and frequency bins for threshold
= 2 and threshold = 5

1https://gist.github.com/sebleier/554280

55



4.2 Copying OCR Tokens via Pointing
In sequence-to-sequence learning, there is often
a need to copy certain segments from the input
sequence to the output sequence as they are. This
can be useful when sub-sequences such as entity
names or dates are involved. Instead of heavily
relying on meaning, creating an explicit channel to
aid copying of such sub-sequences has been shown
to be effective (Gu et al., 2016).

In this approach, in addition to augmenting the
input feature set with OCR token embeddings,
we employ the pointer-generator mechanism (See
et al., 2017) to copy OCR tokens to the caption
when needed. The decoder then becomes a hybrid
that is able to copy OCR tokens via pointing as
well as generate words from the fixed vocabulary.
A soft-switch is used to choose between the two
modes. The switching is dictated by generation
probability, pgen, calculated at each time-step, t, as
follows:

pgen = σ(wTh ct + wTs ht + wTx xt + bptr) (9)

where σ is the sigmoid function and
wh, ws, wx and bptr are learnable parameters.
ct is the context vector, ht is the decoder hidden
state and xt is the input embedding at time t
in the decoder. At each step, pgen determines
whether a word has to be generated using the
fixed vocabulary or to copy an OCR token using
the attention distribution at time t. Let extended
vocabulary denote a union of the fixed vocabulary
and the OCR words. The probability distribution
over the extended vocabulary is given as:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ati

(10)

Pvocab is the probability of w using the fixed
vocabulary and a is the attention distribution. If
w does not appear in the fixed vocabulary, then
Pvocab is zero. If w is not an OCR word, then∑

i:wi=w
ati is zero.

5 Experiments

In our experiments, we alter AoANet as per the
approaches described in Section 4 and compare
these with the baseline model. AoANet-E refers to
AoANet altered as per the approach described in
Section 4.1. To observe the impact of the number

of OCR words added to the extended vocabulary,
we train two Extended variants: (1) E5: Only OCR
words with frequency greater than or equal to 5. (2)
E2: Only OCR words that occur with frequency
greater than or equal to 2. AoANet-P refers to
AoANet altered as per the approach described in
Section 4.2. The extended vocabulary consists of
OCR words that occur with frequency greater than
or equal to 2.

We use the code2 released by the authors of
AoANet to train the model. We cloned the repos-
itory and made changes to extend the feature set
and the vocabulary using OCR tokens as well as to
incorporate the copy mechanism during decoding
3. We train our models on a Google Cloud VM
instance with 1 Tesla K80 GPU. Like the original
work, we use a Faster-RCNN (Ren et al., 2015)
model pre-trained on ImageNet (Deng et al., 2009)
and Visual Genome (Krishna et al., 2017) to extract
bottom-up feature vectors of images. The OCR to-
ken embeddings are extracted using a pre-trained
base, uncased BERT model. The AoANet models
are trained using the Adam optimizer and a learn-
ing rate of 2e−5 annealed by 0.8 every 3 epochs as
recommended in Huang et al. (2019). The baseline
AoANet is trained for 10 epochs while AoANet-E
and AoANet-P are trained for 15 epochs.

6 Results

We show quantitative metrics for each of the mod-
els that we experimented with in Table 1. We show
qualitative results where we compare captions gen-
erated by different models in Table 2. Note that
none of the models were pre-trained on the MS-
COCO dataset as Gurari et al. (2020) have done as
part of their experimenting process.

We compare different models and find that
merely extending the vocabulary helps to improve
model performance on the dataset. We see that
the AoAnet-E5 matches the validation scores for
AoANet but we see an improvement in the CIDEr
score. Moreover, we see a massive improvement
in validation and test CIDEr scores for AoANet-
E2. Similarly, we see a gain in the other metrics
too. This goes to show that the BERT embeddings
generated for each OCR token for the images do
provide an important context to the task of gener-
ating captions. Moreover, we see the AoANet-P
scores, where we use pointer-generator to copy

2https://github.com/husthuaan/AoANet
3https://github.com/hiba008/AlteredAoA
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Model Validation Scores Test Scores
BLEU-4 ROUGE_L SPICE CIDEr BLEU-4 ROUGE_L SPICE CIDEr

AoANet 21.4 43.8 11.1 40.0 19.5 43.1 12.2 40.8
AoANet-E5 21.4 43.6 10.8 41.4 19.8 42.9 11.9 40.2
AoANet-E2 24.3 46.1 12.9 54.1 22.3 45.0 14.1 53.8
AoANet-P 21.6 43.6 11.5 46.1 19.9 42.7 12.8 45.4

Table 1: Validation and Test scores for AoANet, AoANet-E5 (extended vocabulary variant with OCR frequency
threshold as 5), AoANet-E2 (extended vocabulary variant with OCR frequency threshold as 2) and AoANet-P
(pointer-generator variant).

OCR tokens after extending the vocabulary also
perform better than our baseline AoANet model.
This goes to show that an OCR copy mechanism
is an essential task in generating image captions.
Intuitively, it makes sense because we would ex-
pect to humans to use these words while generating
lengthy captions ourselves.

We feel that top-k sampling is a worthwhile di-
rection of thought especially when we would like
some variety in the captions. Beam-search is prone
to preferring shorter captions, as the probability val-
ues for longer captions accumulates smaller values
as discussed by Holtzman et al. (2019).

7 Error Analysis

Although there have been concerns about the ro-
bustness of the GCP API towards noise (Hosseini
et al., 2017), we focused our attention on the
model’s captioning performance and on the pointer-
generator mechanism. We agree that the API’s per-
formance might hinder the quality of the captions
generated but we expected it to not have a large
enough impact.

We first look at how the Extended variants com-
pare with the baseline. We observe that adding
text-based features to the feature set imparts useful
information to the model. In 2a, AoANet perceives
the card as a box of food. Addition of text features
enables AoANet-E5 to perceive it as a box with
black text. While not entirely correct, it is an im-
provement over the baseline. The alteration also en-
courages it to be more specific. When the model is
unable to find the token that entails specificity, it re-
sorts to producing UNK. Extending the vocabulary
to accommodate more OCR words helps address
this problem. In image 2b, baseline AoANet is
unable to recognize that the bottle is a supplements
bottle. AoANet-E5 attempts to be specific but since
’dietary’ and ’supplement’ are not present in the ex-
tended vocabulary, it outputs UNK. AoANet-E2

outputs a much better caption. We see a similar
pattern in 2c.

We now look at how the Pointer variant performs
compared to the baseline and the Extended variant.
Incorporating copy mechanism helps the Pointer
variant in copying over OCR tokens to the cap-
tion. AoANet-P is able to copy over ‘oats’ and
‘almonds’ in 2d and the token ‘rewards’ in 2e. But
the model is prone to copying tokens multiple times
as seen in images 2b and 2f. This is referred to as
repetition which is a common problem in sequence-
to-sequence models (Tu et al., 2016) as well as in
pointer generator networks. Coverage mechanism
(Tu et al., 2016; See et al., 2017) is used to handle
this and we wish to explore this in the future.

8 Conclusion

In this work, we propose a pointer-generator based
image captioning model that deals specifically with
images taken by people with visual disabilities.
Our alteration of AoANet shows significant im-
provement on the VizWiz dataset compared to the
baseline. As stated in Section 7, we would like to
explore coverage mechanism in the future. Dognin
et al. (2020) recently discussed their winning en-
try to the VizWiz Grand Challenge. In addition,
Sidorov et al. (2020) introduced a model that has
shown to gain significant performance improve-
ment by using OCR tokens. We intend to compare
our model with these and improve our work based
on the observations made.
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Image Captions

(a)

AoANet: the back of a box of food that is yellow
AoANet-E5: the back of a yellow box with black text
AoANet-E2: the back of a card with a barcode on it
AoANet-P: the back of a UNK UNK card
GT1: The back of an EBT card that is placed on a black surface.
GT2: The back of a California EBT debit card.
GT3: A yellow EBT card on a dark fabric surface.
GT4: The backside of a beige EBT card with a magnetic strip.
GT5: back of yellow Quest card with black text on it and a white empty signature box

(b)

AoANet:a person is holding a bottle of seasoning
AoANet-E5: a person is holding a bottle of UNK
AoANet-E2: a person is holding a bottle of dietary supplement
AoANet-P: a person is holding a bottle of super tablets tablets tablets tablets tablets tablets
GT1: A bottle of Nature’s Blend Vitamin D3 2000 IU with 100 tablets.
GT2: bottle of Nature’s Blend brand vitamin D3 tablets, 100 count, 2000 IU per tab
GT3: A hand is holding a container of vitamin D.
GT4: Someone is holding a black bottle with a yellow lid.
GT5: A person’s hand holds a bottle of Vitamin D3 tablets.

(c)

AoANet: a a green bottle with a green and white label
AoANet-E5: a green bottle of UNK UNK UNK UNK
AoANet-E2: a bottle of body lotion is on a table
AoANet-P: a bottle of vanilla lotion is sitting on a table
GT1: A container of vanilla bean body lotion is on a white table.
GT2: A bottle of body lotion sits on top of a white table
GT3: a plastic bottle of vanilla bean body lotion from bath and body works
GT4: A bottle of body lotion that says Noel on it sitting on a table with a phone behind it and other
items around it.
GT5: A body lotion bottle is on top of table with several papers behind it and a set of keys in the
background.

(d)

AoANet: a box of frozen dinner is on top of a table
AoANet-E5: a box of UNK ’s UNK brand UNK UNK
AoANet-E2: a box of granola granola granola granola bars
AoANet-P: a box of oats ’s almond almond bars
GT1: A box of nature valley roasted almond crunchy bars is on a table.
GT2: A box of granola bars sitting on a floral cloth near a wooden object.
GT3: A granola bar box sits on a table cloth with other items.
GT4: Green box with roasted almond granola bar place tablecloth with flower prints.
GT5: A package of granola bars is lying on top of a table.

(e)

AoANet: a hand holding a box of chocolate ’s brand
AoANet-E5: a person is holding a package of food
AoANet-E2: a hand holding a card with a number on it
AoANet-P: a person is holding a box of rewards card
GT1: Appears to be a picture of a reward card
GT2: A plastic card that says speedy rewards membership card.
GT3: A Speedy Rewards membership card with a large gold star displayed on it.
GT4: a human hold some cards like credit cards and reward cards
GT5: Rewards membership card from the Speedway chain of stores.

(f)

AoANet: a bottle of water is on top of a table
AoANet-E5: a bottle of water is on top of a table
AoANet-E2: a bottle of vanilla vanilla coffee mate creamer
AoANet-P: a bottle of vanilla vanilla vanilla vanilla vanilla
GT1: A bottle of coffee creamer has a plastic flip top cap that can also be twisted off.
GT2: A blue bottle of coffee creamer is sitting on a counter top next to a black cup.
GT3: A container of Coffee Mate French Vanilla showing part of the front and part of the back.
GT4: A bottle of French vanilla coffee creamer sits in front of a mug on the table.
GT5: A bottle of creamer is on top of a table.

Table 2: Examples of captions generated by AoANet, AoANet-E5 (extended vocabulary variant with OCR fre-
quency threshold as 5), AoANet-E2 (extended vocabulary variant with OCR frequency threshold as 2) and AoANet-
P (pointer-generator variant) for validation set images along with their respective ground truth captions.
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Abstract

Open-domain question answering aims at lo-
cating the answers to user-generated ques-
tions in massive collections of documents.
Retriever-readers and knowledge graph ap-
proaches are two big families of solutions to
this task. A retriever-reader first applies in-
formation retrieval techniques to locate a few
passages that are likely to be relevant, and
then feeds the retrieved text to a neural net-
work reader to extract the answer. Alterna-
tively, knowledge graphs can be constructed
and queried to answer users’ questions. We
propose an algorithm with a novel reader-
retriever design that differs from both families.
Our reader-retriever first uses an offline reader
to read the corpus and generate collections
of all answerable questions associated with
their answers, and then uses an online retriever
to respond to user queries by searching the
pre-constructed question spaces for answers
that are most likely to be asked in the given
way. We further combine one retriever-reader
and two reader-retrievers into a hybrid model
called R6 for the best performance. Exper-
iments with large-scale public datasets show
that R6 achieves state-of-the-art accuracy.

1 Introduction

Open-domain question answering, abbreviated as
OpenQA in this paper, aims at enabling computers
to answer user-submitted natural language ques-
tions based on a large collection of documents
(a.k.a. a corpus). There are two big families of
state-of-the-art OpenQA algorithms. One family,
namely retriever-readers (Fig. 1, left branch), first
retrieves from the corpus some documents or para-
graphs that are likely to be relevant to the question,
and then uses neural networks to read the retrieved
passages and locate the answer. Another line of
work, namely question answering using knowledge
bases (abbreviated as QA using KB in this paper;
Fig. 1, middle branch), first constructs a knowledge

base (KB) from the corpus, then queries the KB
with the given question. Either family of algorithms
has some pros and cons: all retriever-readers face
a trade-off between efficiency and accuracy; QA
using KB methods are good at answering simple
factoid questions within the KB schema but weak
at complex or out-of-schema questions.

We propose a novel reader-retriever design for
OpenQA (Fig. 1, right branch). First, we use
deep neural networks to read the corpus offline,
detect named entities, generate questions, and ag-
gregate the results into two collections of ques-
tions that are answerable with the corpus. We
use question spaces to term the two collections.
When users submit queries online, a retriever com-
pares user queries with the pre-constructed ques-
tion spaces to retrieve the answers that are most
likely to be asked in the given way. We combine
two reader-retrievers (one for each question space)
and one retriever-reader into a hybrid model called
R6 to predict the most likely answer based on the
consistency among the three sub-models. Experi-
ments with large-scale public datasets show that the
pre-constructed question spaces boost the perfor-
mance for OpenQA, and R6 performs better than
state-of-the-art methods by a large margin. The
source code of R6 is publicly available at https:
//github.com/JinfengXiao/R6.

2 Related Work

2.1 Retriever-Readers

Retriever-readers solve OpenQA by converting it
to easier single-passage QA tasks. Examples of
popular algorithms in this family include DrQA
(Chen et al., 2017), which has a TF-IDF retriever
followed by a recurrent neural network reader, and
BERTserini (Yang et al., 2019), which consists of
a BM25 retriever and a BERT reader.

All retriever-readers face a trade-off between effi-
ciency and accuracy. When the retriever module is

61



Figure 1: Retriever-readers (left), QA using KB (middle), and reader-retrievers (right).

computationally efficient, the retrieved results are
not very reliable, and the performance of the subse-
quent reader is also constrained (Htut et al., 2018).
On the other hand, there exist systems such as R3

(Wang et al., 2018) and DS-QA (Lin et al., 2018)
that have sophisticated retrievers jointly trained
with the readers, but they are computationally ex-
pensive and thus not scalable to large corpora (Das
et al., 2019).

2.2 QA Using KB

There are solutions that solve OpenQA with knowl-
edge bases (KB). QA using KB applications in-
clude Google Knowledge Graph and Bing Satori
(Uyar and Aliyu, 2015). Such approaches involve
an offline knowledge graph construction module
and an online graph query module. The graph
construction module scans the corpus to build a
knowledge base that contains one or more knowl-
edge graphs. Each graph usually involves some
types of entities, attributes and relations. Once a
knowledge base is constructed, OpenQA tasks can
then be converted to graph search tasks, which can
be done in various ways including template decom-
position (Zheng et al., 2018) or graph embedding
(Huang et al., 2019).

There are a lot of challenges remaining for QA
using KB. Examples include how to convert com-
plex natural language questions into structured KB
queries, how to alleviate error propagation from

the KB construction step to the graph query step,
and how to handle questions whose answers do not
fall within the KB schema. Due to those complexi-
ties, the community is observing a recent trend that
retriever-readers are dominating the leaderboards
of public QA datasets but KB-based methods are
not. Therefore, we choose to focus on the com-
parison with retriever-readers when experimentally
evaluating our proposed algorithm.

3 Approach

3.1 Question Spaces

Definition 1. A question space is a bipartite graph
with two disjoint and independent node sets A and
Q representing the answers and associated ques-
tions. We herein define two types of question
spaces: QA Spaces and {Q}A (read as Q-set-A)
Spaces. In a QA Space, each element ai,j of A
represents the jth mention in the corpus of the ith
distinct named entity, and each element qi,j of Q is
a question generated from the context of ai,j with
ai as its answer. For every i and j, ai,j and qi,j
form a QA pair and are connected in the graph. In
a {Q}A Space, each element ai of A represents the
ith distinct named entity, and each element qi of
Q is a collection of the qi,j’s for all j in the QA
Space. For every i, ai and qi form a {Q}A pair and
are connected in the graph. In short, a QA space
contains pairs of answer mentions and generated
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questions, while a {Q}A space contains pairs of
distinct answer entities and collections of all gener-
ated questions with that answer.

For example, given the five questions in the right
branch of Fig. 1 whose answer is “Chicago Bears”,
the QA Space will have five QA pairs: {a1,1 =
“Chicago Bears”, q1,1 = “Who defeated the Patri-
ots?”}, ..., {a1,5 = “Chicago Bears”, q1,5 = “What
team has the most valuable player of Super Bowl
XX?”}, and the {Q}A space will have one {Q}A
pair: {a1 = “Chicago Bears”, q1 = {“Who defeated
the Patriots?”, ..., “What team has the most valu-
able player of Super Bowl XX?”}}.

3.2 Algorithm

A detailed illustration of our algorithm is given in
Figure 2. The components above the grey dashed
line are offline. They construct the QA Space and
the{Q}A Space as defined in Definition 1. The
modules below the grey dashed line are all executed
online.

3.2.1 NER, Question-Generating Reader and
Question Aggregator

Given a corpus, a named entity recognition (NER)
tool called TAGME (Ferragina and Scaiella, 2010,
2012) is applied to detect named entities from the
corpus and link the entities to Wikipedia titles.
Those entities form the set of candidate answers A
in Definition 1. Then a question-generating (QG)
reader is applied to the set of candidate answers
to generate a question for each answer based on
the local context. This reader features an encoder-
decoder model structure with a question-answering
reward and a question fluency reward tuned with
policy gradient optimization (Yuan et al., 2017;
Hosking and Riedel, 2019). Then we use a ques-
tion aggregator to build the {Q}A Space by putting
together all the questions with the same answer
entity.

3.2.2 Passage Retriever and QA Reader
Given a query, the passage retriever uses the dot
product of the query embedding and passage em-
bedding vectors generated by Google Universal
Sentence Encoder (Google USE) (Cer et al., 2018)
to retrieve from the corpus a passage that is se-
mantically most similar to the query. We then use
BERT (Devlin et al., 2019), fine-tuned on SQuAD,
to read the retrieved passage, predict the answer,
and record the predicted answer as Answer 1. The
pipeline in Figure 2 that goes from Input Corpus

to Passage and then Answer 1 is a valid retriever-
reader workflow, and we denote this workflow
as Retriever-Reader-BERT-Large or Retriever-
Reader-BERT-Base, depending on which BERT
model is used.

3.2.3 Individual Question Retriever
Given a query, the individual question retriever
uses Google USE to retrieve from the QA space k
questions that are semantically most similar to the
query. We record the ordered list of answers associ-
ated with the top k retrieved questions as {Answer
2}. A majority vote (where ties are resolved by
average orders) over {Answer 2} can produce a
single answer denoted as Voted Answer 2. Then the
pipeline in Figure 2 that goes from Input Corpus to
Candidate Answers, QA Space, {Answer 2}, and
finally Voted Answer 2 (not shown in the figure) is
a valid reader-retriever workflow. We denote this
workflow as Reader-Retriever-QA-Space.

3.2.4 Aggregated Question Retriever
Given a query, the aggregated question retriever
uses the BM25 score (Robertson and Zaragoza,
2009) to retrieve from the {Q}A space the answer
whose associated set of questions is most similar to
the given query. We query the {Q}A Space by treat-
ing each qi as a single document which contains
qi,j for all j as sentences. In practice, we observe
that BM25 works better for long documents and
Google USE works better for short passages. That
is why we use BM25 as the aggregated question
retriever but use Google USE for the passage re-
triever and the individual question retriever. We
record the answer ai associated to the top-ranked
question set qi as Answer 3. The pipeline in Figure
2 that goes from Input Corpus to Candidate An-
swers, QA Space, {Q}A Space and finally Answer
3 is a valid reader-retriever workflow. We denote
this workflow as Reader-Retriever-{Q}A-Space.

3.2.5 Answer Aggregator
Now that we have Answer 1, {Answer 2}, and
Answer 3, the last step is to aggregate them into
one single answer to return to the user. Our an-
swer aggregation works as follows: if Answer 1
appears in the set {Answer 2}, then accept An-
swer 1 and return it; otherwise reject Answer 1 and
return Answer 3. In other words, the answer aggre-
gator checks the consistency between the retriever-
reader results and the reader-retriever ones, trust the
retriever-reader more if they agree to some extent,
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Figure 2: Detailed structure of the proposed method.

and trust the reader-retriever more if the results do
not agree at all. We denote the complete workflow
depicted in Figure 2 as R6.

4 Experiments

We evaluate the OpenQA performance of our pro-
posed method R6 and baseline methods using two
public QA datasets, SQuAD (Rajpurkar et al.,
2016) and TriviaQA (Joshi et al., 2017). We adopt
a rather challenging setting that all trainable com-
ponents of the models are trained on SQuAD, while
the final models are tested on TriviaQA. Further-
more, we use TriviaQA in an open-domain setting
by removing all annotated associations between
questions and documents and enforcing the systems
to answer every question with the entire corpus. We
write TriviaQA-Open to distinguish such an open-
domain setting from those officially adopted by
TriviaQA.

One may wonder why we choose to use different
datasets for training and testing. Because our goal
of the experiments is to compare the effectiveness
of our proposed methods to others, as long as all
the methods are evaluated fairly under the same
setting, we can achieve the goal. Such experimen-
tal settings are also used by the authors of DrQA
(Chen et al., 2017). In addition, using SQuAD
for training enables us to utilize pre-trained mod-
els and author-suggested hyper-parameters to the

greatest extent, so that we can make sure we cor-
rectly reproduce others’ work and do not put their
models into disadvantages when comparing them
with ours. More experimental details are available
in Section 4.2. Although not critical to this study,
using different datasets for training and testing has
one additional benefit that it shows the ability of
the systems to adapt to new corpora.

4.1 Models

We evaluate six different OpenQA methods with
the exact match accuracy in the predicted answers
on TriviaQA-Open. Five of them are introduced in
Section 3, and the other is DrQA as introduced in
Section 2. Here we summarize the basic structure
of all six methods in Table 1.

4.2 Reproducibility Notes

This section aims at providing as many details as
possible that are needed to reproduce our results.
All experiments are run on an Ubuntu 16.04 ma-
chine with eight GeForce GTX 1080 GPUs (CUDA
version 10.1) and 24 CPUs. The entity score thresh-
old for TAGME is set at 0.2 by tuning that value and
manually inspecting the NER quality for 20 docu-
ments sampled from TriviaQA. The k value for the
individual question retriever that generates {An-
swer 2} is set to 10. For TriviaQA, we treat each
paragraph with at least 50 characters as a passage,
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Table 1: Model structures. Arrows show orders of modules.

Model Description

R6 Two reader-retrievers + Retriever-Reader-BERT-Base
DrQA TF-IDF retriever→ RNN reader

Retriever-Reader-BERT-Large Google USE retriever→ BERT-large reader
Retriever-Reader-BERT-Base Google USE retriever→ BERT-base reader
Reader-Retriever-QA-Space QG reader→ Google USE retriever

Reader-Retriever-{Q}A-Space QG reader→ Question aggregator→ BM25 retriever

Table 2: Test accuracy on TriviaQA-Open. Columns are explained in Section 4.3.

Method Accuracy Proposed vs SOTA Complete vs Components

R6 0.30 • •
DrQA 0.18 •

Retriever-Reader-BERT-Large 0.16 • •
Retriever-Reader-BERT-Base 0.15 • •
Reader-Retriever-QA-Space 0.07 •

Reader-Retriever-{Q}A-Space 0.21 •

and drop paragraphs shorter than that. BERT is
downloaded from the pytorch-transformers GitHub
repository1 and fine-tuned on SQuAD following
the documentation. The question-generating reader
is obtained from the question-generation GitHub
repository2 and trained on SQuAD with default
settings. DrQA codes are downloaded from its
GitHub repository3, the model trained by the au-
thors on SQuAD is obtained as instructed, and the
hyperparameter n-docs is set to 1 at prediction time
for fair comparisons with R6. The Google USE
retrievers are implemented by re-ranking the top
one thousand BM25-retrieved passages with dot
products between Google USE embedding vectors
obtained with TensorFlow4.

4.3 Overall Test Accuracy

Table 2 reports the overall test accuracy on
TriviaQA-Open of our proposed method R6, three
state-of-the-art methods (DrQA, Retriever-Reader-
BERT-Large, and Retriever-Reader-BERT-Base),
and the two novel workflows we introduce (Reader-
Retriever-QA-Space and Reader-Retriever-{Q}A-
Space). The column “Proposed vs SOTA” indi-
cates which rows to look at for comparing our
method with state-of-the-art OpenQA methods,

1https://github.com/huggingface/transformers
2https://github.com/bloomsburyai/question-generation
3https://github.com/facebookresearch/DrQA
4https://tfhub.dev/google/universal-sentence-encoder/2

while the column “Complete vs Components” in-
dicates which rows to look at for analyzing the
contribution of each individual component to the
complete model R6.

Our proposed method R6 outperforms both
DrQA and BERT by a margin six times larger than
that between DrQA and BERT. If the 2% difference
between DrQA and BERT represents the conse-
quence of differences in the detailed design of the
retriever and reader modules in a retriever-reader
model (e.g. TF-IDF vs semantic embedding, RNN
vs BERT), then the 12% margin between R6 and
DrQA should be largely credited to the essential
differences in the overall model structures.

When individual components of R6 are in-
spected, our novel reader-retriever component on
the {Q}A Space also outperforms DrQA and BERT,
with a smaller margin though. Our reader-retriever
component on the QA Space is not working well by
itself, but as an integral part of the answer aggrega-
tion mechanism, it helps push up the performance
of our complete model R6.

4.4 Test Accuracy for Various Answer Types

We further examine how the discussed algorithms
work for different answer types. Following the
same practice as in the TriviaQA paper (Joshi et al.,
2017), we sample 200 question-answer pairs from
TriviaQA-Open and manually analyze their prop-
erties. We find that about 36% of those questions
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Table 3: Test accuracy on TriviaQA-Open-200 for various answer types.

Method Overall Person/Org (36%) Location (26%) Others (38%)

R6 0.34 0.56 0.46 0.05
DrQA 0.22 0.33 0.23 0.11

Retriever-Reader-BERT-Base 0.20 0.39 0.23 0
Reader-Retriever-QA-Space 0.10 0.22 0.08 0

Reader-Retriever-{Q}A-Space 0.22 0.28 0.38 0.05

have person names or organization names as an-
swers, 26% ask for locations, and 38% are expect-
ing other types of answers including entities with
other types, numbers, and other free texts. This
sample distribution is roughly consistent with what
TriviaQA authors have reported (32%, 23%, and
45% respectively) with their random sample. We
then use this sampled dataset TriviaQA-Open-200
to evaluate the test accuracy of the methods for
different answer types. We drop Retriever-Reader-
BERT-Large for this analysis because its overall
accuracy is very close to Retriever-Reader-BERT-
Base (Table 2) but it consumes much more compu-
tational resources.

The results of this experiment are shown in Table
3. Among the three types, questions that ask for
Person/Organization names or locations look sig-
nificantly easier to answer for all algorithms than
those asking for other miscellaneous things, and
our proposed method R6 takes the lead. Among
the other models, it looks like BERT is good at
questions about Person/Organization names and
our newly proposed reader-retriever algorithm on
the {Q}A Space is good at answering questions for
locations. On the other hand, when the expected
answer is neither a person/organization nor a lo-
cation, DrQA still has some chance of getting the
right answer, while all other methods including
ours almost always fail. This is probably due to
the fact that our methods rely on NER (Figure 2)
but DrQA does not. It is possible that better NER
methods that are good at handling miscellaneous
entity types and numbers could further boost the
performance of R6, and how to better answer those
miscellaneous questions is left for future work.

4.5 Notes on Question Space Quality

A manual inspection into the constructed question
spaces revealed three aspects worth discussion. 1)
Many questions look reasonable, and those gen-
erated questions shown in Figure 1 are actually

real examples taken from our {Q}A Space that are
associated with the answer “Chicago Bears”. 2)
There are also many questions that to some extent
deviate from being a “correct” question to ask for a
given answer. One frequently observed mistake is
the use of a wrong question word. 3) Some highly
context-dependent questions like “who did Bob
talk to” are generated. Although they are reason-
able and answerable given the context, they do not
really make sense when being asked in an open-
domain setting. Since R6 relies on the generated
questions, its performance is hopeful to get fur-
ther enhanced if the quality of the question spaces
can be improved. How to generate better question
spaces for OpenQA remains an interesting future
direction.

5 Conclusion

We propose R6, a novel algorithm that constructs
question spaces from corpora and uses them to
improve OpenQA. R6 consists of two novel reader-
retriever modules and one classic retriever-reader.
Experiments on public datasets show that R6 out-
performs state-of-the-art retriever-readers by a
large margin. Our method has the potential to get
further improved if solutions can be proposed in
future work to better handle questions about less
typical answer types or generate questions with
higher quality.
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Abstract

Meeting minutes record any subject matters
discussed, decisions reached and actions taken
at meetings. The importance of minuting can-
not be overemphasized in a time when a signif-
icant number of meetings take place in the vir-
tual space. In this paper, we present a sliding
window approach to automatic generation of
meeting minutes. It aims to tackle issues asso-
ciated with the nature of spoken text, including
lengthy transcripts and lack of document struc-
ture, which make it difficult to identify salient
content to be included in the meeting minutes.
Our approach combines a sliding window and
a neural abstractive summarizer to navigate
through the transcripts to find salient content.
The approach is evaluated on transcripts of nat-
ural meeting conversations, where we compare
results obtained for human transcripts and two
versions of automatic transcripts and discuss
how and to what extent the summarizer suc-
ceeds at capturing salient content.

1 Introduction

Meetings are ubiquitous across organizations of all
shapes and sizes, and it takes a tremendous effort
to record any subject matters discussed, final deci-
sions reached and actions taken at meetings. With
the rise of remote workforce, virtual meetings are
more important than ever. An increasing number of
video conferencing providers including Zoom, Mi-
crosoft Team, Amazon Chime and Google Meet al-
low meetings to be transcribed (Martindale, 2021).
However, without automatic minuting, consolidat-
ing notes and creating meeting minutes is still re-
garded as a tedious and time-consuming task for
meeting participants. There is thus an urgent need
to develop advanced techniques to better summa-
rize and organize meeting content.

Meeting summarization has been attempted on a
small scale before the era of deep learning. Previ-
ous work includes efforts to extract utterances and
keyphrases from meeting transcripts (Galley, 2006;

Murray and Carenini, 2008; Gillick et al., 2009;
Liu et al., 2009), detect meeting decisions (Hsueh
and Moore, 2008), compress or merge utterances
to generate abstracts (Liu and Liu, 2009; Wang and
Cardie, 2013; Mehdad et al., 2013) and make use
of acoustic-prosodic and speaker features (Maskey
and Hirschberg, 2005; Zhu et al., 2009; Chen and
Metze, 2012) for utterance extraction. The contin-
ued development of automatic transcription and its
easy accessibility have sparked a renewed interest
in meeting summarization (Shang et al., 2018; Li
et al., 2019; Koay et al., 2020; Song et al., 2020;
Zhu et al., 2020; Zhong et al., 2021), where neural
representations are explored for this task. We be-
lieve the time is therefore ripe for a reconsideration
of the approach to automatic minuting.

It may be tempting to apply neural abstractive
summarization to meetings given its remarkable
recent success on summarization benchmarks, e.g.,
CNN/DM (See et al., 2017; Chen and Bansal, 2018;
Gehrmann et al., 2018; Laban et al., 2020). How-
ever, the challenge lies not only in handling halluci-
nations that are seen in abstractive models (Kryscin-
ski et al., 2019; Lebanoff et al., 2019; Maynez et al.,
2020) but also the models’ strong positional bias
that occurs as a consequence of fine-tuning on news
articles (Kedzie et al., 2018; Grenander et al., 2019).
Neural summarizers also assume a maximum se-
quence length, e.g., Perez-Beltrachini et al. (2019)
use the first 800 tokens of the document as input.
With an estimated speaking rate of 122 words per
minute (Polifroni et al., 1991), it indicates that the
summarizer may only process a relatively short
transcript – about 5 minutes in duration.

In this paper, we instead study an extractive meet-
ing summarizer to identify salient utterances from
the transcripts. It leverages a sliding window to nav-
igate through a transcript of any length and a neural
abstractive summarizer to find salient local content.
In particular, we aim to address three key questions:
(1) what are suitable window and stride sizes? (2)
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can the abstractive summarizer effectively identify
salient local content? (3) how should we consoli-
date local abstracts into meeting-level summaries?
Our approach is intuitive and appealing, as humans
make a sequence of local decisions when navigat-
ing through very long recordings. It is evaluated on
transcripts of natural meeting conversations (Janin
et al., 2003), where we obtained human transcripts
and two versions of automatic transcripts produced
by the AMI speech recognizer (Hain et al., 2006)
and Google Cloud’s Speech-to-Text API.1 Our con-
tributions in this paper are as follows.

• We study the feasibility of a sliding-window ap-
proach to automatic generation of meeting min-
utes that draws on a pretrained neural abstractive
summarizer to make local decisions on utterance
saliency. It does not require any annotated data
and can be extended to meetings of various types
and domains.

• We examine results obtained from human tran-
scripts and two versions of automatic transcripts,
and show that our summarizer either outperforms
or performs comparably to competitive baselines
given both automatic and human evaluations. We
discuss how and to what extent the summarizer
succeeds at capturing salient content.2

2 Background: The BART Summarizer

BART (Lewis et al., 2020) has demonstrated strong
performance on neural abstractive summarization.
It consists of a bidirectional encoder and a left-to-
right autoregressive decoder, each contains multi-
ple layers of Transformers (Vaswani et al., 2017).
The model is pretrained using a denoising objec-
tive that, given a corrupted input text, the encoder
strives to learn meaningful representations and the
decoder reconstructs the original text using the rep-
resentations. In this study, we use BART-large-cnn
as a base summarizer. It contains 12 layers in each
of the encoder and decoder and uses a hidden size
of 1024. The model is then fine-tuned on the CNN
dataset for abstractive summarization.

There are two obstacles that should be overcome
in order for BART to generate meeting summaries
from transcripts. Firstly, BART is trained on writ-
ten text, rather than spoken text. The pretraining
data contain 160G of news, books, stories, and web
text. It remains unclear if the model can effectively

1https://cloud.google.com/speech-to-text
2Our transcripts and system outputs are released publicly

at https://github.com/ucfnlp/meeting-sliding-window
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Figure 1: A total of 10 combinations of window (W) and
stride (S) sizes examined in this study. A small stride
allows a text region to be repeatedly visited by the sum-
marizer. The numbers (1-8) indicate local windows.

identify salient content on spoken text and, how it
is to reduce lead bias that is not as frequent in spo-
ken text as in news writing (Grenander et al., 2019).
Secondly, a transcript can far exceed the maximum
input length of the model, which is restricted by the
GPU memory size. This is the case even for recent
variants such as Reformer (Kitaev et al., 2020) and
Longformer (Beltagy et al., 2020).

3 Our Approach

A sliding-window approach to generating meeting
minutes is appealing because it breaks lengthy tran-
scripts into small and manageable local windows,
allowing a set of “mini-summaries” to be produced
from such windows which are then assembled into
meeting-level summaries. There are two essential
decisions to be made when using a sliding window.
Firstly, one must decide on the size of the local
window. Our window size is bounded by the maxi-
mum sequence length of BART as the utterances
in a window are concatenated into a flat sequence
that serves as input to it. We consider a number of
window sizes with W={128, 256, 512, 1024} tokens.
Secondly, a transcript may be partitioned into non-
overlapping or partially overlapping windows. We
set the stride size to be S={128, 256, 512, 1024}
tokens to support both (W ≥ S). When they are of
equal size, a transcript is divided into a sequence
of non-overlapping windows.

In Figure 1, we enumerate all 10 combinations
of window and stride sizes. For example, we ex-
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ROUGE-1 ROUGE-2 Summary Len
Input System P(%) R(%) F(%) P(%) R(%) F(%) %Uttrs #Wrds

Human

KL-Sum 57.2 31.9 40.8 19.0 10.6 13.6 19.6 754
SumBasic 61.6 67.1 62.4 24.8 28.1 25.6 19.6 1,730
LexRank 36.8 84.3 50.9 21.2 49.2 29.4 19.6 3,528
TextRank 28.2 91.6 42.9 19.4 63.5 29.5 19.6 4,954
(Koay et al., 2020) 52.6 81.0 62.5 29.4 46.1 35.2 21.7 2,321
SW (HumanTrans) 36.5 90.9 51.9 23.2 58.4 33.1 19.6 3,741

ASR

(Shang et al., 2018) 27.6 36.3 31.0 4.4 5.6 4.8 n/a n/a
(Koay et al., 2020) 51.3 78.6 61.3 25.7 39.9 30.9 16.7 2,224
SW (AMI ASR) 36.1 88.3 51.2 19.4 47.8 27.6 18.2 3,514
SW (Google ASR) 61.9 65.7 62.9 26.5 28.1 26.9 23.2 1,460

Table 1: Results on the ICSI test set using human transcripts and two versions of automatic transcripts (AMI vs.
Google) as input. The length is defined as percentage of selected utterances over all utterances of the meetings and
average number of words in the summaries. The sliding-window (SW) summarizer uses (S=128, W=1024).

periment with four window sizes of 128, 256, 512
and 1,024 tokens using the same stride size of 128
tokens, shown in dark blue (left). A larger window
gives additional context to BART for recognizing
salient content. Using a window of 1,024 and stride
of 128 tokens allow each utterance of the transcript
to be visited 8 times, whereas using a window of
512 tokens reduces that to 4 times.

Consolidation. BART abstracts generated from
local windows cannot be simply concatenated to
form meeting-level summaries as they contain re-
dundancy. When local windows are partially over-
lapping, they can cause the same content to be
included in different abstracts. Instead, we iden-
tify supporting utterances of each abstract from the
transcript. Particularly, we compute the ROUGE-L
scores between each utterance in the window and
the abstract. If the utterance is longer than 5 to-
kens, achieves a recall score r > 0.5 and precision
score p > 0.1, we call it a supporting utterance.3

The same utterance can support multiple abstracts.
We include an utterance into the meeting summary
if it is designated as the supporting utterance for
at lease one local abstract. It lends flexibility and
improves ease of consolidation of local abstractive
summaries produced by BART.

4 Results

Dataset. Our experiments are performed on the
ICSI meeting corpus (Janin et al., 2003), which is a
challenging benchmark for meeting summarization.
The corpus contains 75 meeting recordings, each is
about an hour long. We use 54 meetings for training
and report results on the standard test set contain-

3The thresholds were determined heuristically on the train-
ing set by observing the resulting alignment.

ing 6 meetings. Each training meeting has been
annotated with an extractive summary. Each test
meeting has three human-annotated extractive sum-
maries, which we use as gold-standard summaries.
The original corpus include human transcripts and
automatic speech recognition (ASR) output gen-
erated by the AMI ASR team (Hain et al., 2006).
We are able to generate a new version of automatic
transcripts by using Google’s Speech-to-Text API
as an off-the-shelf system.4 Comparing results on
different versions of transcripts allows us to better
assess the generality of our findings.

Our baselines include both general-purpose ex-
tractive summarizers and meeting-specific summa-
rizers. LexRank (Erkan and Radev, 2004) and Tex-
tRank (Mihalcea and Tarau, 2004) are graph-based
extractive methods. SumBasic (Vanderwende et al.,
2007) selects sentences if they contain frequently
occurring content words. KL-Sum (Haghighi and
Vanderwende, 2009) adds sentences to the sum-
mary to minimize KL divergence. We additionally
experiment with two meeting summarizers. Shang
et al. (2018) group utterances into clusters, generate
an abstractive sentence from each cluster using sen-
tence compression, then select best elements from
these sentences under a budget constraint. Koay et
al. (2020) develop a supervised BERT summarizer
to identify summary utterances.

We report test set results in Table 1, where sys-
tem summaries are compared with gold-standard
extractive summaries using ROUGE metrics (Lin,
2004). The summary length is computed as the per-
centage of selected utterances over all utterances of
the meetings and average number of words per test
summary. This information is reported wherever

4Due to lack of documentation, we are unable to report the
word error rates of Google and AMI speech recognizers.
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Figure 2: (TOP) Relative position of supporting utterances in their local windows. We find that BART tends to take
summary content from the first 150-200 tokens of the input sequence. With a large window (W=1024), summary
content is likely taken from the first 20% of input. (BOTTOM) Length distribution of BART abstracts, measured
by number of characters. Using windows ranging from 128 to 1024 tokens, the average abstract length increases
from 281 to 332 characters, i.e., 56 to 66 words assuming 5 characters per word for English texts (Shannon, 1951).
Results are obtained on the ICSI training set using human transcripts.

available, and baseline summarizers are set to out-
put the same number of summary utterances as the
sliding-window (SW) approach. Our SW approach
can outperform or perform comparably to competi-
tive baselines when evaluated on human and ASR
transcripts. We note that Koay et al. (2020) utilize
a supervised BERT summarizer, whereas our SW
approach is unsupervised.5 It does not require an-
notated summaries and only uses the training set to
determine window and stride sizes (S=128, W=1024,
details later).

A closer examination reveals that Google tran-
scripts contain substantially less filled pauses (um,
uh, mm-hmm), disfluencies (go-go-go away), repe-
titions and verbal interruptions. The Google service
also tends to produce lengthier utterances. Table 2
provides an example comparing human, AMI and
Google transcripts. The summaries produced with
Google transcripts contain fewer utterances and
less number of words per summary. They achieve
a higher precision and lower recall when compared
to those of AMI and human transcripts.

We are curious to know where supporting utter-
ances appear in the local windows. In Figure 2, we
discretize the position information into 5 bins and
plot the distributions for four settings that use differ-
ent window sizes (W={128,256,512,1024}) but the
same stride size (S=128). We observe that BART

5We use pyrouge with default options to evaluate all sum-
maries. The scores are different from that of Koay et al. (2020)
which removed stopwords during evaluation by using ‘-s’.

Transcription Human AMI Google
# of utter. per meeting 1330 1410 188
# of words per utterance 7.7 7.0 33.0
(Human) and um
There one of our
diligent workers has to sort of volunteer to
look over Tilman’s shoulder while he is changing
the grammars to English
(AMI) And um
And they’re one of our a
The legend to work paris has to sort of volunteer to
Look over time and shorter what he is changing
that gram was to english
(Google) and they are one of our diligent workers has
to sit or volunteer to look over two months shoulder
while he is changing the Grandma’s to English

Table 2: Compared to human and AMI transcripts, ut-
terances produced by Google’s transcription service are
lengthier and there are fewer utterances per meeting.

tends to select content from the first 150 to 200
tokens of the input and add them to the abstract. It
indicates that the model exhibits strong lead bias
even for spoken text, which differs from news writ-
ing (Grenander et al., 2019). Additionally, we ex-
amine the length of BART abstracts, measured by
the number of characters in an abstract. Using win-
dows from 128 to 1024 tokens, we find that the avg.
abstract length increases from 281 to 332 charac-
ters, ≈56 to 66 words assuming 5 characters per
word on average for English texts (Shannon, 1951).
While a larger window can lead to a longer abstract,
the abstract size is disproportionate to the window
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Figure 3: Precision, recall and F-scores of summary ut-
terance selection using different combinations of stride
(S) and window (W) sizes. Results are obtained on the
ICSI training set using human transcripts. We find that
(S=128, W=1024) attains a good balance between preci-
sion and recall, whereas using small, non-overlapping
windows (S=128, W=128) yields high recall due to more
utterances are included in the summary.
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Figure 4: R-1 and R-2 scores when different combina-
tions of stride (S) and window (W) sizes are used. Re-
sults are obtained on the ICSI training set for human
transcripts. With (S=256, W=1024), we obtain balanced
precision and recall scores. The best R-2 F-score is
achieved with (S=128, W=1024).

size. These results are obtained on the training set
using human transcripts as input.

In Figure 3, we investigate various combinations
of stride (S) and window sizes (W) and report their
precision, recall and F-scores on summary utter-
ance selection. Similarly, the results are obtained
on the training set using human transcripts as input.
We highlight some interesting findings. We observe
that a large context window (W=1024) tends to give
high precision. A small window combined with
small stride yields high recall due to more utter-
ances are selected for the summary. For example,
both settings (W=512, S=128) and (W=1024, S=256)
allow an utterance to be visited 4 times. The former
achieves a higher recall (0.395 vs. 0.239) due to
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Figure 5: Percentage of supporting utterances per meet-
ing (TOP) and per local window (BOTTOM). Results
are obtained on the ICSI training set with different com-
binations of stride (S) and window (W) sizes, for human
transcripts and two versions of automatic transcripts
(Google vs. AMI).

Utterance Rating
System Score-2 Score-1 Score-0

TextRank 8.58% 25.66% 65.77%
Supervised-BERT 11.35% 28.96% 59.69%
Sliding Window 11.46% 26.11% 62.43%

Table 3: Percentage of summary utterances rated as
highly relevant (2), relevant (1) and irrelevant (0) by
human evaluators. The systems for comparison are
TextRank, a supervised BERT summarizer (Koay et al.,
2020) and Sliding Window.

its smaller window and stride sizes. In Figure 4,
we show R-1 and R-2 scores obtained on the train-
ing set for all combinations of stride and window
sizes. We find that recall scores decrease substan-
tially using large stride sizes (>=512 tokens). With
(S=256, W=1024), we obtain balanced precision and
recall scores. The best R-2 F-score is achieved with
(S=128, W=1024) which is used at test time.

In Figure 5, we present the percentage of sup-
porting (summary) utterances per meeting and per
window, for various combinations of window and
stride sizes. On human transcripts, we observe that
combining small stride and window sizes (S=128,
W=128) has led to ∼30% utterances to be selected
per meeting. In contrast, (S=128, W=1024) selects
19% of the utterances. Human transcripts and auto-
matic transcripts generated by AMI ASR appear to
show similar behavior, but the Google transcriber
breaks up utterances differently.

We further conduct a human evaluation on the six
test meetings. Three human evaluators (two native
speakers and a non-native speaker) are employed
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Speaker Utterance BERT SW Gold

fn002 I - Hynek last week say that if I have time I can to begin to - to study 1 1 1
fn002 well seriously the France Telecom proposal to look at the code and something like that 1 1 1
me013 Mm-hmm. 0 0 0
fn002 to know exactly what they are doing because maybe that we can have some ideas 1 0 0
me013 Mm-hmm. 0 0 0
fn002 but not only to read the proposal. Look look 0 0 0
fn002 carefully what they are doing with the program and I begin to - to work also in that. 1 0 1
fn002 But the first thing that I don’t understand is that they 0 1 1
fn002 are using 0 0 1
fn002 the uh log energy that this quite - I don’t know why they have some 0 1 1
fn002 constant in the expression of the lower energy. I don’t know what that means. 0 1 1
me018 They have a constant in there, you said? 0 1 0

Table 4: Extractive summaries produced by the sliding-window approach (SW) appear to read more coherently
than those of the supervised BERT summarizer. Consecutive sentences in SW summaries are more likely to be as-
sociated with the same idea/speaker compared to supervised-BERT. “Gold” are ground-truth summary utterances.

for this task. They rate each summary utterance as
highly relevant (2), relevant (1) or irrelevant (0) by
matching the utterance with the meeting abstract
provided by the ICSI corpus. The systems for com-
parison are SW, TextRank and the fully supervised
BERT summarizer (Koay et al., 2020). In Table 3,
we report the percentage of summary utterances
assigned to each category (Fleiss’ Kappa=0.29).
Our summarizer obtains promising results. It out-
performs TextRank and performs comparably to
supervised-BERT. We find that the SW summarizer
navigates through the transcript in an equally de-
tailed manner. It leads to coherent and sometimes
verbose summaries, compared to other extractive
summaries. A snippet of the transcript and its ac-
companying summaries are shown in Table 4.

5 Conclusion

We investigate the feasibility of a sliding-window
approach to generating meeting minutes and obtain
promising results on both human and automatic
transcripts. The approach does not require anno-
tated data and it has a great potential to be extended
to meetings of various domains. Our future work
includes, in the near horizon, experimenting with a
look-ahead mechanism to enable the summarizer
to skip over insignificant transcript segments.
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Abstract

We propose semantic visualization as a lin-
guistic visual analytic method. It can enable
exploration and discovery over large datasets
of complex networks by exploiting the se-
mantics of the relations in them. This in-
volves extracting information, applying param-
eter reduction operations, building hierarchi-
cal data representation and designing visual-
ization. We also present the accompanying
COVID-SEMVIZ, a searchable and interac-
tive visualization system for knowledge explo-
ration of COVID-19 data to demonstrate the
application of our proposed method.1 In the
user studies, users found that semantic visual-
ization-powered COVID-SEMVIZ is helpful
in terms of finding relevant information and
discovering unknown associations.

1 Introduction

COVID-19 is the first global pandemic within a
century. To facilitate the scientific and medical
effort to stop this pandemic, most publishers are
making full text of COVID-19 related manuscripts
freely available.2 However, every year, the num-
ber of published papers is growing at a rate that
makes full use of these resources a daunting task
(Johnson et al., 2018), and it is getting severer espe-
cially during the COVID-19 pandemic when new
information is rapidly emerging.

To facilitate the research over these articles,
many researchers also publish corpora of pre-
processed and curated COVID-19 articles such
as LidCovid (Chen et al., 2020) and CORD-19
(Wang et al., 2020). However, for most users and
researchers, it is still challenging to fully explore
such a corpus due to the complexity of scientific
content it contains (for example, complicated path-
ways in biomedical field (Mercatelli et al., 2020)).

1https://www.semviz.org/
2https://www.who.int/emergencies/dise

ases/novel-coronavirus-2019/global-resea
rch-on-novel-coronavirus-2019-ncov

Finding connections among multiple corpora is
another challenge. Even for corpora that are tar-
geting a specific topic like COVID-19, they may
contain information at different scale for differ-
ent purposes. For example, one dataset provides
parsed text and meta information of articles (Wang
et al., 2020), and another provides detailed protein-
protein interactions extracted from sentences (Gy-
ori et al., 2017). It is difficult to gain full insight by
looking either one of those individually. Although
search engine is supported for some corpora and
portals, this query-based and targeted search is lim-
ited in finding connections and patterns that are
not obvious from individual articles or sentences
(White and Roth, 2009).

To enhance the scientific discovery over complex
corpora, we propose semantic visualization, a set
of text processing and visualization techniques and
accompanying tool COVID-SEMVIZ for enhanced
knowledge exploration of COVID-19 data (Figure
1). Semantic visualization transforms large datasets
of complex networks into rich semantic-aware text
data; processes text data in a hierarchical manner;
and provides visualizations for the indexed data.

The tool COVID-SEMVIZ allows for searchable
and interactive visualization of data through word
clouds, heat maps, graphs, etc. Unlike other work
(See Section 4), we focus on constructing and nav-
igating information from biomedical datasets in a
unified hierarchical structure. For example, the ac-
tivation relations between proteins and COVID-19
can be constructed as the functional type “COVID-
19 activators”. By reducing relations to a sin-
gle functional type, it enables the visualization
of higher order relations (e.g. relations between
COVID-19 activators and other protein inhibitors)
through a simple 2-dimensional heat map. Other
types of visualizations will also appear on the
side such as a word cloud of proteins that activate
COVID-19, and a tabular form of evidencing sen-
tences. All these visualizations compose a habitat
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Figure 1: A system overview of COVID-SEMVIZ. The top shows the processing of raw corpora into semantic-
aware data. At the bottom it shows the semantic data along with the original corpora are processed in the hierarchi-
cal manner and fitted in to the data index or transformed into graph data. Finally data is explored via dashboards
and graphs.

of information about COVID-19. Through this, we
aim to provide researchers with a global view of se-
lected relationship subtypes drawn from hundreds
or thousands of papers at a single glance. This en-
ables the ready identification of novel relationships
that would typically be missed by directed keyword
searches.

We summarize our main contributions as the
follows: (1) Proposed semantic visualization, a
linguistic visual analytic method that enhances
the exploration and visualization of scientific text
datasets; (2) Implemented COVID-SEMVIZ, a
working prototype for enhanced knowledge ex-
ploration of COVID-19 datasets; (3) User studies
that evaluate the effectiveness of our system to the
biomedical research community as well as future
improvements.

2 Semantic Visualization

We propose Semantic visualization as a general
linguistic visual analytic method for enabling ex-
ploration and discovery over large text datasets by
exploiting the semantics of the relations in them.
This involves (i) collecting data and applying NLP
to extract named entities, relations and knowledge
graphs from the original text; (ii) indexing the out-
put and creating hierarchical representations for all
relevant entities, relations and text that can be visu-
alized in many different ways such as tag clouds,
heat maps, graphs, etc.; (iii) applying parameter
reduction operations to the extracted relations, cre-
ating functional types that can also be visualized us-
ing the same methods, allowing the visualization of

multiple relations, partial graphs, and exploration
across multiple dimensions.

2.1 Data collection and Extraction
The first step of semantic visualization involves
collecting multiple text datasets of same domain
and applying NLP techniques for information ex-
traction to complement original data.

Recently, there is some important work that fo-
cuses on publishing new corpora and mining useful
text from literature related to COVID-19. In our
implementation, we choose to use the following
three datasets of COVID-19 literature:

COVID-19 Open Research Dataset (CORD-19)
is one of the most comprehensive resource of arti-
cles on COVID-19 (Wang et al., 2020). It contains
metadata and parsed full text of each article col-
lected from various sources.

Harvard INDRA CORD-19 causal assertions
dataset (CKN) 3 contains over 320,000 causal
assertions (CAs) extracted from the full text of
CORD-19 articles by multiple machine reading
systems including REACH (Valenzuela-Escárcega
et al., 2018) and Sparser (Mcdonald, 1992). Ex-
tracted events were assembled by INDRA4 and 24
relation types were defined (Gyori et al., 2017).

Blender lab Covid Knowledge Graphs (Blender
KG) 5 contains knowledge including entities, re-

3https://emmaa.indra.bio
4https://github.com/sorgerlab/indra
5http://blender.cs.illinois.edu/covid1

9/
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CKN DATASET

Evidence: Ocrelizumab[Protein] and Cladribine may increase the
risk of acquiring[Relation] COVID-19[Protein].

Relation: (ocrelizumab, COVID-19, Activation)

BLENDER KG
Evidence: 10074-G5[Chemical] results in decreased

expression[Relation] of MYC[Gene] protein.
Relation: (10074-G5, MYC, Decrease Expression)

Table 1: Example data from CKN and Blender KG.

lations, and events that are extracted from the
CORD-19 dataset through deep learning methods
(Lin et al., 2020).

Table 1 shows data samples from both the IN-
DRA CKN and Blender KG. Each sample con-
tains a biomedical relation and a corresponding
evidencing sentence of that relation. For CORD-
19, we extracted and normalized PMID, Title,
Abstract, Authors, Publish time and
Journal as the metadata for each article.6 For
the CKN dataset, we applied the ScispaCy NER
model (Neumann et al., 2019) trained on the
BIONLP13CG corpus (Pyysalo et al., 2013) on the
original evidencing sentences to extract biomedical
named entities, and constructed knowledge graph
over encoded relations. For the Blender KG, we use
the chemical-gene, chemical-disease, gene-disease
relation extraction results. It has over 1,640,000 re-
lations with evidencing sentences from biomedical
articles.

In general, semantic visualization suggests infor-
mation extraction of different granularity. General
practice includes named entity recognition, rela-
tion extraction, document summarization and graph
completion.

2.2 Parameter Reduction
Relational information usually is denoted as (en-
tity1, entity2, relation-type) tuples. While in-
dividual relations can be visualized through 2-
dimensional display techniques like heat maps,
demonstrating how multiple relations relate to each
other when chained together can be tricky to visu-
alize, requiring cumbersome network visualization
techniques (Mercatelli et al., 2020; Nelson et al.,
2019). In the biomedical data we are processing,
the large number of nodes and connections along
with the heterogeneity of both node types (pro-
teins, chemicals, diseases) and edges (structural,
functional, and causal interactions) complicates the

6The release date of the dateset we use is 2020-7-5 to
match the latest version of Blender KG. It contains over
180,000 scientific papers on COVID-19 and related histor-
ical coronavirus research. Download from www.semantic
scholar.org/cord19/download.

visualization (Agapito et al., 2013; Salazar et al.,
2014; Baryshnikova, 2016).

Particularly for relational information from the
data, we propose semantic parameter reduction, a
method that reduces relations to functional types,
allowing them to be treated as individuals. Func-
tional types can show more capability and flexibil-
ity in terms of encoding information and visual-
ization. The term “parameter reduction” has been
used in computer science to refer to reducing model
parameters (Kim et al., 2017; Glaws et al., 2020),
and our proposed method has the same spirit that
aims to reduce the complexity of multiple relations.

Formally, in our current model M , for any given
relation tuple (x, y, rel), we define the function
of relation type rel as:

JrelKM = [λy ∈ De.[λx ∈ De. 1 iff

(x, y, rel) ∈ M ]]
(1)

where x and y denote the entities appear in this re-
lation tuple; De denotes the set of all entities. Take
the tuple (ocrelizumab, COVID-19, Activation) as
an example, if we pass in COVID-19 as the first
argument to the relation function of activation, we
will be able to get:

JactivationKM = [λx ∈ De. 1 iff

(x, COVID-19, activation) ∈ M ]
(2)

Through the parameter reduction, we can get the
functional type of Equation (2) such that:

JocrelizumabKM ∈ COVID-19 activator (3)

where the functional type COVID-19 activator can
be treated as an individual entity instead of a re-
lation. ocrelizumab is a member of the functional
type in this example. We make the names of func-
tional types both semantically and biologically
meaningful based on the relation types, e.g. ac-
tivation→activator, phosphorylation→kinase, etc.

Instead of visualizing relations in a heat map, the
generated functional types can be visualized using
single dimensional display techniques such as tag
clouds as shown in Figure 2.

Functional types can also be arguments that will
be passed into the relation function, enabling a
chain of relations to be expressed in a conventional
heat map visualization. For example, Equation (4)
is the function of relations between an entity and
the functional type TNF regulator:

JrelKM = [λx ∈ De. 1 iff

(x, TNF regulator, rel) ∈ M ]]
(4)
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Figure 2: Functional Types as Regulators Tag Cloud
from COVID-SEMVIZ.

Figure 3 illustrates such a dense heat map in the
Blender KG dataset, where a functionally typed
protein is implicated in a disease relation (e.g.,
“those proteins that are down regulators of TNF
which are implicated in obesity”)7.

Figure 3: Regulatory Processes-Disease Interactions
Heat Map from COVID-SEMVIZ.

2.3 Hierarchical Data Structure
Conceptually, semantic visualization suggests pro-
cessing and representing data in a hierarchical man-
ner. The resulting data structure composes of three
different generic layers that enables better utility
of information of various granularity and a global
view of data. Although previous work has explored
different text structure in data mining (Section 4),
they didn’t make a clear mapping from informa-
tion in different layers to various visualization tech-

7We use the following symbols to indicate the “action” in
each relation: “++” = increase, “−−” = decrease, “→” =
affect.

niques. With the semantic parameter reduction,
data can be also be passed and decomposed be-
tween different layers from the hierarchical struc-
ture.

Type-level layer Represents data that are enti-
ties or can be “parameter reduced” as functional
types. In our data, individual arguments such as
COVID-19 and MYC that are involved in the re-
lation (Table 1), can be seen as entities. In addi-
tion, the argument and predicate of a relation can
be reduced as a functional type. The causal as-
sertion (ocrelizumab, COVID-19, Activation) (Ta-
ble 1) can be reduced to the entity COVID-19
Activator. Subsequently, it is implied that
ocrelizumab is also included in the COVID-19
Activators set.

Phrase-level layer Represents data that can be
transformed into “term tuples”. A term tuple can
be a natural relation that is identified in the datasets,
e.g. the relation (10074-G5, MYC, Decrease Ex-
pression) in Table 1. It can also be built from en-
tities and functional types. Term tuple (COVID-
19, Viruses) contains the entity COVID-19 that
appears in the abstract of an article, and entity
Viruses is the journal name where this article
is from.

Figure 4: Hierarchical data representation for the
datasets. Boxes from bottom to top show how data is
represented in different layers. Arrows show how data
is passed and decomposed between layers.

Document-level layer Represents data as docu-
ments that provide context information to the func-
tional entities and term tuples. The document text
is of variable length and it can be a phrase, sentence,
or a whole paragraph. In our implementation, we
index evidencing sentences, article titles and ab-
stracts as documents. A clickable PubMed URL
is also indexed to show the provenance of each
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evidencing sentence and article title.

Figure 4 shows how the data is processed into
the hierarchical data representation. Arrows in-
dicate some extracted relations and entities can
be fitted into the other layers. For example,
Coronavirus from document layer can be used
to form a new term tuple with 2020-03 of
type (keyword in abstract, Publish time). In the
phrase layer, the author name Sin-Yee Fung
and journal name Emerg Microbes Infect
that from the CORD-19 dataset can be processed
into a new relational tuple. In the type layer, the
generated entity RegulateActivity and the
functional type SH2D3A Activator are all as-
sociated with a tuple in the phrase level.8

2.4 Visualization Techniques

We choose and apply multiple visualization tech-
niques and combinations that are compatible with
the hierarchical data representation and allows
users to design and build semantically meaning-
ful interactive visualization strategies. In practice,
the following general visualization techniques are
suggested to be considered: Word Cloud (a group
of words), Heat Map (2D grid matrices for rela-
tional data), Bar Chart (for categorical data), Line
Chart (for series of data), Network (graphs for com-
plex pathways, KGs, etc), Tabular Form (tables for
unstructured text) and Indicator (displays of the
meta information of datasets).

2.5 COVID-SEMVIZ Overview

We release processed data and an implementa-
tion of COVID-SEMVIZ visualization system that
has been applied with semantic visualization tech-
niques. It contains three dashboards that use differ-
ent subsets of the data. The Covid CA dashboard
holds various visualizations designed principally
for CKN dataset and CORD-19, and the Covid
KGs dashboard contains visualizations designed
for Blender KG and CORD-19. Covid Graph dash-
board contains graph-based visualizations to show
the all-connected knowledge graph and protein
pathways. Due to the space limit, we will pro-
vide a detailed overview and technical aspects of
the system in the extra page upon accepted.

8RegulateActivity is the parent relation of
Activation.

3 User Studies and Evaluation

We present user studies from five researchers (T1-
T5) by letting them interacting with COVID-
SEMVIZ in their own research on coronaviruses.9

Finding supporting evidence and articles.
Based on the search of anti-SARS CoV-2 antibod-
ies, T1 found most of the relevant literature and
“allowed me to quickly zero in on the papers and
evidencing sentences I would highlight.” T2 is
interested in HEs activities in SARS CoV-2 and
found “Many of the common and well known play-
ers were revealed in the word cloud”.

Discovering unknown interactions. From the
protein functional type word cloud, T2 also found
“TTN Complex that we had not previously con-
sidered.” T3 searched for AT2R and IL-6 inhibition
and found the “linkage between those terms and
respiratory distress”, but the strategy in the linked
literature “is not a viable therapeutic strategy in
patients of certain conditions”. T4 also found “new
links to follow up on, like glycosylation of the coro-
navirus M protein”.

Raising new questions. Based on the search
result for AT1R, T3 found “AT2R activation may
have a similar effect on IL-6 levels without impact-
ing blood pressure”, and “this is one that I can ex-
plore in my research”. T5 searched for TMPRSS2,
and found TMPRSS4 appears in the same regula-
tor word cloud. through the checking of linked
evidence, T5 found “Both TMPRSS2 and 4 can
cleave the viral fusion protein. This raises the ques-
tion whether the same is true for COVID-19”.

Table 2 shows a summary of what levels of in-
formation from the hierarchical data structure that
users have mentioned in their comments. We notice
that all users find functional types are useful, sug-
gesting the richness of information contained in the
functional types from parameter reduction. Interest-
ingly, only two users interacted with phrase-level
information. This is probably due to the partial
overlapping between phrases and functional types.

We also identify the limitations of our proposed
system. One comes from the frequency-based
method for displaying data, which means terms or
relations that have larger counts are more “salient”
in the visualizations (e.g. larger font in the word
cloud or darker grids in the heat map). This might

9T1 and T5 study tumor virus and cancer cells; T2’s re-
search focuses on the interface of chemistry, medicine and
biology; T3 studies medicine and nutrition and T4 studies
viral proteins.
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User TERM FUNCTIONAL TYPE PHRASE DOCUMENT

T1 3 3

T2 3 3 3

T3 3 3 3 3

T4 3 3 3

T5 3 3 3

Table 2: Summary of different levels of information
that each user has interacted with.

lead to uncommon or less-studied topics unreach-
able unless the accurate term has been searched.
Another limitation is from the integration of mul-
tiple datasets and tools. Artifacts that are in the
original data or generated after processing might
persist in the final visualizations.

4 Related Work

With the emerging of various COVID-19 data re-
sources, many tools have been developed to en-
able the visualization and exploration of the large
amount of articles that are growing everyday.

Hope et al. (2020) developed SciSight10, a
tool that can be used to visualize co-mentions of
biomedical concepts such as genes, proteins and
cells that are found in the articles related to COVID-
19. It focuses more on displaying purely the associ-
ation between entities that are mined from articles.
IBM COVID-19 Navigator11 supports the semantic
search by building queries with the combination of
general terms, UMLS (Unified Medical Language
System) concepts, authors and boolean operators.
It only provides term-level search and no visual-
ization functionality. COVID-SEE12, proposed by
Verspoor et al. (2020), supports the search from
CORD-19 dataset and visualization of article topics
and relational concepts. Most other visualizations,
however, relate to epidemiological statistics and the
effects of Covid-19 on social and health factors13.

Recent work has been mining useful data from
biomedical text. Kordjamshidi et al. (2015) ex-
plored the text structure of biomedical data and
used information from different levels of the struc-
ture as the features to automatically extract bacteria
names. Liu et al. (2015) proposed a text mining sys-
tem for identifying relationships between biomedi-
cal entities. It supports template-based queries for

10https://scisight.apps.allenai.org/jn
lpba/

11https://covid-19-navigator.mybluemix
.net/search

12https://covid-see.com/
13https://www.cdc.gov/coronavirus/2019

-ncov/covid-data/data-visualization.htm

structured search and also provides key sentences
as the provenance of identified relations. Fabregat
et al. (2018) proposed a knowledge base of human
pathways and reactions. It supports visualization
of event hierarchy and pathway networks.

Linguistic visualization research in general is
an emerging field of visual analytics for linguis-
tics (Butt et al., 2020). Previous research in this
field covers thematic text cluster analysis (Gold
et al., 2015), NER-based document content analy-
sis (El-Assady et al., 2017b), multi-party discourse
analysis (El-Assady et al., 2017a) and topic mod-
eling visualization (El-Assady et al., 2018). Butt
et al. (2020) propose a web framework that con-
sists of various linguistic visualization techniques.
However, existing work in this field focuses on
the analysis of corpora of conversational text and
transcripts, and does not include approaches for
analyzing and visualizing semantics of relations.

5 Conclusion

We have proposed semantic visualization, a lin-
guistic visual analytic method of multiple steps
involving data extraction, parameter reduction, hi-
erarchical structure building and visualization de-
sign. It can facilitate the exploration over large and
complex datasets by exploiting the semantics of the
relations in them. We have also presented COVID-
SEMVIZ, a working prototype for the visualiza-
tion and exploration of three COVID-19-related
datasets. Our user studies indicate that COVID-
SEMVIZ is helpful to the biomedical community
and the utility of semantic visualization techniques.
Although we only demonstrated how to apply se-
mantic visualization to COVID-related articles, our
proposed method is generalizable enough to be ap-
plied to other text corpora. Future work includes ad-
dressing current limitations, applying to data from
other domains and incorporating more and useful
information extraction models in the pipeline. It is
our hope that this semantic visualization environ-
ment will enable the discovery of novel inferences
over relations in complex data that otherwise would
go unnoticed.
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A COVID-SEMVIZ Overview

Figure 5 shows the various visualization techniques
that have been applied in COVID-SEMVIZ.

Technical Detail We store the processed hierar-
chical structured data as the JSON format, and
store the generated COVID graph data into neo4j14

database. The back-end text-based search func-
tionality of COVID-SEMVIZ is built using Elastic-
search15, and the back-end graph-based retrieval is
supported by querying neo4j database. The front-
end visualizations are build using Kibana16 and
D3.js17. Kibana supports a collection of visualiza-
tion types. It can be directly applied on the data that
has been indexed for Elasticsearch. Elements built
from Kibana can be arranged as desired and visual-
izations will be updated in real-time when a search
is performed. It can also provide quick insights
into subset of data and enable users to drill down
into details through a few clicks. We think our
hierarchical indexed data can largely benefit from
these features for interaction. D3.js is a JavaScript
library that can be used to build customized inter-
active visualizations. We primarily used it to build
graph-based visualizations.

Navigation The navigation of a dashboard from
COVID-SEMVIZ is through clicking and search-
ing. By clicking the functional type CASP3
Activator in the word cloud named “Regulatory
Processes” (Figure 5), a constraint on the type and
regulators of proteins is added. Correspondingly,
all the other visualizations will be changed. For
example, the “Subject Proteins” word will only con-
tains protein entities that can activate CASP3; the
“Evidence Sentences and PubMed URL” tabular
form will display evidencing sentences that involve
proteins that can activate CASP3 in the relations.
The “Abstract Keyword - Journal Relations” heat
map will form new color shade clusters based on
the new set of articles that mentioned CASP3 or its
regulators. One can also put a query into the search
box to navigate the dashboard. Navigation through
the Covid Graphs is similar. One can use search-
ing and clicking to retrieve relevant sub-graphs and
examine the context information of a node such as
the relations it belongs to and its provenance. In
addition, COVID-SEMVIZ supports abstracting

14https://neo4j.com/
15https://www.elastic.co/elasticsearch/
16https://www.elastic.co/kibana
17https://d3js.org/

graphs by reducing nodes to functional types and
expanding node neighbors that are specifically for
graphs.

The Covid Causal Assertions Visualization
The Covid Causal Assertions (CA) dashboard con-
tains a set of visualizations that are designed to
enable users to discover novel inferences of protein-
protein interactions and associated context infor-
mation. Users can type in a query to search for
relevant CA and context information. We include
several kinds of visualizations: (1) tabular forms
for tracing evidence associated with relations, (2)
indicator panes to display the count of evidences
and of unique articles, (3) word clouds and heat
maps for some metadata, (4) type-level and phrase-
level visualizations that enable users to drill down
into the elements in the relations, (5) dense visual-
izations for functional types, and (6) visualizations
of upstream regulators. We now elaborate on the
last three of these.

Type-level and phrase-level visualizations. Each
CA contains three elements: protein-A, relation
type, and protein-B. We group the 24 relation types
into two “metatypes”: RegulateActivity
and Modification. Furthermore, protein-A
and protein-B involved in RegulateActivity rela-
tions are categorized into Subject and Object.
Protein-A and protein-B involved in Modifica-
tion relations are categorized into Enzyme and
Substrate. We believe this categorization al-
lows our visualizations to conform to biological
convention. On the dashboard, we create words
clouds for these categories. We also create a
subject-object interaction heat map to show regula-
tory relationships, an enzyme-substrate interaction
heat map to show protein modification relation-
ships, and heat maps for some common relation
types such as Activation and Inhibition.
Finally, we include word clouds for entity types
extracted with the NER model.

Visualizations for functional types. We also en-
able the visualization of CAs by applying param-
eter reduction, which is a critical step in semantic
visualization. Given two CA tuples (Protein-A,
Activation, Protein-B) and (Protein-B, Activation,
Protein-C), we create the functional type Protein-C-
Activator with members Protein-A and Protein-B.
We now have a word cloud for all functional types
(see Figure 6) and a separate word cloud for the
subject proteins associated with them. Clicking
one of the functional types restricts the subject pro-
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Figure 5: Visualization techniques from COVID-SEMVIZ. First row: (1) Word cloud of functional types as regu-
latory processes; (2) Heat map represents the relations between article keywords and journal names; (3) Indicator
of total number of articles. Second row: (4) Tabular form of evidencing sentences and provenance URL; (5) Bar
chart shows the number of articles that are published in each month from year 2015 to 2019.

Figure 6: Sample regulators.

teins to just the ones involved in the functional type
selected.

Visualizations for upstream regulators. One ad-
vantage of parameter reduction is that it can repre-
sent higher order relations so that those relations
can be easily visualized with word clouds and heat
maps . In the Covid CA dashboard, We present two
types of second order CAs: one that has the same
relation type as the functional type, and one that
has the opposite relation type. In the dashboard,
we add the “Upstream Regulators” word cloud and
the “Opposite Upstream Regulators” word cloud
to display second order relations. For example,
with a functional type Interferon-Activator the "Up-
stream Regulators" word cloud would include all
proteins X that activate one of the Interferon acti-

vators, thereby generating a novel inference from
X to Interferon. Through navigation over the key-
words in each word cloud, one can easily check
the evidencing sentences of deeper CAs that are
inferred through parameter reduction.

Formally, if we have identified Protein-2
Activator and have the opposite relation
pair Activation and Inhibition in our
dataset, we are interested in a set of X that
X activate Protein-2 Activator or inhibit
Protein-2 Activator. Thereby we are able
to generate novel inference from X to Protein-2.
X is also called the second order containers in our
case. We pair the opposite relation types in our
dataset and leave the others unchanged that can
only have the same second order relations.

The Covid KGs Visualization The Covid KG
dashboard contains a collection of visualizations
that enable the discovery of the relationships
among genes, chemicals and diseases that are re-
lated to COVID-19. This includes chemical-gene,
chemical-disease and gene-disease relations, which
are supported by the evidencing sentences not only
from COVID-19 articles but also from various other
medical articles. Thus, the most challenging part in
the visualization is to simplify and unify the com-
plex relations while displaying the information in
breadth and depth.
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We start by making the connections between
chemical-gene and gene-disease relations using the
same gene entries that appear in both sides. Then
we index the new chemical-gene-disease relations
and visualize them via chemical-gene sub-relation
heat map and gen-disease sub-relation heat map.
These two heat maps are designed to be interactive
with each other to show the full chemical-gene-
disease triplet relations, as well as to be flexible
enough to be controlled by enabling or disabling
arguments of the triplet relations.

Similar to the Covid CA dashboard, we build a
tabular form that displays evidencing sentences and
PubMed URLs, as well as word clouds of chemi-
cals, genes and diseases from the relations. Users
can navigate the dashboard to find relevant con-
text information by filtering on entities from the
word clouds. we also create a word cloud of gene
functional types by grounding chemical-gene rela-
tions. For example, given a chemical-gene tuple
(D014013, Decrease Reaction, CASP3), the func-
tional type -CASP3 Regulator is generated.

The Covid Graph Visualization Covid Graph
dashboard contains two graph-based visualizations:
the all-connected knowledge graph and protein
pathways. Figure 7 shows the knowledge graph
visualization. The main window shows a color-
coded graph of predefined nodes such as proteins,
evidence and PPIs. Nodes are connected by dif-
ferent relationships based on the labels of nodes.
The sidebar on the right displays the information
of clicked node. For example, if an evidence node
is clicked, it shows the content of the evidence and
the article URL that contains this evidencing sen-
tence. An input box on the bottom takes a Cypher
query and generates the corresponding graph. The
knowledge graph enables the visualization of data
of different granularity in one place. It can also
be context-aware by dynamically generating neigh-
bors of a right-clicked node.

Figure 8 shows the interface of protein path-
ways visualization. A variable-length pathway
can be retrieved by specifying the starting and
ending proteins as well as the number of hops.
We also apply parameter reduction operations on
sub-paths of the whole pathway, compressing the
graph without any semantic information loss, and
provides the clear and dense visualization over
complex graph. Specifically, given a sub-path
of length 3 (e.g. SP-[decreseAmount]→ACE2-
[Activates]→COVID-19), it can be compressed

into a binary relation containing a functional
type and an entity (e.g. ACE2 down-regulator-
[Activates]→COVID-19). Each functional type
like “ACE2 downRegulator” represents a set that
can contain any protein down-regulating ACE2.
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Figure 7: Interface of Covid knowledge graph visualization.

Figure 8: Interface of protein pathways visualization.
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Abstract

State-of-the-art transformer models have
achieved robust performance on a variety of
NLP tasks. Many of these approaches have
employed domain agnostic pre-training tasks
to train models that yield highly generalized
sentence representations that can be fine-tuned
for specific downstream tasks. We propose
refining a pre-trained NLP model using the
objective of detecting shuffled tokens. We
use a sequential approach by starting with
the pre-trained RoBERTa model and training
it using our approach. Applying random
shuffling strategy on the word-level, we found
that our approach enables the RoBERTa
model achieve better performance on 4
out of 7 GLUE tasks. Our results indicate
that learning to detect shuffled tokens is a
promising approach to learn more coherent
sentence representations.1

1 Introduction
The method of pre-training natural language mod-
els has been shown to greatly improve model perfor-
mance on a wide range of NLP tasks (Peters et al.,
2018; Radford et al., 2018; Howard and Ruder,
2018). State-of-the-art models that utilize trans-
formers and deep bi-directional representations of
text such as BERT, RoBERTa, and ALBERT (De-
vlin et al., 2019; Liu et al., 2019; Lan et al., 2020)
have achieved superior results by pre-training on
general, large corpora to learn rich representations
from unlabeled data. Particularly helpful in low
training data resource scenarios, unsupervised pre-
training has become the first step for many lan-
guage models to build powerful linguistic repre-
sentations before fine tuning for downstream target
tasks.

BERT style models use masked language mod-
eling (MLM) and sometimes next sentence predic-
tion, as pre-training tasks. While these tasks have

1The code is available at https://github.com/
subhadarship/learning-to-unjumble.

been shown to produce transferable sentence repre-
sentations for many NLP tasks, using additional
domain-agnostic pre-training tasks such as sen-
tence shuffling may improve model performance.
In a seminal cognitive psychology study it has been
demonstrated that humans have a well trained abil-
ity to parse shuffled sentences (McCusker et al.,
1981). Moreover, it has been shown that pre-trained
models sometimes overlook word order while mak-
ing predictions (Pham et al., 2020), and encourag-
ing models to capture word order improves the clas-
sification performance. Shuffling as a pre-training
task may therefore help expand transformer models
to achieve even better performance on NLP tasks.

Drawing inspiration from recent work in recon-
structing shuffled text (Lewis et al., 2020; Raf-
fel et al., 2020), we propose that pre-training the
RoBERTa model with a token modification discrim-
ination head on randomly shuffled sentences pro-
vides constructive learning objective, which helps
the model learn coherent representations and fa-
cilitate model recognition of the key pieces of a
sentence and their association. To substantiate the
argument, we design experiments to examine the
model performance of RoBERTa with the proposed
approach. The results demonstrate that pre-training
the model with shuffled sentences enhances the
scores of a majority of GLUE tasks.

2 Related Work

Shuffling sentences and words has often been used
as a downstream task to evaluate model perfor-
mance. One relevant example is the work by Sak-
aguchi et al. (2017) to develop a semi-character
RNN model that surpasses previous spell-check
methodologies on the Cmadbrigde Uinervtisy ef-
fect, where humans can easily reconstruct the shuf-
fled token. Yang and Gao (2019) explored the per-
formance of BERT on a shuffled sentence down-
stream task and highlighted some induced bias in
the model that is the cause of incorrect predictions
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Figure 1: Illustration of our model for detecting shuffled tokens. The original sentence is “the sky is blue".

for noisy inputs. While the authors propose remov-
ing the induced bias from the representations to
improve results, they do not consider the possibility
of pre-training the model with shuffled sentences.

The use of un-ordered or noisy data in model
training itself has proven effective. A number of
studies have focused on using shuffled input to
create useful sentence representation vectors for
language models. Kiros et al. (2015) developed
the skip-thoughts method to accomplish the task
of reconstructing sentence order from a shuffled
input. The authors used an encoder-decoder RNN
model at the sentence level that allows a sentence
to predict the adjacent sentences. Logeswaran et al.
(2016) explored how sentence ordering tasks can
help models learn text coherence. Using an RNN
based approach, they train models to identify the
correct ordering of sentences and show that mod-
els learn both document structure and useful sen-
tence representations during this task. Jernite et al.
(2017) employed discourse based learning objec-
tives to help models understand discourse coher-
ence. Specifically, given some sentences, they ask
the model to predict if the sentences are in order, or
if one sentence comes next to a set of sentences, or
to predict the conjunction that joins the sentences.
They showed that using these objectives to train
models achieves significant reduction in compu-
tational training costs and is also effective when
using unlabeled data.

There are a number of papers that focus on word-
level shuffling, as opposed to sentence-level shuf-
fling. Hill et al. (2016) developed the Sequential
Denoising Autoencoder (SDAE) method, where
a sentence is corrupted using a noise function de-
termined by free parameters. After a certain per-
centage of words have been corrupted, an LSTM
encoder-decoder model is tasked with predicting
the original sentence from the corrupted version.
The authors demonstrate training with noisy inputs
allowed SDAE to significantly outperform regular
SAE models, which did not introduce word-level-

noise factors.
One closely related paper in the field of com-

puter vision leverages the use of shuffled input in
model training. Noroozi and Favaro (2016) employ
a CNN model that is trained to solve jigsaw puzzles
to determine correct spatial representation. Their
results show that using shuffled input helps models
learn that images are made up of different parts,
and their relationship to the whole.

Finally, a variety of studies demonstrate that
further pre-training performed after the general
purpose BERT pre-training leads to better model
results instead of simply fine-tuning downstream.
Domain specific pre-training, such as BioBERT
(Lee et al., 2019), story ending prediction by Trans-
BERT (Li et al., 2019), and video caption classi-
fication by videoBERT (Sun et al., 2019) are all
examples where expanding the pre-training tasks
for BERT has achieved enhancement in model per-
formance. TransBERT in particular demonstrates
that further pre-training using targeted supervised
tasks achieves better results than relying only on
the unsupervised pre-training in BERT.

3 Methodology

Consider a sequence of tokens x. We first ob-
tain xshuffled from x by shuffling a set of tokens
of x. Given xshuffled, we detect if tokens are shuf-
fled or not by using a token modification discrim-
ination head on top of the RoBERTa base model.
Our choice of the discriminative head is motivated
by the recent success of ELECTRA (Clark et al.,
2019).

3.1 Creating Shuffled Tokens for Training

We permute text sequences at the word level based
on a probability p. We consider shuffling on a
word level rather than a sub-word level. One
straightforward approach to achieve is to create
the shuffled tokens from a sequence and then use
RobertaTokenizer to tokenize the shuffled se-
quence. However, this approach is problematic
since the number of sub-words after tokenization
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Figure 2: Validation loss as training progresses.

may differ between the original and the shuffled
sentence. In order to ensure that the sub-words
belonging to a word stay intact and are not shuffled
away, we create a mapping, which maps each sub-
word to the corresponding word. Then, we tokenize
the original sequence and shuffle the tokens based
on the mapping so that all the sub-words belonging
to a word occur together. Further, we define the
target tensor which has binary labels for each token
that specifies whether the token was shuffled or not.

3.2 Shuffling Strategy

We randomly permute the words in a sequence
based on a probability p for our experiments high-
lighted in Section 4. Note that fraction ≥ p of the
input tokens would be shuffled since one or more
input tokens (sub-words) belong to a single word.

3.3 RoBERTa Model with Token
Modification Discrimination Head

Figure 1 shows an overview of our complete
model. We use the RoBERTa model to map a
sequence of input tokens xshuffled = [x1, . . . , xn]
into a sequence of contexualized vectors h(x) =
[h1, . . . , hn]. We add a token modification discrimi-
nator head to classify each hidden representation hi
to 0 (if the token at i-th place is not shuffled) or 1 (if
the token at the i-th place is shuffled). Specifically,
the head contains two linear layers with parameters
{WA} and {WB}. First, for every hidden vector
hi, we compute h

′
i = GELU(W T

Ahi) where the
GELU activation function (Hendrycks and Gim-
pel, 2016) is used. Then, we compute the output
of the model D(xshuffled, i) = σ(W T

Bh
′
i). During

training, we minimize the sum of the binary cross

entropy loss for every token.

L(x, θ) = E

(
n∑

i=1

−1
(
xshuffled
i = xi

)
logD

(
xshuffled , i

)

− 1

(
xshuffled
i 6= xi

)
log
(
1−D(xshuffled , i)

))

4 Experiments

4.1 Baseline

As our baseline approach, we trained the RoBERTa
base model with the token modification discrim-
ination head for detecting masked tokens instead
of detecting shuffled tokens. The baseline training
was done for the same number of optimization steps
as the proposed approach for a fair comparison.

4.2 Dataset for Shuffled-Token Detection

We extracted 133K articles from Wikidump.2 We
used each paragraph in the extracted text as a data
sample for our model. We filtered out samples
that were either spaces-only or had more than
512 tokens after tokenizing with the pretrained
RobertaTokenizer of the roberta-base
model. We finally randomly split the samples into
1.3M for training and 14K for validation.

Dataset for masked token detection We used
the same Wikidump dataset for the baseline ap-
proach as well, where we continue training pre-
trained RoBERTa on the objective of detecting
masked tokens.

4.3 Implementation

We built our model using HuggingFace transform-
ers (Wolf et al., 2020). All experiments have been
performed using the RoBERTa base model with the
token modification discrimination head described
in Section 3.3.

The hyperparameters used in our experiments
follow the hyperparameters of the RoBERTa base
model except for the warmup steps, batch size,
peak learning rate, and the maximum training steps.
For our experiments, we use 100 linear warmup
steps followed by linear decay of the learning rate
outlined in Figure 3.

To find the optimal peak learning rate and the
maximum steps, we performed a hyperparameter
search over the learning rates {1e-4, 5e-5, 1e-6}

2Timestamp May 9th, 2020. We used
the scripts from https://github.com/
NVIDIA/DeepLearningExamples/tree/
master/PyTorch/LanguageModeling/BERT#
getting-the-data to extract the data.
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Task→ CoLA SST-2 MRPC STS-B QNLI RTE WNLI
Metric→ Matthew’s corr. Accuracy F1 score Spearman corr Accuracy Accuracy Accuracy

Plain pre-trained RoBERTa 0.557 0.946 0.901 0.896 0.928 0.661 0.423
Masked-token detection (Baseline) 0.508 0.950 0.869 0.888 0.924 0.631 0.563

Shuffled-token detection 0.621 0.92 0.905 0.886 0.928 0.704 0.437

Table 1: Results on GLUE tasks.
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Figure 3: Learning rate as training progresses.
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Figure 4: Training loss logged after every training step.

and over the maximum steps from [100, 1000] with
a step size of 100. Changes in learning rate with
the increase in optimization steps for different peak
learning rates are shown in Figure 3. The results
for the validation loss with an increasing number of
optimization steps for the different learning rates is
illustrated in Figure 2. The training loss is outlined
in Figure 4. We observe that the minimum training
loss, as well as validation loss, are achieved with
the peak learning rate of 1e-4. Moreover, the train-
ing loss and the validation loss keep on decreasing
with the number of optimization steps continuously
till 1000 steps which shows that training the model
for more number of steps could be beneficial. The
optimal maximum steps as shown in Figure 4 and 2
is 1000.3 For training our baseline approach of de-
tecting mask tokens, we set the learning rate to 1e-4.

3An actual optimum number of steps could be more than
1000 and training further would give us the best value for the
maximum steps.

The probability of masking tokens (sub-words) in
the baseline approach was fixed to 0.15 as done
in previous work (Devlin et al., 2019; Liu et al.,
2019). For the proposed approach, we also set the
probability p of shuffling tokens (words) to 0.15.

On using large batch sizes Pre-training proce-
dures have been shown to be effective when using
large batch sizes (Liu et al., 2019). Training our
model directly on a very large batch size required
computation power beyond what was available. To
alleviate this problem, we used gradient accumu-
lation for 64 steps with a per GPU batch size of
16. We used distributed training on 4 Nvidia K80
GPUs to train our models. The effective batch size
during training was 4096.

4.4 Downstream Evaluation

We evaluate our approach on 7 GLUE tasks us-
ing the metrics outlined in Table 1. We use the
same set of hyperparameters for fine-tuning for
downstream tasks for each approach for a fair com-
parison. Methods for comparison to our approach
include (a) the baseline approach where the training
objective is detecting masked tokens, and (b) the
plain pre-trained RoBERTa base model. The values
of hyperparameters used for GLUE fine-tuning are
outlined in Table 2. The rest of the hyperparameters
are set to default values.4

Hyperparameter Value
Maximum Sequence Length 128

Batch Size 64
Learning Rate 2e-5

Number of epochs 3

Table 2: Hyperparameters for fine-tuning RoBERTa
model.

4.5 Results and Analysis

Table 1 presents the results for the 7 GLUE tasks.
Our model trained to detect randomly shuffled to-

4The default hyperparameters are as in https:
//github.com/huggingface/transformers/
blob/v2.8.0/examples/run_glue.py.

91



kens performs the best in 4 of the 7 downstream
tasks, namely CoLA, MRPC, QNLI and RTE. The
scores for the baseline, where the objective is
to detect masked tokens, are interestingly some-
times worse than the plain pre-trained RoBERTa’s
scores. For example, the CoLA score using plain
pre-trained RoBERTa is 0.557 whereas the score
obtained by the baseline is 0.508.

The model performance based on the proposed
approach on individual tasks gives us insights about
what aspects of natural language our model im-
proved in learning. Our model’s performance on
CoLA, which predicts grammatical correctness of
a sentence, is better, indicating that the pre-training
task may have enhanced the model’s ability to learn
grammatical information. Moreover, better perfor-
mance on RTE, MRPC and QNLI shows that with
the proposed approach, the model better under-
stands the semantic relationships such as similarity
and entailment.

However, random shuffling hurts the perfor-
mance of the model on WNLI significantly in com-
parison to the baseline. This may be due to the
fact that WNLI forms a pair of sentences by replac-
ing the ambiguous pronouns with their referents.
Since we are shuffling the words, it is likely that
the nouns will be shuffled, resulting in misleading
replacement of the ambiguous pronoun.

Our baseline model outperforms the shuffled-
token detection approach on SST-2 task which pre-
dicts the sentiment polarity of the movie reviews.
One possible explanation is that shuffling negations
in presence of contrasting conjunctions can signif-
icantly change the sentiment associated with the
sentence.5

5 Conclusion and Future Work
In this paper, we examine the performance of
RoBERTa model with token modification discrimi-
nation head on detecting randomly shuffled tokens.
We have demonstrated that detecting shuffled to-
kens is indeed a challenging yet advantageous task,
which allows the model to learn coherent repre-
sentations of the sentences. In this work, we start
with pre-trained RoBERTa base model and train it
further on the shuffled token detection task.

For future work, the model can be further ex-
plored by expanding the shuffling strategy. One
possible strategy is part of speech (POS) shuffling,

5For instance, consider the sentence "That movie was good
but I did not watch it." A random shuffled sentence can be
"The movie was not good but I did watch it."

which randomly permutes specific POS tokens such
as nouns or verbs. Instead of detecting shuffled to-
kens, another objective would be to predict the
original positions of the shuffled tokens. Yet an-
other objective that can be explored is combining
our proposed loss with the masked language model-
ing loss. We would also like to study our approach
when applied to other pre-trained models such as
ALBERT and ELECTRA.
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Abstract

In this work, we explore generating mor-
phologically enhanced word embeddings for
Tamil, a highly agglutinative South Indian
language with rich morphology that remains
low-resource with regards to NLP tasks.
We present here the first-ever word anal-
ogy dataset for Tamil, consisting of 4499
hand-curated word tetrads across 10 semantic
and 13 morphological relation types. Using
a rules-based morphological segmenter and
meta-embedding techniques, we train meta-
embeddings that outperform existing baselines
by 16% on our analogy task and appear to mit-
igate a previously observed trade-off between
semantic and morphological accuracy.

1 Introduction

Continuous-space word embedding methods such
as word2vec (Mikolov et al., 2013) have proven
to be very useful for a wide range of NLP tasks.
However, it has been observed that representa-
tions that treat each word holistically face inher-
ent limitations when working with morphologi-
cally rich languages, and methods have accord-
ingly been designed to incorporate subword infor-
mation (Cotterell and Schütze, 2015; Luong et al.,
2013). Among these, the fastText embeddings re-
main one of the best-known (Bojanowski et al.,
2017; Grave et al., 2018), using character n-grams
to approximate word-internal structural features.

In this work, we focus on producing
morphology-aware embeddings for Tamil, a
Dravidian language with over 68 million speakers
across India, Sri Lanka, Malaysia, and Singapore
(Wikipedia, 2020). Tamil remains a low-resource
language for NLP tasks despite its large speaker
base, and traditional methods of evaluating word
embeddings, for instance the word analogy task
(Mikolov et al., 2013), are almost entirely lacking.
Thus, to facilitate our work, we present here a

∗Equal contribution.

novel, human-curated analogy dataset consisting
of 4499 analogy tetrads.

With regard to morphology, Tamil is highly ag-
glutinative, encoding grammatical features such as
gender, number, and case in single words compris-
ing large sequences of compounded morphemes.
Approaches such as character n-grams that generi-
cally incorporate subword information may be too
coarse when working with Tamil, due to short mor-
pheme lengths paired with high similarity between
morphemes and sandhi across morpheme bound-
aries. The high frequency of ‘false morphemes’
or character sequences resembling morphemes in
non-productive situations compounds this further.
In our work, we attempt to tailor embeddings
to Tamil morphology with the incorporation of a
rules-based morphological segmenter.

We present three primary contributions:

(1) We present the first-ever human-generated
analogy dataset for Tamil, capturing both se-
mantic and morphological analogies.

(2) We construct a set of novel word embeddings
for Tamil that incorporates morphological seg-
mentation and outperforms existing baselines
trained on the same corpus.

(3) Finally, we show that meta-embedding meth-
ods used in conjunction with linear dimen-
sion reduction can mitigate previously ob-
served trade-offs between capturing seman-
tic and morphological/syntactic information in
embeddings (Avraham and Goldberg, 2017;
Qiu et al., 2014).

Our dataset, embeddings, and experiments are
all publicly available with documentation at our
GitHub repository.

2 Related Work

Explicit morphology in word representations.
Explicit incorporation of morphology is limited
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by the need for accurate morphological anno-
tation – Luong et al. (2013) used a recursive
neural network to combine learned representa-
tions of individual morphemes, using the toolkit
Morfessor (Creutz and Lagus, 2007) for unsu-
pervised morphological segmentation. Cotterell
and Schütze (2015) utilized a hand-annotated,
morphologically-labelled corpus to train embed-
dings to predict morphological tags and thereby
encode morphology.

Morphology for low-resource languages.
There has been some recent work focusing on
morphological incorporation for low-resource
agglutinative languages such as Turkish and
Uyghur (Pan et al., 2020). Kumar et al. (2017)
focused entirely on Dravidian languages, creating
a corpus partially annotated for morphological
segmentation and POS tagging.

Meta-embeddings. It has been observed that
various methods of combining word embeddings
into meta-embeddings can combine the strengths
of individual embeddings to improve performance.
Such methods include concatenation (Yin and
Schütze, 2016), averaging or summing (Coates
and Bollegala, 2018), and constructing a vector of
complex numbers (Wittek et al., 2013).

Dimension reduction for word representa-
tions. Yin and Schütze (2016) also observed
that PCA could reduce the dimension of meta-
embeddings without significantly hurting perfor-
mance. In a similar vein, Mu and Viswanath
(2018) found that removing the top few principal
components improved performance. Raunak et al.
(2019) found that composing these two methods
improved dimension reduction, often producing
embeddings that even outperformed the original
embeddings.

Tamil word embeddings. Tamil word embed-
dings remain a relatively under-explored space in
the literature. The well-known fastText embed-
dings contain Tamil embeddings in both iterations
(Bojanowski et al., 2017; Grave et al., 2018), and
represent the state-of-the-art. Kumar et al. (2020)
produced a range of embeddings using conven-
tional methods on corpora they produced for 14
Indian languages including Tamil.

Word analogy datasets. The state-of-the-
art word analogy dataset in English remains the
Google analogy test set developed by Mikolov
et al. (2013). Similar datasets have been produced
for Spanish (Cardellino, 2016), Russian and Ara-

bic (Abdou et al., 2018), and Chinese (Jin and
Wu, 2012), among others. Hindi is the only South
Asian language with a high-quality word analogy
dataset to date (Grave et al., 2018), which incor-
porates particular forms of culturally-linked analo-
gies such as kinship terms. In our work, we at-
tempt to similarly capture language-specific analo-
gies for Tamil.

3 Model

3.1 Atomization
Given that we are considering methods that de-
compose a word into either character n-grams or
morphemes, we consider both of these as spe-
cial cases of decomposing a word into constituent
‘atoms’, a process we call ‘atomization’. An at-
omizer takes in a word w and outputs a sequence
S(w) of atoms. We detail the two main atomizers
used in generating our models here:

(1) The first, henceforth called character 5-grams,
follows the original fastText papers (Bo-
janowski et al., 2017; Grave et al., 2018),
in which a word’s atoms are its character 5-
grams, as well as the entire word itself.

(2) In our second method, which we designate
morphemes + stem (1-3)-grams, we mod-
ify a pre-existing Tamil stemmer 1 into a
rules-based morphological segmenter using
sbl2py 2. The segmenter’s role is to map
each word to its stem and its sequence of mor-
phemes. A word’s atoms are then its stem,
constituent morphemes, and character (1-3)-
grams of the stem. We will closely examine
the segmenter’s behavior in section 3.4.

3.2 Training
Our setup slightly extends that of Bojanowski et al.
(2017), allowing atoms produced by any atomiza-
tion method to fulfil the role played by character
n-grams in the original paper. The model’s train-
able parameters are the embeddings za for the indi-
vidual atoms and the output vectors v′w. Following
Bojanowski et al. (2017), we sum the atom vectors
to obtain the input vector for the word:

vw =
∑

a∈S(w)

za

1https://github.com/rdamodharan/tamil-stemmer
2https://github.com/torfsen/sbl2py
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Figure 1: A visualization of a single word’s embed-
ding with morphemes + stem (1-3)-grams atomization.
The segmenter breaks the word down into morphemes,
which together with (1-3)-grams of the stem are our fi-
nal atoms. The sum of the atom embeddings (which are
updated throughout training) is the overall embedding.

The relationship between atom embeddings and
the overall word embeddings in training are visu-
alized in Figure 1. Each word has its own output
vector that does not depend on the atoms. Using
a large text corpus (in this case Wikipedia), we
train these embeddings with the skip-gram objec-
tive and negative sampling applied to the input and
output vectors vw, v′w as in (Mikolov et al., 2013).

3.3 Constructing meta-embeddings

Our key primitive for constructing meta-
embeddings is a merging operation (Algorithm
1) that takes two separate sets of d-dimensional
word embeddings as input and outputs another
set of d-dimensional embeddings. It does this by
concatenating the two sets of embeddings, then
applying PCA to obtain the desired dimensionality.
This procedure is visualized in Figure 2.

Algorithm 1: Merge(X1, X2)

Data: Embedding matrices
X1, X2 ∈ Rn×d

Result: A new meta-embedding X ∈ Rn×d

// Rescale to norm 1
X1 = NormaliseToUnitNorm(X1);
X2 = NormaliseToUnitNorm(X2);
// Concatenate and apply PCA

Xconcat = Concat(X1, X2) ∈ Rn×2d;
X = PCA(Xconcat, d);

With this, we define a procedure (Algorithm 2)
to combine four sets of embeddings by merging
them in pairs first then merging the two results.

Figure 2: A visualization of the Merge procedure for
obtaining a set of meta-embeddings from two separate
sets of word embeddings. As detailed in algorithm 1,
first the individual embeddings are concatenated and
then dimension reduction via PCA is applied.

Algorithm 2: TripleMerge(Xi, Xo, Yi, Yo)

Data: Embedding matrices
Xi, Xo, Yi, Yo ∈ Rn×d

Result: A new meta-embedding Z ∈ Rn×d

Xmerged = Merge(Xi, Xo);
Ymerged = Merge(Yi, Yo);
Z = Merge(Xmerged, Ymerged);

Our final embeddings are defined as follows.
We train one set of embeddings from the charac-
ter 5-grams atomization. Hereby we refer to this
model as “fastText" 3 and call its input and out-
put embedding matrices FTi,FTo respectively. We
then train another set of embeddings with the mor-
phemes + stem (1-3)-grams atomization, which
we refer to as “MorphoSeg". We label its input
and output embedding matrices by MSi,MSo. Our
final embeddings are the columns of the matrix
TripleMerge(FTi,FTo,MSi,MSo).

3.4 Analysis of rules-based segmenter
Here we discuss the strengths and weaknesses of
the segmenter (introduced in section 3.1) as a core
part of our methodology.

Strengths. We find that the segmenter performs
well on and correctly identifies a wide range of

3This is similar but not identical to fastText, since we used
another Wikipedia dump and used only character 5-grams
and not (3-6)-grams due to computational constraints. How-
ever, we note that Grave et al. (2018) also changed the range
from (3-6) to 5 and found it minimally impacted accuracy.
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morphemes. In particular, it almost always cor-
rectly breaks down inflectional increments across
morpheme boundaries, for instance with marattai
‘tree(ACC)’ −→ maram ‘tree’ + ai (accusative
suffix). Additionally, long agglutinative com-
pounds are often broken up correctly, for instance
ezudappat.ukir. adu −→ ezuda + pat.u + kir. a+ du.

Weaknesses. However, we also find a number
of distinct failure modes of the segmenter. We
find undersegmentation of morphemes (e.g. inabil-
ity to separate multiple stems in one word), over-
segmentation of ‘false’ morphemes (in words that
contain homophones of morphemes, e.g. paccai
‘green’ which happens to end in ai, the accusative
suffix), ellision of certain morphemes, and diffi-
culty with irregular forms. While it is beyond the
scope of this paper to thoroughly analyze the seg-
menter, we anticipate that our gains on morpholog-
ical tasks could be vastly improved with a better
segmenter. More details are provided in our code.

4 Dataset

One of the primary contributions of this work is
our novel Tamil analogy dataset, the first available
for the language. The dataset is a hand-crafted set
of 426 paired relations between words, and was
produced by the authors. These word pairs are
split into 10 semantic and 13 morphological rela-
tion types (see Appendix A). Analogy tetrads are
then generated in a combinatorial fashion by com-
bining pairs from the same class.

Given that Tamil is a low-resource language,
automated construction of analogy dataset is rela-
tively infeasible; lexicons rarely list fully inflected
or complex morphological forms, and the use of a
segmenter would subject the dataset to limitations
similar to those discussed in section 3.4. As such,
the decision to produce a human-curated analogy
dataset was motivated by the desire to produce a
gold-standard analogy task resource.

As a result of Tamil’s morphological richness,
even semantic relations often contain pairs with
similar morphology. As such, we clustered word
pairs within each relation type that shared identical
morphology into labelled sub-classes. Analogies
produced from morphologically identical pairs,
along with analogies from morphological rela-
tions, were sorted into the Subword category of
analogies, and semantic tetrads that were pro-
duced from morphologically non-identical pairs
were placed in the Non-subword category.

Table 3 shows 4 examples of word tetrads for
the semantic and morphological categories respec-
tively, with two word pairs given per relation. The
full dataset contains 4499 analogy tetrads, with
3487 analogy tetrads across 19 relation types in
the Subword category and 1012 tetrads across 10
relation types in the Non-subword category. A
complete list of relation types with examples (and
numerical distributions across the full dataset, de-
velopment, and test sets) can be found in Appendix
A.

We note that our segmenter does not correctly
identify all morphological relations. Therefore,
MorphoSeg may not improve overall performance
even in the subword category. However, we will
see in Section 6 that it significantly improves
performance on certain morphological relations,
and that our final meta-embedding absorbs these
strengths to substantially improve overall perfor-
mance (across relations and categories).

5 Experimental setup

5.1 Training corpus and analogy task
We extracted 4 a corpus from the Tamil Wikipedia
dump 5 (comprising 133732 articles) on April
20, 2020 and shuffled the sentences to obtain our
final training corpus. A copy of the dump is
available at our GitHub repository. We note that
while Wikipedia may not capture the full range
of Tamil inflectional morphology (having predom-
inantly present/past tense and third-person conju-
gations), it captures rich derivational morphology
that provides a good source of productive morpho-
logical diversity for our embeddings.

Our evaluation task measured performance on
a word-analogy task performed by ‘guessing’ a
missing word in our set of tetrads, which was
computed by the gensim most_similar func-
tion (Řehůřek and Sojka, 2010). Correctness on
each analogy tetrad was measured by top-k accu-
racy for each k ∈ {1, 5, 10}. From this, top-k
accuracies were computed for each relation type.
These accuracies were averaged within subword
and non-subword categories, and overall model
performance was measured by averaging the two
figures. For brevity, we only present top-10 results
here but we observe qualitatively similar behavior
for top-1 and top-5 accuracy. Details are provided
in Appendix C. We used a 75/25 dev/test split.

4https://github.com/attardi/wikiextractor
5https://dumps.wikimedia.org/
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Type of relationship Word Pair 1 Word Pair 2
male- an. pen. raja ran. i
female ‘male’ ‘female’ ‘king’ ‘queen’

profession- kuyavar panai necaval.ar thun. i
product ‘potter’ ‘pot’ ‘weaver’ ‘cloth’
animal- nai naikkut.t.i pacu kanr. u
young ‘dog’ ‘dog-pup’ ‘cow’ ‘calf’

elder female kin- pat.t.i peran tay makan
young male kin ‘grandma’ ‘grandson’ ‘mother’ ‘son’

nominative- avan avanai kai kaiyai
accusative ‘he’ ‘him’ ‘hand(nom)’ ‘hand(acc)’
adjective- makizcciyana makizcciyaka kopamana kopamaka

adverb ‘happy’ ‘happily’ ‘angry’ ‘angrily’
verb- vara vandavarkal.ukkaka peca peciyavarkal.ukkaka

for those who verb-ed ‘to come’ ‘for those who came’ ‘to speak’ ‘for those who spoke’
past- ket.t.adu ket.t.uponadu kuraindadu kurainduponadu

past completive COS ‘it spoiled’ ‘it spoiled’ ‘it reduced’ ‘it reduced’

Figure 3: The table above shows four examples of tetrads from our Non-Subword analogy category, and four
examples from our Subword category (in that vertical order). The table captures some of the variation inherent
in Tamil verbal and noun forms even morphologically identical forms can vary in the way they append to a
verbal/noun root (as in rows 7 and 8), and multiple morphemes often exist for a given meaning.

5.2 Implementation details
We used our training corpus to produce 300-
dimensional embeddings. We based our training
code on Tzu-Ray Su’s PyTorch implementation of
word2vec6. More hyperparameters are provided in
Appendix B.

In our evaluation of our models, we were unable
to utilize the full set of 4499 analogy tetrads, as
many tetrads contained out-of-vocabulary (OOV)
words due to the limitations of the Wikipedia train-
ing corpus. As our model was unable to did han-
dle OOV tokens, we had to filter our dataset for
applicable tetrads. After filtering for OOV tokens,
there remained 1576 analogies (45.2%) across 13
relation types in the Subword category, and 794
analogies (78.5%) across 9 relation types in the
Non-subword category.

We also trained a standard word2vec skip-gram
model (Mikolov et al., 2013) as a baseline.

6 Results and Analysis

Results on the test set are shown in Figure 4.
Our model was the strongest among those evalu-
ated in both the subword and non-subword cate-
gories. First, we examine individual sets of word
embeddings in section 6.1 and observe that they

6https://github.com/ray1007/pytorch-word2vec

differ substantially in their success modes. In
particular, we show that the incorporation of the
morphological segmenter appears to significantly
boost performance on certain morphological rela-
tions. Secondly, we turn to analyzing our meta-
embeddings in section 6.2. Counterintuitively, we
find that meta-embeddings in fact improve their
performance when reduced to the same dimension
as our original embeddings, seemingly combining
the strengths of different representations.

6.1 Comparing individual models

‘fastText, input’ was the strongest individual
model in both categories by a substantial margin.
However, there are some relations in the dataset
where it fell short and some of the other individ-
ual models performed better. As expected, ‘Mor-
phoSeg, input’ was very effective on morpholog-
ical relations that our segmenter correctly identi-
fied. More interestingly, both ‘MorphoSeg, out-
put’ and ‘fastText, output’ performed better than
‘fastText, input’ across the kinship relations in the
non-subword category. We hypothesize that kin-
ship relations contain word pairs that rarely share
subword information, so output vectors were more
successful as they did not explicitly use subword-
based atomization. Results on some such relations
are shown in Figure 5.
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Model Subword Non-subword Average
Skip-gram, input 15.87 23.57 19.72

MSi (MorphoSeg, input) 62.99 16.75 39.87
MSo (MorphoSeg, output) 15.91 22.95 19.43

FTi (fastText, input) 72.22 34.04 53.13
FTo (fastText, output) 17.89 25.89 21.89
Concat(MSi,MSo)

† 75.81 24.79 50.30
Merge(MSi,MSo) 83.07 29.99 56.53
Concat(FTi,FTo)

† 72.69 42.68 57.68
Merge(FTi,FTo) 78.85 47.48 63.17

TripleMerge(FTi,FTo,MSi,MSo) 90.24 48.52 69.38

Figure 4: Top-10 accuracies of various models on our test set. The top row shows the standard skip-gram word2vec
baseline. The next sub-table comprises the uncombined models arising from our atomization methods. The final
sub-table consists of our final meta-embedding in the bottom row, as well as the intermediate meta-embeddings
used to construct it (as described in algorithm 2). Models marked by † have 600 dimensions rather than 300 since
they have only been concatenated.

Model Nom-acc Prof-prod Kinship
MSi 80.15 3.57 0.00
MSo 20.59 17.86 17.86
FTi 63.24 35.71 14.29
FTo 21.32 25.00 32.14

TripleMerge 88.97 64.29 28.57

Figure 5: Top-10 accuracies of our four individual mod-
els and final meta-embeddings on a subset of relations.
The final meta-embedding draws on complementary
strengths of individual models to mitigate trade-offs be-
tween them.

This illustrates that the four individual embed-
dings had complementary success modes, sug-
gesting the applicability of meta-embedding meth-
ods. Furthermore, the complementary strengths
of models across relations appeared to occur
along the lines of previously observed semantic-
morphological trade-offs (Avraham and Goldberg,
2017), which warrants further investigation.

6.2 Improvements from meta-embeddings

The results highlight that both concatenation
and PCA were highly effective in increasing
performance. Each of Concat(MSi,MSo) and
Concat(FTi,FTo) performed at least as well as
each of their constituent individual models in both
categories. Moreover, the PCA step (between Con-
cat and Merge) consistently improved upon the
Concat models by around 5% in both categories.

Examining the results of our final meta-
embedding on each relation as in Figure 5 revealed

that it drew on the complementary success modes
of the individual models, thus mitigating the
semantic-morphological trade-offs between them.
In most relations, the meta-embedding performed
at least as well as the best individual model, if not
substantially better.

7 Conclusion and Future Work

In this paper, we investigated directly incorpo-
rating morphology into Tamil word embeddings
using a morphological segmenter, following Bo-
janowski et al. (2017) in computing representa-
tions for subword units. We constructed a word
analogy dataset for Tamil consisting of 13 types
of morphological relations and 10 types of seman-
tic relations to evaluate performance. We combine
individual models to obtain more versatile meta-
embeddings that seem to overcome previously ob-
served trade-offs.

It remains for future work to investigate the per-
formance of our techniques on OOV words, and
the improvements better morphological segmenta-
tion might bring. Evaluating our embeddings on
other tasks for Indian languages, such as Akhtar
et al. (2017)’s Tamil word similarity dataset, re-
mains an important direction, as does studying
the importance of incorporating morphology for
downstream tasks such as POS tagging and NMT
(Kumar et al., 2020). Exploring the applicability
of our pipeline of morphological segmentation and
meta-embeddings to other morphology-rich lan-
guages is another avenue for future work.

99



References
Mostafa Abdou, Artur Kulmizev, and Vinit Ravis-

hankar. 2018. Mgad: Multilingual generation of
analogy datasets. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018).

Syed Sarfaraz Akhtar, Arihant Gupta, Avijit Vajpayee,
Arjit Srivastava, and Manish Shrivastava. 2017.
Word similarity datasets for Indian languages: An-
notation and baseline systems. In Proceedings of
the 11th Linguistic Annotation Workshop, pages 91–
94, Valencia, Spain. Association for Computational
Linguistics.

Oded Avraham and Yoav Goldberg. 2017. The inter-
play of semantics and morphology in word embed-
dings. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
422–426, Valencia, Spain. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Cristian Cardellino. 2016. Spanish billion words
corpus and embeddings (march 2016). URL
http://crscardellino. me/SBWCE.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding – computing meta-
embeddings by averaging source word embeddings.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 194–198, New
Orleans, Louisiana. Association for Computational
Linguistics.

Ryan Cotterell and Hinrich Schütze. 2015. Morpholog-
ical word-embeddings. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1287–1292, Denver,
Colorado. Association for Computational Linguis-
tics.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Transactions on Speech and Lan-
guage Processing, 4(1).

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation, LREC 2018, Miyazaki,
Japan, May 7-12, 2018. European Language Re-
sources Association (ELRA).

Peng Jin and Yunfang Wu. 2012. Semeval-2012 task 4:
evaluating chinese word similarity. In * SEM 2012:

The First Joint Conference on Lexical and Compu-
tational Semantics–Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 374–
377.

Arun Kumar, Ryan Cotterell, Lluís Padró, and Antoni
Oliver. 2017. Morphological analysis of the Dravid-
ian language family. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 217–222, Valencia, Spain. Association
for Computational Linguistics.

Saurav Kumar, Saunack Kumar, Diptesh Kanojia, and
Pushpak Bhattacharyya. 2020. “a passage to India”:
Pre-trained word embeddings for Indian languages.
In Proceedings of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), pages
352–357, Marseille, France. European Language Re-
sources association.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with re-
cursive neural networks for morphology. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-
top: Simple and effective postprocessing for word
representations. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Yirong Pan, Xiao Li, Yating Yang, and Rui Dong. 2020.
Morphological word segmentation on agglutinative
languages for neural machine translation. CoRR,
abs/2001.01589.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. pages 141–150.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word embed-
dings. In Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP, RepL4NLP@ACL 2019,
Florence, Italy, August 2, 2019, pages 235–243. As-
sociation for Computational Linguistics.

100
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A Dataset Details

In this section of the Appendix, we provide details
of our word analogy dataset and its construction.
Essentially, as mentioned in the main work, we
present a set of 4499 word tetrads split across 10
semantic and 13 morphological categories.

A.1 Relation types

In our first section here, we provide examples of
each relation type we generated words for, with
illustrative examples provided in Tamil text, Ro-
man transliteration, and translations. Tables 1 and
2 show semantic and morphological word pair cat-
egories respectively.

A.2 Distribution of pairs across relation types

In Tables 3 and 4, we show the numerical distri-
bution of pairs across categories in the full dataset
and the dataset used in the paper for evaluation af-
ter filtering of OOV tokens. We attempt to attain as
even a spread as possible over analogy categories
(and furnish a range of morphology over the lan-
guage).

A.3 Distribution of tetrads across relation
types

In Tables 5 and 6, we show the numerical distri-
butions of analogy tetrads over our distinct rela-
tion types. We also provide here the final train/test
split of our data to show that the relative distribu-
tions over relation types were largely maintained,
and also seek to show the breakdown of analo-
gies across relation types in the original, unfil-
tered dataset. We review here briefly the process
by which analogy tetrads are constructed. Within
our 10 semantic and 13 morphological relation
types, we assign pairs with similar morphology
to a class. Following this, word pairs are combi-
natorially paired to produce tetrads; pairs of the
same class and the same relation type, that is, pairs
that share identical/highly similar morphology get
assigned to the Subword class of analogies, and
tetrads consisting of two divergent pairs get as-
signed to the Non-subword class. The idea here
is that we want to differentiate analogies that can
be solved with use of subword information from
those that cannot as such, we notate this in our
results, and capture this distinction across our dif-
ferent relation types in Tables 5 and 6.

B Implementation Details

B.1 Atomization
There is a subtle difference between the n-grams
we take of the entire word in the character 5-grams
atomization and the n-grams we take of the stem
in the morphemes + stem (1-3)-grams atomization.
Specifically, Tamil is an abugida script, which
means vowel values attached to consonants are ex-
pressed as a series of diacritics.

The original fastText paper and the character 5-
grams method we implemented separate diacritics
from their stem consonants since they are given
distinct Unicode characters. However, for the mor-
phemes + stem (1-3)-grams, we tried taking n-
grams with and without separate diacritics and
stems, and ultimately chose not to separate them.
We used a smaller n-gram window of 1-3 to ac-
count for this.

B.2 Training Hyperparameters
We tabulate all hyperparameters in Table 7. These
were mostly unchanged from the defaults used in
Tzu-Ray Su’s original GitHub repository. The
only change was that we used 5 negative samples,
following the original fastText setup (Bojanowski
et al., 2017).

B.3 Alternative Dimension Reduction
Methods

We briefly note that we tried incorporating the di-
mension reduction method proposed by Raunak
et al. (2019), which combines removing the top
few principal components of the embeddings with
PCA. We found that this was less effective than
simple PCA for our embeddings. We hypothesize
that this was because our embeddings did not have
disproportionately high top singular values, con-
trasting the observations made by Raunak et al.
(2019) for the embeddings that they considered.

C Detailed Results

This section expands on the results presented in
the body of this paper in two ways: we show top-k
results for each k ∈ {1, 5, 10}, and we show these
results for each individual relation in our dataset.

We note that we attempted to compare our
models against other existing baselines trained on
slightly different corpora such as those released by
Kumar et al. (2020). However, due to the different
corpora, these models had additional OOV tokens
in our analogy dataset that we would have had to
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remove to evaluate them together with our models.
Running methods such as ours alongside many
standard baselines on a fixed corpus and compar-
ing the resulting models is an important area for
future work.

C.1 Results in subword categories
Results for top-1, top-5, and top-10 accuracies are
shown in Tables 8, 9, and 10 respectively. Cate-
gories are numbered according to the numbering
convention established in Tables 1 and 2.

The TripleMerged model (our final set of meta-
embeddings) generally outperforms all other mod-
els in these categories by margins of ≈ 10%, al-
though this is not uniformly true across all cate-
gories. This is to be expected since this is the
only meta-embedding incorporating both the FTi

and MSi embeddings, which are the two individ-
ual embeddings that incorporate subword informa-
tion. This explanation is also supported by the
strong performances of these two individual em-
beddings in the Subword categories.

C.2 Results in non-subword categories
Results for top-1, top-5, and top-10 accuracies
are shown in Tables 11, 12, and 13 respectively.
The strongest performing models here are Triple-
Merged, FTconcat, and FTmerged. While Triple-
Merged generally outperforms FTconcat, FTmerged
is in general slightly better than TripleMerged in
these categories. This is once again to be ex-
pected since the FTi and FTo models are the best-
performing individual embeddings in the Non-
subword categories. Still, it is remarkable that
TripleMerged is only slightly worse in general
than FTmerged, given that it was the result of merg-
ing FTmerged with MSmerged, which was signifi-
cantly weaker in the Non-subword categories.

C.3 Overall results
Overall results averaged across categories are
shown in Table 14. TripleMerged exhibits the
strongest performance overall, compensating for
its slight weakness in the Non-subword category
with significant improvements in the Subword cat-
egory on all other models.
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ā
k
oy

y
ā
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ṅ
th
ā
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ā

·ti
y
a
v
a
n

’to
si

ng
/th

e
m

al
e

w
ho

sa
ng

’
21

ve
rb

-p
as

si
ve

_p
l_

in
an

க
ாண

க
ாண

ப்ப
ட்
ட
ன

k
ā
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ā

·n
a
p
p
a

·t ·t
a
n
a

’to
se

e/
th

ey
w

er
e

se
en

’
22

ve
rb

-p
as

t_
in

an
ெ
சா
ல்
ல
ெ
சா
ன்
ன
து

co
ll
a
co
n
n
a
d
u

’to
sa

y/
th

at
w

hi
ch

w
as

sa
id

’

Ta
bl

e
2:

T
hi

s
ta

bl
e

sh
ow

s
ou

rn
um

be
re

d
re

la
tio

n
ty

pe
s

fo
rm

or
ph

ol
og

ic
al

w
or

d
pa

ir
s,

co
ns

is
tin

g
of

13
ty

pe
s.

W
e

pr
ov

id
e

Ta
m

il
te

xt
,t

ra
ns

lit
er

at
io

n,
an

d
tr

an
sl

at
io

ns
.

104



Dataset
Semantic relation type

Total
0 1 2 3 4 5 6 7 8 9

Full dataset 29 30 9 9 23 5 8 4 4 24 145
OOV Removed 22 30 8 6 22 5 8 4 4 22 131

Table 3: Numerical distribution of analogy pairs across the different semantic relation types (see Figure for indi-
vidual relation type meanings/examples

Dataset
Morphological relation type

Total
10 11 12 13 14 15 16 17 18 19 20 21 22

Full dataset 19 19 22 30 22 15 20 20 30 19 19 23 23 281
OOV Removed 17 19 20 27 0 0 0 1 10 0 1 16 17 128

Table 4: Numerical distribution of analogy pairs across the different morphological relation types (see Figure for
individual relation type meanings/examples

Dataset
Semantic relation type

Total
0 1 2 3 4 5 6 7 8 9

Full dataset
Subword 43 354 1 12 62 3 0 0 0 5 480

Non-subword 363 81 35 24 191 7 28 6 6 271 1012

Development set
Subword 5 265 0 4 39 2 0 0 0 3 318

Non-subword 168 60 21 6 134 5 21 4 4 169 592

Test set
Subword 2 89 0 2 13 1 0 0 0 2 109

Non-subword 56 21 7 3 45 2 7 2 2 57 202

Table 5: Numerical distribution of analogy tetrads across the different semantic relation types (see Figure for
individual relation type meanings/examples

105



D
at

as
et

M
or

ph
ol

og
ic

al
re

la
tio

n
ty

pe
To

ta
l

10
11

12
13

14
15

16
17

18
19

20
21

22
Fu

ll
da

ta
se

t
Su

bw
or

d
17

1
17

1
23

1
43

5
23

1
10

5
19

0
19

0
43

5
17

1
17

1
25

3
25

3
30

07
D

ev
el

op
m

en
ts

et
Su

bw
or

d
10

2
12

8
14

2
26

3
0

0
0

0
33

0
0

90
10

2
86

0
Te

st
se

t
Su

bw
or

d
34

43
48

88
0

0
0

0
12

0
0

30
34

28
9

Ta
bl

e
6:

N
um

er
ic

al
di

st
ri

bu
tio

n
of

an
al

og
y

te
tr

ad
s

ac
ro

ss
th

e
di

ff
er

en
tm

or
ph

ol
og

ic
al

re
la

tio
n

ty
pe

s
(s

ee
Fi

gu
re

fo
ri

nd
iv

id
ua

lr
el

at
io

n
ty

pe
m

ea
ni

ng
s/

ex
am

pl
es

106



Epochs Initial LR LR schedule Momentum Batch size Context window Negative samples
5 0.025 Linear annealing 0.0 100 5 5

Table 7: Training hyperparameters that we used.
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Abstract
Weakly-supervised text classification aims to
induce text classifiers from only a few user-
provided seed words. The vast majority of pre-
vious work assumes high-quality seed words
are given. However, the expert-annotated seed
words are sometimes non-trivial to come up
with. Furthermore, in the weakly-supervised
learning setting, we do not have any labeled
document to measure the seed words’ effi-
cacy, making the seed word selection process
“a walk in the dark”. In this work, we re-
move the need for expert-curated seed words
by first mining (noisy) candidate seed words
associated with the category names. We then
train interim models with individual candidate
seed words. Lastly, we estimate the interim
models’ error rate in an unsupervised manner.
The seed words that yield the lowest estimated
error rates are added to the final seed word
set. A comprehensive evaluation of six binary
classification tasks on four popular datasets
demonstrates that the proposed method out-
performs a baseline using only category name
seed words and obtained comparable perfor-
mance as a counterpart using expert-annotated
seed words 1.

1 Introduction

Weakly-supervised text classification eliminates the
need for any labeled document and induces classi-
fiers with only a handful of carefully chosen seed
words. However, some researchers pointed out that
the choice of seed words has a significant impact on
the performance of weakly-supervised models (Li
et al., 2018; Jin et al., 2020). The vast majority of
previous work assumed high-quality seed words
are given. However, many seed words reported in
previous work are not intuitive to come up with.
For example, in Meng et al. (2019), the seed words
used for the category “Soccer” are {cup, champi-
ons, united} instead of more intuitive keywords like

1Source code can be found at https://github.com/
YipingNUS/OptimSeed.

“soccer” or “football”. We conjecture the authors
might have tried these more general keywords but
avoided them because they do not perform well.

While it is common to use labeled corpora to
evaluate weakly-supervised text classifiers in the
literature, we do not have access to any labeled doc-
ument for new categories in the real-world setting.
Therefore, there is no way to measure the model’s
performance and select the seed words that yield
the best accuracy. A similar concern on assessing
active learning performance at runtime has been
raised by Kottke et al. (2019).

In this work, we device OptimSeed, a novel
framework to automatically compose and select
seed words for weakly-supervised text classifica-
tion. We firstly mine (noisy) candidate seed words
associated with the category names. We then
train interim models with individual candidate seed
words in an iterative manner. Lastly, we use an
unsupervised error estimation method to estimate
the interim models’ error rates. The keywords that
yield the lowest estimated error rates are selected
as the final seed word set. A comprehensive eval-
uation of six classification tasks on four popular
datasets demonstrates the effectiveness of the pro-
posed method. The proposed method outperforms a
baseline using only the category name as seed word
and obtained comparable performance as a coun-
terpart using expert-annotated seed words. We use
binary classification as a case study in this work,
while the idea can be generalized to multi-class
classification using one-vs.-rest strategy.

The contributions of this work are three-fold:

1. We propose a novel combination of unsuper-
vised error estimation and weakly-supervised
text classification to improve the classification
performance and robustness.

2. We conduct an in-depth study on the impact
of different seed words on weakly-supervised
text classification, supported by experiments
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with various models and classification tasks.

3. The proposed method generates keyword sets
that yield consistent and competitive perfor-
mance against expert-curated seed words.

2 Related Work

We review the literature in three related fields: (1)
weakly-supervised text classification, (2) unsuper-
vised error estimation, and (3) keyword mining.

2.1 Weakly-Supervised Text Classification

Weakly-supervised text classification (Druck et al.,
2008; Meng et al., 2018, 2019) aims to use a hand-
ful of labeled seed words to induce text classifiers
instead of relying on labeled documents.

Druck et al. (2008) proposed generalized expec-
tation (GE), which specifies the expected posterior
probability of labeled seed words appearing in each
category. GE is trained by optimizing towards satis-
fying the posterior constraints without making use
of pseudo-labeled documents.

Chang et al. (2008) introduced the first embed-
ding based weakly-supervised text classification
method. They mapped category names and doc-
uments into the same semantic space. Document
classification is then performed by searching for
the nearest category embedding given an input doc-
ument.

Meng et al. (2018) proposed weakly-supervised
neural text classification. They generate unambigu-
ous pseudo-documents, which are used to induce
text classifiers with different architectures such as
convolutional neural networks (Kim, 2014) or Hi-
erarchical Attention Network (Yang et al., 2016).

Recently, Mekala and Shang (Mekala and Shang,
2020) disambiguate the seed words by explicitly
learning different senses of each word with contex-
tualized word embeddings. They first performed
k-means clustering for each word in the vocabu-
lary to identify potentially different senses, then
eliminated the ambiguous keyword senses.

Two most recent works developed concurrently
but independently from our work (Meng et al.,
2020; Wang et al., 2020) addressed the same task
we are tackling: weakly-supervised text classifica-
tion from only the category name. They both tap
on the category names’ contextualized representa-
tion and expand the seed word list by finding other
words that would fit into the same context.

2.2 Unsupervised Error Estimation

Unsupervised error estimation aims to estimate the
error rate of a list of classifiers without a labeled
evaluation dataset. It is widely relevant to ma-
chine learning models in production, such as when
a pre-trained model is applied to a new domain or
when labeled dataset is costly to obtain. To our best
knowledge, no previous work in weakly-supervised
classification applied unsupervised error estima-
tion. Instead, they trained classifiers without la-
beled training datasets but evaluated their models
used labeled evaluation datasets.

Most work in unsupervised error estimation de-
rive the error rate analytically by making simplify-
ing assumptions. Donmez et al. (2010) and Jaffe et
al. (2015) assumed the marginal probability of the
category p(y) is known. Platanios et al. (2014) as-
sumed classifiers make conditionally independent
errors. While these approaches laid an important
theoretical foundation, most assumptions cannot
be met for real-world datasets and classifiers.

Platanios et al. (2016) proposed a Bayesian ap-
proach for error estimation. The model infers the
true category and the error rates jointly using Gibbs
sampling. The approach was benchmarked with
various baselines such as majority vote and Platan-
ios et al. (2014) and achieved superior performance.
The estimated accuracy is usually within a few per-
cents from the true accuracy. Notably, the only
mild assumption it makes is that more than half of
the classifiers have an error rate lower than 50%.

2.3 Keyword Mining

Keyword mining aims to bootstrap high-quality
keyword lexicons from a small set of seed words,
and it has been widely used in mining opinion lexi-
cons (Hu and Liu, 2004; Hai et al., 2012) and tech-
nical glossaries (Elhadad and Sutaria, 2007). We
want to draw the association between keyword min-
ing and weakly-supervised text classification. Both
tasks take a small list of seed words and unlabeled
corpus as input, aiming to “expand” the knowledge
about the target semantic category. Having more
high-quality keywords will improve classification
accuracy, while an accurate classifier will make the
keyword mining task much easier by eliminating
irrelevant/noisy documents.

3 Method

Figure 1 overviews OptimSeed, a framework to se-
lect seed words for weakly-supervised text classifi-
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cation involving the following steps: (1) expanding
candidate keywords from a single seed word, (2)
training interim classifiers with individual candi-
date seed keywords using weakly supervision, (3)
select the final seed words with the feedback from
unsupervised error estimation. We discuss the pro-
posed framework in detail in the following sections.
To make our paper self-contained, we also brief the
weakly-supervised classification and unsupervised
error estimation model we use.

3.1 Expanding Candidate Keywords from a
Single Seed

We use either the category name or trivial keywords
(e.g., “good” and “bad” for sentiment classification
tasks) as the only input seed word and use a key-
word expansion algorithm to mine more candidate
keywords. We apply pmi-freq (Equation 1) fol-
lowing Jin et al. (2020). It is a product of the
logarithm of the candidate keyword w’s document
frequency and the point-wise mutual information
between w and the seed word s. The higher the
pmi-freq score, the more strongly the candidate
keyword is associated with the seed word s. Ad-
ditionally, we filter the mined keywords based on
their part-of-speech tag depending on the classi-
fication task. We keep only noun candidates for
topic classification and adjective candidates for sen-
timent classification.

pmi-freq(w; s) ≡ log df(w)log p(w, s)

p(w)p(s)
(1)

3.2 Training interim classifiers

The candidate keywords and unlabeled dataset are
used to induce interim classifiers. Interim classi-
fiers’ purpose is to isolate the impact of individual
seed words so that we can rank them. Specifically,
iteration A in Figure 1 tries to rank candidate seed
words for Category A (Movies) in the classification
task Movies-Television. The initial seed word “tele-
vision” for Category B is fixed, and it forms seed
word tuples with each candidate word in Category
A. We use each such seed word tuple as input to
train an interim classifier. We then use each interim
classifier’s predictions to perform unsupervised er-
ror estimation.

We use Generalized Expectation (GE) (Druck
et al., 2008) to train both interim classifiers and
the final classifier because of its competitive per-

formance and fast training speed 2. GE translates
labeled keywords to constraint functions. For exam-
ple, the first keyword tuple (hollywood, television)
in Figure 1 translates to two constraint functions:
hollywood → A : 0.9, B : 0.1 and television →
A : 0.1, B : 0.9, which means “hollywood” is ex-
pected to occur 90% in a document of category A
while 10% in a document of category B, vice versa
for the keyword “television”.

Each constraint function on a labeled word wk

contributes to a term in the objective function in
Equation 2 and the underlying logistic regression
model is trained by minimizing the L2 distance
between the reference distribution p̂(y|wk > 0)
(specified by the constraint function) and the em-
pirical distribution p̃(y|wk > 0) (predicted by the
model) of the category y when word wk is present.

O = −
∑

k∈K
dist(p̂(y|wk > 0)||p̃(y|wk > 0))

(2)

3.3 Keyword Evaluation with Bayesian Error
Estimation

We apply unsupervised error estimation on the in-
terim classifiers’ predictions to estimate their ac-
curacy and select the best seed words for the fi-
nal classifier. As shown in Figure 1 iteration A,
the three keywords “hollywood”, “filmmaker”, and
“theaters” are added to the final seed word set of
Category A (Movies) because their corresponding
interim classifiers have estimated accuracy above
the threshold. The process is repeated in iteration
B to select seed words for Category B.

We use the Bayesian error estimation (BEE)
model (Platanios et al., 2016) to perform this step.
In BEE, each instance’s true label is latent, while
each model’s predictions are observed. The accu-
racy/error rate can be derived from the predictions
and the latent true labels. The assumption that
half of the classifiers have an error rate below 50%
implicitly uses inter-classifier agreement.

BEE uses Gibbs sampling to infer the error rates
of individual classifiers ej and the true label li
jointly. We refer the readers to Section 4.1 in Pla-
tanios et al. (2016) for the exact conditional proba-
bilities used in Gibbs sampling.

2All GE models in this work can be trained within a few
seconds using a single CPU core.
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Figure 1: OptimSeed, a method to select seed words for weakly-supervised text classification. We first mine noisy
keywords associated with the category name (the initial seed word). We use one iteration to refine the keywords for
each category. In each iteration, We fix the seed word for one category and combine it with each mined keyword
in the other category. The resultant keyword tuples are used to train separate interim classifiers. Finally, we use
Bayesian error estimation to estimate the accuracy of classifiers induced from each keyword tuple and select the
keywords with the highest estimated accuracy.

4 Experimental Setup

We use six binary classification tasks from four
datasets to evaluate our framework. We choose the
evaluation tasks so that they cover different granu-
larities and domains. The details are as follows:

• AG’s News Dataset: contains 120,000 doc-
uments evenly distributed into 4 coarse cate-
gories. We randomly choose two binary clas-
sification tasks: “Politics” vs. “Technology”
and “Business” vs. “Sports”.

• The New York Times (NYT) Dataset: con-
tains 13,081 news articles covering 5 coarse
and 25 fine-grained categories. We choose
two fine-grained binary classification tasks
involving categories with similar semantics:
“International Business” (InterBiz) vs. “Econ-
omy” and “Movies” vs. “Television”.

• Yelp Restaurant Review Dataset: contains
38,000 reviews evenly distributed into 2 cate-
gories: “Positive” vs. “Negative”.

• IMDB Movie Review Dataset: contains
50,000 reviews evenly distributed into 2 cate-
gories: “Positive” vs. “Negative”.

We report the performance of the following
weakly-supervised models besides Generalized Ex-
pectation (GE):

• Dataless (Chang et al., 2008): maps both in-
put documents and category seed words into a
semantic space using Explicit Semantic Anal-
ysis (ESA) (Gabrilovich et al., 2007) over
Wikipedia concepts and assigns the category
nearest to the input document’s embedding.

• MNB/Priors (Settles, 2011): increases pri-
ors for labeled keywords in a Naïve Bayes
model and learns from an unlabeled corpus
using EM algorithm.

• WESTCLASS (Meng et al., 2018): weakly-
supervised neural text classifier trained using
pseudo documents. We use the CNN archi-
tecture because Meng et al. (2018) showed
that it outperformed other architectures such
as RNNs and Hierarchical Attention Network.

• ConWea (Mekala and Shang, 2020): lever-
ages contextualized word representations to
differentiate multiple senses. It also trains
classifiers and expands seed words in an itera-
tive manner.
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We also report the performance of LR, a super-
vised logistic regression model trained using all the
documents in the training set 3.

In all experiments, we mine 16 candidate seed
words with the highest pmi-freq score for each
category. We select a candidate keyword for the
final classifier if its estimated accuracy is among
the top three or is higher than 0.9 4. For GE, we
use a reference distribution of 0.9 (meaning a la-
beled keyword is expected to appear in its specified
categories 90% of the time) following Druck et
al. (2008). Table 1 shows the initial seed words
used in our work and in previous work 5.

Class Our Work Previous Work
Politics

Tech

political;

technology

democracy religion
liberal;
scientists biological
computing

Business

Sports

business;

sports

economy industry
investment;
hockey tennis bas-
ketball

InterBiz
Economy

international;
economy

china union euro;
fed economists
economist

Movies

Television

movie;

television

hollywood directed
oscar;
episode viewers
episodes

Yelp &
IMDB

good;

bad

terrific great
awesome;
horrible subpar
disappointing

Table 1: Initial seed words for each task.

5 Classification Performance

Table 2 presents each model’s average accuracy
across six datasets.

We can see that OptimSeed seed words yield bet-
ter performance than using the category name alone
by a large margin for all weakly-supervised models,

3We use the logistic regression implementation in scikit-
learn with default parameters and tf-idf features.

4Mekala and Shang (2020) observed that three seed words
per class are needed for reasonable performance while more
high-quality keywords help. Therefore, we use the accuracy
threshold of 0.9 to include additional keywords.

5The seed words for NYT corpus were reported in Meng
et al. (2019) and the rest are from Meng et al. (2018). No
previous work in weakly supervision used IMDB dataset, so
we use the same manual seed words as Yelp dataset.

Method cate ours gold
Dataless 54.7 60.4∗ 56.7
MNB/Priors 68.5 71.7 74.4
WESTCLASS 75.7 77.2 77.0
ConWea 60.0 66.0 70.7
GE 80.4 84.8∗ 85.1
LR 91.8

Table 2: Average accuracy scores in percentage for all
methods on all six classification tasks. cate, ours, gold
indicates the result using the category name, keywords
selected by OptimSeed and expert-composed keywords
used in previous work. For each model, the best-
performing keyword set is highlighted in bold. ∗ in-
dicates statistical significance from the same model us-
ing “cate” seed word with p-value of 0.05 using paired
t-test.

validating the effectiveness of our seed word expan-
sion and selection method. It also achieved better or
similar performance as expert-curated seed words
for three out of five models.

Among the learning algorithms, GE obtained
the best average performance for all seed word
sets. The average accuracy of GE using OptimSeed
seed words (84.8%) is only 0.3% lower than using
expert-curated seed words, virtually eliminating
human experts from the loop. GE+OptimSeed’s
accuracy is 7% below a fully-supervised logistic
regression model trained on hundreds to tens of
thousands of labeled documents.

Table 3 shows each model’s classification accu-
racy on topic classification tasks. Summing over
all models and datasets, OptimSeed achieved better
or equal performance than the category name base-
line 80% of the time (16/20) and better or equal
performance than the gold seed words 65% of the
time. It demonstrates the robustness of our seed
word selection method across different tasks.

While ConWea claimed to resolve ambiguity
through contextualized embeddings, we observed
that it works well only when the input seed words
are unambiguous (“ours” or “gold” column). On
the Business-Sports classification task, its accuracy
was only 39.1% while other baselines could achieve
over 90%. We inspected the model and found the
keywords expanded by ConWea are much noisier
than OptimSeed, which caused the poor perfor-
mance.

We can make similar observations on the perfor-
mance of sentiment classification tasks (Table 4).
However, the gap between weakly-supervised mod-
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Method Poli-Tech Biz-Sport IB-Econ Movie-TV
cate ours gold cate ours gold cate ours gold cate ours gold

Dataless 50.1 51.4 50.2 50.0 50.2 50.4 59.1 75.0 67.1 67.8 70.0 67.8
MNB/Priors 87.3 88.9 88.9 95.6 93.9 92.9 58.5 54.3 93.9 67.8 67.8 68.9
WESTCLASS 87.4 89.5 88.8 92.7 94.8 94.3 77.7 83.0 75.1 50.4 76.6 62.1
ConWea 71.5 73.7 71.4 39.1 67.0 82.0 75.1 71.2 84.3 66.9 77.0 76.4
GE 86.9 87.8 88.5 93.0 93.0 79.4 70.7 81.7 91.5 94.4 98.9 97.8
LR 96.3 98.6 90.2 85.5

Table 3: Accuracy on topic classification tasks. For each model-dataset combination, we highlight the best perfor-
mance in bold.

els and the supervised baseline is much larger topic
classification tasks, suggesting that some reviews’
sentiment might be expressed implicitly and re-
quires more than word-level understanding. Meng
et al. (2020) also made a similar remark based on
their experiment.

Method Yelp
cate ours gold

Dataless 51.0 55.5 52.2
MNB/Priors 50.9 71.5 51.7
WESTCLASS 78.3 58.8 81.5
ConWea 51.0 51.3 50.7
GE 68.0 75.2 79.3
LR 92.2

Method IMDB
cate ours gold

Dataless 50.1 60.4 52.2
MNB/Priors 51.1 54.0 50.3
WESTCLASS 67.7 60.6 60.5
ConWea 56.5 55.7 59.1
GE 69.6 72.2 74.0
LR 88.3

Table 4: Accuracy on sentiment classification tasks.
For each model-dataset combination, we highlight the
best performance in bold.

6 Case Study

To demonstrate the working of our proposed frame-
work, we present a case study on the classification
task “International Business” vs. “Economy” in
Table 5 and show different seed word sets for the
category “economy” and their corresponding per-
formance.

Keyword expansion alone improved the accu-
racy significantly from the category name baseline.
However, it may introduce some ambiguous key-
words in the meantime. The unsupervised error esti-

mator successfully identified top keywords such as
“economist” and “economists” and eliminated poor
keywords like “purchases” and “growth”, which
further improved the accuracy by 2.4%.

Stage:Acc Seed Words for “Economy”
Init: 70.7 economy
Keyword
Expansion:
79.3

purchases pace index
borrowing unemployment
economists economy stimulus
rates recovery economist rate
fed reserve inflation growth

Final: 81.7 economist economists rate
recovery index

Table 5: Seed words for “Economy” at different stages
of the OptimSeed framework.

7 Conclusion

Weakly-supervised text classification can induce
classifiers with a handful of carefully-chosen seed
words instead of labeled documents. However,
the choice of seed words has a significant im-
pact on classification performance. We proposed
OptimSeed, a novel framework to compose the
seed words automatically. It first mines keywords
associated with the category name and then esti-
mates each seed word’s impact directly using unsu-
pervised error estimation. The framework outputs
seed words yielding a comparable performance as
expert-curated seed words, virtually eliminating
human experts from the loop.
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Abstract

For a computer to naturally interact with a
human, it needs to be human-like. In this
paper, we propose a neural response gener-
ation model with multi-task learning of gen-
eration and classification, focusing on emo-
tion. Our model based on BART (Lewis
et al., 2020), a pre-trained transformer encoder-
decoder model, is trained to generate re-
sponses and recognize emotions simultane-
ously. Furthermore, we weight the losses for
the tasks to control the update of parameters.
Automatic evaluations and crowdsourced man-
ual evaluations show that the proposed model
makes generated responses more emotionally
aware.

1 Introduction

The performance of machine translation and sum-
marization has been approaching a near-human
level in virtue of pre-trained encoder-decoder mod-
els, such as BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020). The same technology has been
applied to dialogue systems, which are now ex-
pected to be put to practical use.

To interact naturally with a human, the computer
needs to be human-like. Several methods have been
proposed to build such dialogue systems. They in-
clude a system interacting based on knowledge and
common sense (Dinan et al., 2019) and that inter-
acting by considering one’s own and the other’s
personality (Zhang et al., 2018). In particular, we
focus on the viewpoint of emotion as targeted in
Rashkin et al. (2019).

In this paper, we propose a multi-task learning
method for building a dialogue system that takes
the speaker’s emotions into account. Also, we fo-
cus on the hierarchy of emotions (Kumar et al.,
2019) and simultaneously train multiple emotion
recognition tasks with different granularity. Our
multi-task learning model is not expected to share
complementary information among similar tasks as

previous work (Liu et al., 2019), and we do not aim
at improving the accuracy of emotion recognition.
Instead, we focus on generating emotion-aware re-
sponses. Also, concerned that the ratio of emotion
recognition in multi-task learning is too large, we
explore further quality improvement by weighting
each loss. We build a model based on BART (Lewis
et al., 2020), a pre-trained Transformer (Vaswani
et al., 2017) model, to implement multi-task learn-
ing of response generation and emotion recogni-
tion.

Experiments are performed using a dialogue cor-
pus without context. The effectiveness of the pro-
posed method in generating responses is confirmed
by automatic and manual evaluations. Multi-task
learning of response generation and emotion recog-
nition makes generated responses more emotion-
ally aware of utterances. The improvement is not
only on the emotional aspect but also on the quality
of fluency, informativeness, and relevance. We also
found that controlling the parameters by weighting
the losses improved the performance of the model.

2 Related Work

One of the previous studies on emotion-based
response generation is the Emotional Chatting
Machine (ECM) (Zhou et al., 2018). ECM
is used together with an emotion classifier to
generate a response based on a given emotion.
EmpTransfo (Zandie and Mahoor, 2020) is a sim-
ilar model to ours. Given an utterance, a model
based on GPT (Radford et al., 2018) learns an emo-
tion and an action simultaneously in addition to a
response, which improves the quality of generated
responses. These models focus on the emotion of
a response so that they do not generate a response
based on the emotion of an utterance.

Lubis et al. (2018) incorporate an emotion en-
coder into a hierarchical seq2seq architecture, en-
abling a system to understand the emotional context
on a user. TG-EACM (Wei et al., 2020), the suc-
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Figure 1: The architecture of our model, based on BART (Lewis et al., 2020). It contains one LM head and several
CLS heads, which solve generation and classification, respectively. In our experiments, three CLS heads are used
for the emotion recognition tasks with different granularity.

cessor of EACM (Wei et al., 2019), is a model that
considers not only the emotion in an utterance but
also the emotion that a response should have. The
model learns a distribution to infer both the emo-
tion of the utterance and the response from a given
utterance. CARE (Zhong et al., 2021) uses some
commonsense to generate a response with both ra-
tionality and emotion. Through latent concepts
obtained from an emotionally aware knowledge
graph, predicted responses can be emotional and
rational.

Actually, the above models require separate
units or special architecture for understanding emo-
tion in a dialogue. In contrast, our proposed
model achieves that with a single structure, inher-
ited from Transformer (Vaswani et al., 2017) and
BART (Lewis et al., 2020). In other words, our
model does not need an extra unit. Therefore, the
proposed method consequently reduces the redun-
dancy of Transformer parameters (Kovaleva et al.,
2019) and realizes more efficient understanding of
emotion to generate a response.

3 Emotion-Aware Response Generation
by Multi-Task Learning

3.1 Overview
Our model learns response generation as a genera-
tion task and emotion recognition as a classification
task. By learning response generation and emo-
tion recognition simultaneously through multi-task
learning, it is possible to generate a response by
considering the emotion of a given utterance.

Multi-task learning often involves several sim-
ilar tasks because they can share information and

thus the performance of each task can be improved.
However, the purpose of our multi-task learning
method is to improve the quality of response gener-
ation, not to improve the performance of emotion
recognition. This is different from general multi-
task learning.

Our model is based on BART (Lewis et al.,
2020). Its architecture is shown in Figure 1. The
model has several output layers, or heads, for the
tasks to be trained, which include an LM head
for generating words in response generation and
CLS heads for solving classification tasks. Given
a sentence, the CLS head predicts its label such as
positive or negative. One CLS head is set
for each classification task.

The input/output format of each task is the same
as that in BART. In the generation task, we put
an utterance and a right-shifted response into the
encoder and decoder, respectively. In the classifi-
cation task, we put an utterance and a right-shifted
utterance into the encoder and decoder, respectively.
Following the learning algorithm of MT-DNN (Liu
et al., 2019), each task that the model learns is
selected for each mini-batch. A different loss is
calculated for each task, and the parameters are
updated for each mini-batch.

3.2 Losses of Generation and Classification
Tasks

Let x = (x1, . . . , xM ) be the given utterance and
θ be the parameters of the model. Our model is
trained by updating θ based on the loss for each
task.
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Dataset Train Validation Test
DailyDialog 76,052 7,069 6,740
TEC 16,841 2,105 2,105
SST-2 16,837 872 1,822
CrowdFlower 15,670 1,958 1,958

Table 1: The statistics of the datasets for our experi-
ments, where TEC stands for Twitter Emotion Corpus.
Because TEC and CrowdFlower have no split of train,
validation, and test, we split them into three at 8:1:1.

Generation The response to x is defined as y =
(y1, . . . , yN ). The model infers an appropriate y
from x. The generation loss Lgen is calculated as
the negative log-likelihood loss.

Lgen = −
N∑

j=1

log p(yj |x, y1, . . . , yj−1;θ) (1)

Classification If the correct label of x is c, the
model infers c from x. The negative log-likelihood
loss is also used for the classification loss Lcls.

Lcls = − log p(c|x;θ) (2)

3.3 Loss Weighting
Although the proposed multi-task learning model
learns the generation and classification tasks si-
multaneously, there is a possibility that the ratio
of learning for the classification task is too large.
When solving a general classification task, the end
of learning is often determined by the convergence
of the loss in the validation data. On the other hand,
the target of our model is a generation task, and the
number of epochs required for generation is larger
than that of the classification task.

Therefore, we consider weighting the loss func-
tions. While the weight for response generation is
fixed at 1, the weight for emotion recognition is
varied between 0 and 1. This makes the contribu-
tion of the classification task reduced in updating
the parameters.

4 Experiments

4.1 Datasets
We train a model with three tasks of emotion recog-
nition in addition to response generation using
multi-task learning. Each emotion recognition
task is a classification task with 6, 2, and 12 la-
bels, and we call them emotion recognition, coarse-
grained emotion recognition, and fine-grained emo-
tion recognition, respectively. The datasets for such

emotion recognition were selected according to
Bostan and Klinger (2018). The numbers of in-
stances are summarized in Table 1.

Response Generation DailyDialog (Li et al.,
2017) is used for response generation. The dataset
is a multi-turn dialogue corpus, and we obtain pairs
of an utterance and a response by extracting two
turns at a time. Each utterance in the corpus has
an emotion label, but we do not use these labels in
the experiment. This is because almost all of the
emotion labels are other, which is not suitable
for our method.

Emotion Recognition For the core emotion
recognition dataset, we use the Twitter Emo-
tion Corpus (Mohammad, 2012). It was con-
structed based on Twitter hashtags and consists
of six labels: {anger, disgust, fear, joy,
sadness, surprise}. Because there is no dis-
tinction between train, validation, and test in the
dataset, 80% of the total samples is assigned to
train, and the remaining 10% each is assigned to
validation and test.

Coarse-Grained Emotion Recognition For
coarse-grained emotion recognition, we use
SST-2 (Socher et al., 2013). This is a dataset
of movie comments labeled with {positive,
negative}. To maintain a balance with the
number of instances for the other emotion recogni-
tion tasks, we reduce the number of instances for
training to 25%.

Fine-Grained Emotion Recognition For
fine-grained emotion recognition, we use the
emotionally-tagged corpus provided by Crowd-
Flower.1 We exclude the label empty and adopt
this corpus for a classification task with 12
labels: {anger, boredom, enthusiasm, fun,
happiness, hate, love, neutral, relief,
sadness, surprise, worry}. As with the
Twitter Emotion Corpus, this corpus does not have
a split of train, validation, and test, and thus the
whole data is divided into 8:1:1. Furthermore, for
the same reason as in SST-2, only 50% of the total
data is used.

4.2 Training
The hyperparameters are set based on
BART (Lewis et al., 2020) and the Fairseq

1The original link is no longer available. An
alternative is https://data.world/crowdflower/
sentiment-analysis-in-text.
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Model Auto Eval Manual Eval
BLEU dist-1 dist-2 Avg Len Emo Flu Info Relv

R 32.35 5.87 30.48 14.12 3.44 3.48 3.63 3.55
R+E6 32.29 5.93 30.48 14.12 3.59 3.82 3.62 3.96
R+E6+E2 32.39 6.00 30.77 14.11 3.58 3.75 3.74 3.70
R+E6+E12 32.55 5.89 30.57 14.14 3.52 3.48 3.55 3.58
R+E6+E2+E12 32.29 5.91 30.47 14.12 3.59 3.75 3.57 3.64

Table 2: Evaluation results of our models by multi-task learning. R stands for response generation, and E• is
emotion recognition with • labels. Emo, flu, info, and relv are the four aspects for the manual evaluation by
crowdsourcing.

Figure 2: An example of the manual evaluation by
crowdsourcing on Amazon Mechanical Turk. Workers
are supposed to answer such questions by rating the
given dialogue on a five-point scale.

example.2 The learning rate is set to 3e-5, and the
parameters are optimized by Adam with weight
decay. For response generation, we apply label
smoothing of 0.1 to the negative log-likelihood
loss. The number of input and output tokens is set
to 64, and training is performed for 64 epochs. We
use beam search with 5 beams to select words and
eliminate cases where there are more than three
repeated n-grams. Training and generation are
performed on NVIDIA Tesla V100.

4.3 Evaluation Metrics
We evaluate the trained models automatically and
manually.

Automatic Evaluation First, we evaluate how
much the output responses are related to the cor-
rect response using BLEU (Papineni et al., 2002).
Second, we evaluate whether the output responses
are lexically diverse using distinct (Li et al., 2016).
For distinct, distinct-1 and distinct-2 are calculated,
which focus on unigrams and bigrams, respectively.
We also compare the average number of words in
output responses, which is based on the assumption

2https://github.com/pytorch/fairseq/
blob/master/examples/bart/README.
summarization.md.

that the longer a response is, the less common it is.
The large average number indicates that generated
responses tend to be not dull.

Manual Evaluation Actually, the lack of cor-
relation between automatic and manual evalua-
tion (Liu et al., 2016) has been indicated especially
in regards to generation tasks. Thus, we perform
manual evaluation by crowdsourcing, where Ama-
zon Mechanical Turk is used as the platform. We
use four metrics mainly following Rashkin et al.
(2019): emotion, fluency, informativeness, and rel-
evance. Each of the questions asks whether the
generated response takes into account the emotion
of the utterance, whether the generated response is
syntactically correct, whether a generated response
provides some information for the utterance, and
whether the content of the response is appropriately
related to the utterance. A total of 100 randomly
selected responses for the test data are asked to
rate the above four metrics on a five-point scale.
US residents are designated as workers, and seven
workers are requested for each metric of each sam-
ple. The final score is obtained as the average of
the values obtained from the seven workers. An
example of the questions asked to the workers is
shown in Figure 2.

4.4 Results

Multi-Task Learning The evaluation results are
shown in Table 2. The response generation is de-
noted by R, and the emotion recognition for the
Twitter Emotion Corpus, SST-2, and CrowdFlower
datasets is denoted by E6, E2, and E12, respec-
tively. In terms of automatic evaluation, R+E6+E2
and R+E6+E12 maximized the distinct and BLEU,
respectively. In the proposed multi-task learning
model, therefore, emotion recognition of different
granularity is effective in relevance and diversity.
For manual evaluation, all models that include emo-
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Utterance Gold Response R R+E6
Yes, my parents, and
soon my brother as
well.

I didn’t know you had
a brother.

I see. In a few months,
you’ll be moving to a
new place.

I hope I get to meet you
soon.

It falls on the fifth
day of the fifth lunar
month.

Could you tell me the
origin of the two festi-
vals?

Oh, then on that day? Oh? Why is that day?

How smart of you to
book the tickets before
hand!

Oh, do you really think
so?

Sorry, I didn’t think of
it that way.

Yeah, yeah, I know. It
was the last thing I
wanted to do.

I can’t. I’m waiting for
Paul, but he’s late.

I’ll say the movie’s
starting in the minute.

Would you like me to
call him?

Where is he?

thank you. I think I
should also have a look
at the Internet to see if
anyone’s got a sublet.

how much do are you
looking to spend?

if you need a flat, you
can always look online.
Do you have any ques-
tions?

good idea. You can ask
around at the office. If
you need a flat, they’ll
probably have one.

Table 3: Examples generated by the baseline model (R) and the proposed model (R+E6). We chose examples
where the emotion score in manual evaluation is quite improved by adding E6 to R.

Model Acc [%] F1 [%]
R 17.29 12.25
R+E6 64.32 56.53
R+E6+E2 63.23 54.88
R+E6+E12 66.27 57.86
R+E6+E2+E12 64.85 56.09

Table 4: Emotion recognition (E6) performance of our
models in Table 2. The values for R, trained only on
response generation, are very low, while R+E6+E12
marks the best score among these models.

tion recognition outperformed the model with only
response generation. Moreover, R+E6 scores were
particularly high for all four metrics. The proposed
multi-task learning model not only makes the gen-
erated responses more emotionally aware but can
also improve the quality of other metrics, such as
fluency and informativeness.

Several examples of responses generated by the
obtained model are shown in Table 3. We com-
pare the given utterances and their responses of R
and R+E6. We can see that R+E6 generated more
emotion-sensitive sentences, such as “Yeah, yeah,
I know” and “good idea.”

In addition, we show the results of emotion
recognition in Table 4, which is especially on a
six-label classification task. We calculate accuracy
and F1-score as metrics for evaluation. The re-
sult shows that, on emotion recognition, increasing
the number of tasks to train does not necessarily

lead to improvement of the scores. We can see
that models with training of emotion recognition
on fine-grained labels tend to outperform the other
models. However, the goal of our model is not im-
provement of classification but that of generation,
so that those score variation is not essential in this
work.

Loss Weighting The evaluation results for dif-
ferent loss weighting are shown in Table 5. The
weight for the loss of E• is denoted as λE•. In
automatic evaluation, we can see the improvement
of the scores by weighting, especially in the model
with E12. On the other hand, the manual evalua-
tion shows that weighting improves some scores,
with the case (.5, .5, 0) producing the highest score.
Therefore, weighting each loss can improve the
quality of generated responses, and in the condi-
tion of our experiment, it is most effective to reduce
the weights of E6 and E2 by half.

5 Conclusion

We worked on improving the quality of neural
network-based response generation. Focusing on
the aspect of emotion, we proposed a multi-task
learning response generation model that includes
the tasks of generation and classification. Through
automatic and manual evaluations, we confirmed
that the proposed model improved several metrics
of performance. Moreover, we further improved
the quality of the model by weighting losses. As
a result, we found that such weighting improved
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(λE6, λE2, λE12)
Auto Eval Manual Eval

BLEU dist-1 dist-2 Avg Len Emo Flu Info Relv
(1, 0, 0) 32.29 5.93 30.48 14.12 3.59 3.82 3.62 3.96
(.5, .5, 0) 32.48 5.86 30.54 14.15 4.00 4.16 4.01 3.96
(.5, 0, .5) 32.52 5.93 30.62 14.04 3.37 3.60 3.37 3.36
(.33, .33, .33) 32.43 5.97 30.81 14.01 3.63 3.37 3.49 3.66

Table 5: Evaluation results for differed loss. λE• indicates the weight for the loss of E•, and the metrics are the
same as those of Table 2. The weight for the response generation loss (λR) is fixed at 1 throughout the experiments.
Note that (1, 0, 0) is equivalent to R+E6 in Table 2.

several scores and the balance of parameter updates
was also an important factor.

This paper focused on the emotion of the dia-
logue and generated responses that take into ac-
count the emotion of an utterance. On the other
hand, we did not focus on the emotion of a re-
sponse, which is a subject for our future work. We
plan to work on estimating the emotions that a
response should have and generating a response
based on a specified emotion. In the experiments
of this paper, we omitted the context of a dialogue.
However, it is also necessary to consider past utter-
ances and their effects on emotions for generating
responses, which is also an issue to be addressed
in the future.
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Abstract
Grammatical error correction (GEC) suffers
from a lack of sufficient parallel data. There-
fore, GEC studies have developed various
methods to generate pseudo data, which com-
prise pairs of grammatical and artificially pro-
duced ungrammatical sentences. Currently, a
mainstream approach to generate pseudo data
is back-translation (BT). Most previous GEC
studies using BT have employed the same ar-
chitecture for both GEC and BT models. How-
ever, GEC models have different correction
tendencies depending on their architectures.
Thus, in this study, we compare the correc-
tion tendencies of the GEC models trained on
pseudo data generated by different BT models,
namely, Transformer, CNN, and LSTM. The
results confirm that the correction tendencies
for each error type are different for every BT
model. Additionally, we examine the correc-
tion tendencies when using a combination of
pseudo data generated by different BT models.
As a result, we find that the combination of dif-
ferent BT models improves or interpolates the
F0.5 scores of each error type compared with
that of single BT models with different seeds.

1 Introduction

Grammatical error correction (GEC) aims to auto-
matically correct errors in text written by language
learners. It is generally considered as a transla-
tion from ungrammatical sentences to grammatical
sentences, and GEC studies use machine transla-
tion (MT) models as GEC models. After Yuan
and Briscoe (2016) applied an encoder–decoder
(EncDec) model (Sutskever et al., 2014; Bahdanau
et al., 2015) to GEC, various EncDec-based GEC
models have been proposed (Ji et al., 2017; Chol-
lampatt and Ng, 2018; Junczys-Dowmunt et al.,
2018; Zhao et al., 2019; Kaneko et al., 2020).

GEC models have different correction tenden-
cies in each architecture. For example, a GEC

∗Current affiliation: Recruit Co., Ltd.
†Current affiliation: Tokyo Institute of Technology

model based on CNN (Gehring et al., 2017) tends
to correct errors effectively using the local con-
text (Chollampatt and Ng, 2018). Furthermore,
some studies have combined multiple GEC models
to exploit the difference in correction tendencies,
thereby improving performance (Grundkiewicz and
Junczys-Dowmunt, 2018; Kantor et al., 2019).

Despite their success, EncDec-based models re-
quire considerable amounts of parallel data for
training (Koehn and Knowles, 2017). However,
GEC suffers from a lack of sufficient parallel data.
Accordingly, GEC studies have developed various
pseudo data generation methods (Xie et al., 2018;
Ge et al., 2018a; Zhao et al., 2019; Lichtarge et al.,
2019; Xu et al., 2019; Choe et al., 2019; Qiu et al.,
2019; Grundkiewicz et al., 2019; Kiyono et al.,
2019; Grundkiewicz and Junczys-Dowmunt, 2019;
Wang et al., 2020; Takahashi et al., 2020; Wang and
Zheng, 2020; Zhou et al., 2020a; Wan et al., 2020).
Moreover, Wan et al. (2020) showed that the cor-
rection tendencies of the GEC model are different
when using (1) a pseudo data generation method
by adding noise to latent representations and (2) a
rule-based pseudo data generation method. Further-
more, they improved the GEC model by combining
pseudo data generated by these methods. There-
fore, the combination of pseudo data generated by
multiple methods with different tendencies allows
us to improve the GEC model further.

One of the most common methods to gener-
ate pseudo data is back-translation (BT) (Sennrich
et al., 2016a). In BT, we train a BT model (i.e., the
reverse model of the GEC model), which generates
an ungrammatical sentence from a given grammati-
cal sentence. Subsequently, a grammatical sentence
is provided as an input to the BT model, generating
a sentence containing pseudo errors. Finally, pairs
of erroneous sentences and their input sentences
are used as pseudo data to train a GEC model.

Kiyono et al. (2019) reported that a GEC model
using BT achieved the best performance among
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other pseudo data generation methods. However,
most previous GEC studies using BT have used the
BT model with the same architecture as the GEC
model (Xie et al., 2018; Ge et al., 2018a,b; Zhang
et al., 2019; Kiyono et al., 2019, 2020). Thus, it
is unclear whether the correction tendencies differ
when using BT models with different architectures.

We investigated correction tendencies of the
GEC model using pseudo data generated by dif-
ferent BT models. Specifically, we used three BT
models: Transformer (Vaswani et al., 2017), CNN
(Gehring et al., 2017), and LSTM (Luong et al.,
2015). The results showed that correction tenden-
cies of each error type are different for each BT
model. In addition, we examined correction tenden-
cies of the GEC model when using a combination
of pseudo data generated by different BT models.
As a result, we found that the combination of dif-
ferent BT models improves or interpolates the F0.5

scores of each error type compared with that of
single BT models with different seeds.

The main contributions of this study are as fol-
lows:

• We confirmed that correction tendencies of the
GEC model are different for each BT model.

• We found that the combination of different
BT models improves or interpolates the F0.5

scores compared with that of single BT mod-
els with different seeds.

2 Related Works

2.1 Back-Translation in Grammatical Error
Correction

Sennrich et al. (2016a) showed that BT can effec-
tively improve neural machine translation. There-
fore, many MT studies focused on BT (Poncelas
et al., 2018; Fadaee and Monz, 2018; Edunov et al.,
2018; Graça et al., 2019; Caswell et al., 2019;
Edunov et al., 2020; Soto et al., 2020; Dou et al.,
2020). Subsequently, BT was applied to GEC. For
example, Xie et al. (2018) proposed noising beam
search methods, and Ge et al. (2018a) proposed
back-boost learning. Moreover, Rei et al. (2017)
and Kasewa et al. (2018) applied BT to a grammat-
ical error detection task.

Kiyono et al. (2019) compared pseudo data gen-
eration methods, including BT. They reported that
(1) the GEC model using BT achieved the best per-
formance and (2) using pseudo data for pre-training
improves the GEC model more effectively than

using a combination of pseudo data and genuine
parallel data. This is because the amount of pseudo
data is much larger than that of genuine parallel
data. This usage of pseudo data in GEC contrasts
with the usage of a combination of pseudo data and
genuine parallel data in MT (Sennrich et al., 2016a;
Edunov et al., 2018; Caswell et al., 2019).

Htut and Tetreault (2019) compared four GEC
models—Transformer, CNN, PRPN (Shen et al.,
2018), and ON-LSTM (Shen et al., 2019)—using
pseudo data generated by different BT models.
Specifically, they used Transformer and CNN as
BT models. It was reported that the Transformer
using pseudo data generated by CNN achieved the
best F0.5 score. However, the correction tenden-
cies for each BT model were not reported. More-
over, although using pseudo data for pre-training
is common in GEC (Zhao et al., 2019; Lichtarge
et al., 2019; Grundkiewicz et al., 2019; Zhou et al.,
2020a; Hotate et al., 2020), they used a less com-
mon method of utilizing pseudo data for re-training
after training with genuine parallel data. Therefore,
we used Transformer as the GEC model and in-
vestigated correction tendencies when using Trans-
former, CNN, and LSTM as BT models. Further,
we used pseudo data to pre-train the GEC model.

2.2 Correction Tendencies When Using Each
Pseudo Data Generation Method

White and Rozovskaya (2020) conducted a compar-
ative study of two rule/probability-based pseudo
data generation methods. The first method (Grund-
kiewicz et al., 2019) generates pseudo data using a
confusion set based on a spell checker. The second
method (Choe et al., 2019) generates pseudo data
using human edits extracted from annotated GEC
corpora or replacing prepositions/nouns/verbs with
predefined rules. Based on the comparison results
of these methods, it was reported that the former
has better performance in correcting spelling er-
rors, whereas the latter has better performance in
correcting noun number and tense errors. In ad-
dition, Lichtarge et al. (2019) compared pseudo
data extracted from Wikipedia edit histories with
that generated by round-trip translation. They re-
ported that the former enables better performance
in correcting morphology and orthography errors,
whereas the latter enables better performance in
correcting preposition and pronoun errors. Simi-
larly, we reported correction tendencies of the GEC
model when using pseudo data generated by three
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Dataset Sents. Refs. Split

BEA-train 564,684 1 train
BEA-valid 4,384 1 valid

CoNLL-2014 1,312 2 test
JFLEG 747 4 test
BEA-test 4,477 5 test

Wikipedia 9,000,000 - -

Table 1: Dataset used in the experiments.

BT models with different architectures.
Some studies have used a combination of pseudo

data generated by different methods for training
the GEC model (Lichtarge et al., 2019; Zhou et al.,
2020a,b; Wan et al., 2020). For example, Zhou
et al. (2020a) proposed a pseudo data generation
method that pairs sentences translated by statistical
machine translation and neural machine translation.
Then, they combined pseudo data generated by it
with pseudo data generated by BT to pre-train the
GEC model. However, they did not report the cor-
rection tendencies of the GEC model when using
combined pseudo data. Conversely, we reported
correction tendencies when using a combination of
pseudo data generated by different BT models.

3 Experimental Setup

3.1 Dataset

Table 1 shows the details of the dataset used in the
experiments. We used the BEA-2019 workshop
official shared task dataset (Bryant et al., 2019) as
the training and validation data. This dataset con-
sists of FCE (Yannakoudakis et al., 2011), Lang-8
(Mizumoto et al., 2011; Tajiri et al., 2012), NUCLE
(Dahlmeier et al., 2013), and W&I+LOCNESS
(Granger, 1998; Yannakoudakis et al., 2018). Fol-
lowing Chollampatt and Ng (2018), we removed
sentence pairs with identical source and target sen-
tences from the training data. Next, we applied
byte pair encoding (Sennrich et al., 2016b) to both
source and target sentences. Here, we acquired
subwords from the target sentences in the training
data and set the vocabulary size to 8,000. Here-
inafter, we refer to the training and validation data
as BEA-train and BEA-valid, respectively.

We used Wikipedia1 as a seed corpus to generate
pseudo data and removed possibly inappropriate
sentences, such as URLs. In total, we extracted 9M
sentences randomly.

1We used the 2020-07-06 dump file at https://dumps.
wikimedia.org/other/cirrussearch/.

3.2 Evaluation

We evaluated the CoNLL-2014 test set (CoNLL-
2014) (Ng et al., 2014), the JFLEG test set (JFLEG)
(Heilman et al., 2014; Napoles et al., 2017), and
the official test set of the BEA-2019 shared task
(BEA-test). We reported M2 (Dahlmeier and Ng,
2012) for the CoNLL-2014 and GLEU (Napoles
et al., 2015, 2016) for the JFLEG. We also reported
the scores measured by ERRANT (Felice et al.,
2016; Bryant et al., 2017) for the BEA-valid and
BEA-test. All the reported results, except for the
ensemble model, are the average of three distinct
trials using three different random seeds2. In the
ensemble model, we reported the ensemble results
of the three GEC models.

3.3 Grammatical Error Correction Model

Following Kiyono et al. (2019), we adopted Trans-
former, which is a representative EncDec-based
model, using the fairseq toolkit (Ott et al., 2019).
We used the “Transformer (base)” settings of
Vaswani et al. (2017)3, which has a 6-layer en-
coder and decoder with a dimensionality of 512 for
both input and output and 2,048 for inner-layers,
and 8 self-attention heads. We pre-trained GEC
models on each 9M pseudo data generated by each
BT model4 and then fine-tuned them on BEA-train.
We optimized the model by using Adam (Kingma
and Ba, 2015) in pre-training and with Adafactor
(Shazeer and Stern, 2018) in fine-tuning. Most of
the hyperparameter settings were the same as those
described in Kiyono et al. (2019). Additionally,
we trained a GEC model using only the BEA-train
without pre-training as a baseline model.

We investigated correction tendencies when us-
ing a combination of pseudo data generated by
different BT models. Therefore, we pre-trained
a GEC model on combined pseudo data and then
fine-tuned it on the BEA-train. Notably, in this ex-
periment, we combined pseudo data generated by
the Transformer and CNN because they improved
the GEC models compared with LSTM in most
cases (Section 4.1). Specifically, we obtained 9M
pseudo data from the Transformer and CNN and
then created 18M pseudo data by combining them.

2To reduce the influence of the BT model’s seed, we pre-
pared BT models trained with the corresponding seed of each
GEC model. Then, we pre-trained each GEC model using
pseudo data generated by the corresponding BT models.

3Considering the limitation of computing resources, we
used “Transformer (base)” instead of “Transformer (big)”.

4See Section 3.4 for details of the BT models.
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CoNLL-2014 JFLEG BEA-test

Back-translation model Pseudo data Prec. Rec. F0.5 GLEU Prec. Rec. F0.5

None (Baseline) - 58.5/65.8 31.3/31.5 49.8/54.0 53.0/53.7 52.6/61.4 42.8/42.8 50.2/56.5
Transformer 9M 65.0/68.6 37.6/37.7 56.7/59.0 57.7/58.3 61.1/66.5 49.8/50.7 58.4/62.6
CNN 9M 64.0/68.1 37.4/37.4 56.0/58.5 57.8/58.4 61.9/67.5 50.7/51.0 59.3/63.4
LSTM 9M 64.7/68.8 36.2/36.4 55.9/58.4 57.0/57.4 61.3/67.1 49.5/49.9 58.5/62.8

Transformer & CNN 18M 65.2/69.1 38.7/39.1 57.3/59.9 57.9/58.5 63.1/67.6 51.1/51.1 60.2/63.5
Transformer & Transformer 18M 65.5/68.3 37.9/38.0 57.2/58.9 57.5/58.0 63.0/67.0 51.0/50.7 60.2/63.0
CNN & CNN 18M 65.6/69.1 38.2/38.7 57.3/59.8 57.9/58.6 61.9/67.1 51.4/51.6 59.5/63.3

Table 2: Results of each GEC model. The left and right scores represent single and ensemble model results,
respectively. The top group delineates the performance of the GEC model using each BT model, and the bottom
group delineates the performance of the GEC model when using combined pseudo data.

To eliminate the effect of increasing the pseudo
data amount, we prepared GEC models that used
a combination of pseudo data generated by single
BT models with different seeds. We provided all
BT models with the same target sentences to focus
on the difference in the pseudo source sentences.
Hence, in the combined pseudo data, the number
of source sentence types increases; however, the
number of target sentence types does not increase.

3.4 Back-Translation Model

Based on the GEC studies that used BT, we se-
lected the Transformer (Vaswani et al., 2017), CNN
(Gehring et al., 2017), and LSTM (Luong et al.,
2015). For all BT models, we used implementa-
tions of the fairseq toolkit and its default settings,
except for common settings5.

Common settings. We used the Adam optimizer
with β1 = 0.9 and β2 = 0.98. We used label
smoothed cross-entropy (Szegedy et al., 2016) as a
loss function and selected the model that achieved
the smallest loss on the BEA-valid. We set the
maximum number of epochs to 40. The learn-
ing rate schedule is the same as that described in
Vaswani et al. (2017). We applied dropout (Srivas-
tava et al., 2014) with a rate of 0.3. We set the beam
size to 5 with length normalization. Moreover, to
generate various errors, we used the noising beam
search method proposed by Xie et al. (2018). In
this method, we add rβrandom to the score of each
hypothesis in the beam search. Here, r is randomly
sampled from a uniform distribution of interval
[0, 1], and βrandom ∈ R≥0 is a hyperparameter that
adjusts the noise scale. In this experiment, βrandom
was set to 8, 10, and 12 for the Transformer, CNN,

5When training each BT model, the argument –arch in the
fairseq toolkit was set to transformer, fconv, and lstm
for the Transformer, CNN, and LSTM, respectively.

and LSTM, respectively6.

Transformer. Our Transformer model was based
on Vaswani et al. (2017), which is a 6-layer encoder
and decoder with 512-dimensional embeddings,
2,048 for inner-layers, and 8 self-attention heads.

CNN. Our CNN model was based on Gehring
et al. (2017), which is a 20-layer encoder and de-
coder with 512-dimensional embeddings, both us-
ing kernels of width 3 and hidden size 512.

LSTM. Our LSTM model was based on Luong
et al. (2015), which is a 1-layer encoder and de-
coder with 512-dimensional embeddings and hid-
den size 512.

4 Results

4.1 Overall Results

Separate pseudo data. The top group in Table
2 depicts the results of the GEC model using each
BT model; the best BT model was different for
each test set. The GEC model using the Trans-
former achieved the best scores in the CoNLL-
2014. In contrast, in the JFLEG and BEA-test, the
GEC model using CNN achieved the best scores.
Moreover, the GEC model using LSTM achieved
a higher F0.5 than that using the Transformer in
the BEA-test. These results suggest that the Trans-
former, which is robust as the GEC model (Kiyono
et al., 2019), is not necessarily a good BT model.

Combined pseudo data. The bottom group of
Table 2 shows the results of the GEC model using
combined pseudo data. As shown in Table 2, a
combination of pseudo data generated by different
BT models consistently improved the performance

6Each βrandom achieved the best F0.5 score on the BEA-
valid in the preliminary experiments.
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Back-translation model

Error type Freq. Baseline Transformer CNN LSTM
Transformer Transformer CNN
& CNN & Transformer & CNN

OTHER 697 22.2±1.77 31.8±0.71 31.7±0.77 30.6±0.16 34.2±1.03 31.8±1.01 31.6±0.74
PUNCT 613 65.6±2.02 64.6±0.42 67.8±0.83 67.3±1.83 65.9±1.51 66.0±0.73 67.8±0.93
DET 607 53.8±0.71 64.8±1.62 65.0±0.41 65.2±0.83 64.8±0.64 66.7±1.15 64.7±0.75
PREP 417 48.2±0.55 58.1±0.76 59.3±0.54 55.2±1.74 61.1±0.43 60.3±0.76 60.3±1.06
ORTH 381 72.7±2.47 77.2±0.50 78.7±1.50 78.0±1.95 79.2±1.25 78.4±1.28 78.8±0.74
SPELL 315 58.3±3.49 71.0±1.71 71.1±1.45 71.6±0.50 73.3±1.03 72.5±0.40 71.1±0.49
NOUN:NUM 263 57.8±2.23 64.4±1.09 63.7±0.90 63.9±1.35 66.2±0.43 66.3±0.61 64.6±1.41
VERB:TENSE 256 43.9±2.35 52.1±1.58 54.6±0.94 52.6±0.50 53.7±1.71 54.6±0.64 54.8±1.27
VERB:FORM 213 62.0±2.26 66.7±2.63 67.1±0.46 66.0±1.60 66.3±0.34 66.9±1.54 66.6±1.01
VERB 196 32.5±3.41 36.0±1.18 36.3±0.91 39.7±3.05 42.7±3.83 39.0±0.76 38.2±0.98
VERB:SVA 157 66.1±1.38 73.7±3.00 75.6±0.86 73.8±2.51 75.1±1.04 76.3±1.20 74.3±0.44
MORPH 155 54.0±2.03 61.9±1.97 63.8±1.23 63.8±0.53 64.5±0.62 66.3±1.26 63.8±2.84
PRON 139 43.8±2.00 53.0±2.79 51.8±0.14 49.6±1.93 53.3±1.10 52.7±2.75 53.3±0.46
NOUN 129 19.7±2.04 31.4±0.62 30.2±2.39 30.5±2.17 35.9±2.90 34.5±1.48 32.8±2.80

Table 3: Each error type’s F0.5 of the single models on the BEA-test. We extracted error types with a frequency of
100 or more. The total frequency of all error types was 4,882. For details of error types, see Bryant et al. (2017).

compared with pseudo data from a single source
(Transformer & CNN > Transformer, CNN). In
contrast, in some of the items in Table 2, the per-
formances of the GEC models using the single
BT models with different seeds were lower than
that using only a single BT model. For example,
when using the Transformer as the BT model, the
F0.5 score of the ensemble model using a single
BT model was 59.0 on the CoNLL-2014, whereas
that using two homogeneous BT models was 58.9
(Transformer & Transformer: 58.9 < Transformer:
59.0). Similarly, for CNN, the F0.5 score of the
ensemble model using only a single BT model was
63.4 on the BEA-test, whereas that using two ho-
mogeneous BT models was 63.3 (CNN & CNN:
63.3 < CNN: 63.4). Hence, the combination of
different BT models enables the construction of a
more robust GEC model than the combination of
single BT models with different seeds.

4.2 Results of Each Error Type

Separate pseudo data. The left side of Table 3
illustrates the F0.5 scores of the single models on
the BEA-test across various error types. When
using the Transformer as the BT model, the perfor-
mance of PRON was high. In contrast, the perfor-
mance of PREP, VERB:TENSE, and VERB:SVA
was high when using CNN, and the performance
of VERB was high when using LSTM, to name a
few. Therefore, it is considered that correction ten-
dencies of each error type are different depending
on the BT model.

In PUNCT, the performance of the GEC model

using the Transformer was lower than that of the
baseline model (Transformer: 64.6 < Baseline:
65.6). Moreover, when using CNN and LSTM
as the BT model, the performance of PUNCT im-
proved by only approximately 2 points in F0.5 from
the baseline model (CNN: 67.8, LSTM: 67.3 >
Baseline: 65.6). It can be seen that this improve-
ment of PUNCT is small compared with that of
other error types. Therefore, when using pseudo
data generated by BT, PUNCT is considered an
error type that is difficult to improve.

Combined pseudo data. The right side of Table
3 shows the F0.5 scores of the single models using
combined pseudo data on the BEA-test across vari-
ous error types. Except for 3 of the 14 error types
shown in Table 3, the GEC model using Trans-
former & CNN yielded the higher F0.5 scores than
using at least either Transformer & Transformer
or CNN & CNN. Therefore, it is considered that
the combination of different BT models improves
or interpolates performance compared with that of
single BT models with different seeds.

In OTHER, the combination of single BT mod-
els with different seeds did not improve the per-
formance of OTHER compared with a single BT
model (Transformer & Transformer: 31.8 = Trans-
former: 31.8 and CNN & CNN: 31.6 < CNN:
31.7). Conversely, the combination of different
BT models improved the performance of OTHER
compared with a single BT model (Transformer &
CNN: 34.2 > Transformer: 31.8, CNN: 31.7). Thus,
by using different BT models, the GEC model is
expected to correct more diverse error types.
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Transformer CNN LSTM

Error type Token Type
F0.5 F0.5 Token Type

F0.5 F0.5 Token Type
F0.5 F0.5

w/ FT w/o FT w/ FT w/o FT w/ FT w/o FT

Overall 64,733,183 12,364,575 58.4 32.7 77,784,638 17,711,223 59.3 31.4 90,205,852 25,502,133 58.5 25.2

OTHER 16,463,382 6,084,184 31.8 10.0 20,237,776 8,453,119 31.7 9.6 29,286,403 13,844,773 30.6 6.3
PUNCT 3,716,117 37,360 64.6 47.1 3,814,449 46,724 67.8 46.1 4,082,594 53,739 67.3 43.1
DET 8,074,615 39,606 64.8 41.5 8,491,264 39,402 65.0 39.2 8,217,106 33,389 65.2 33.0
PREP 6,832,627 19,521 58.1 36.7 7,935,894 23,564 59.3 35.8 8,091,043 25,923 55.2 30.3
ORTH 3,378,022 521,032 77.2 62.7 3,973,439 646,475 78.7 61.4 3,587,805 513,787 78.0 60.0
SPELL 6,620,395 2,795,425 71.0 57.0 11,224,522 4,737,493 71.1 56.3 11,342,223 5,643,091 71.6 50.8
NOUN:NUM 2,241,413 31,939 64.4 45.2 2,149,748 30,205 63.7 43.9 2,177,546 28,226 63.9 41.3
VERB:TENSE 2,585,017 58,935 52.1 27.2 2,599,663 60,266 54.6 26.6 2,418,040 59,207 52.6 22.6
VERB:FORM 1,287,912 47,071 66.7 45.5 1,421,381 48,776 67.1 46.2 1,517,365 48,117 66.0 41.1
VERB 1,821,117 328,147 36.0 18.5 2,201,360 453,181 36.3 17.2 2,704,117 647,785 39.7 12.9
VERB:SVA 761,768 6,564 73.7 52.5 784,762 6,136 75.6 52.8 824,241 6,019 73.8 45.5
MORPH 2,306,204 148,506 61.9 32.5 2,308,793 147,657 63.8 32.6 2,613,870 167,440 63.8 29.2
PRON 810,875 3,642 53.0 14.7 995,686 4,013 51.8 12.7 1,248,554 5,267 49.6 10.9
NOUN 4,402,909 1,888,994 31.4 14.8 6,155,680 2,697,991 30.2 14.4 8,196,758 4,032,482 30.5 9.8

Table 4: Number of edit pair tokens and types in pseudo data generated by each BT model and each error type’s
F0.5 of the single models with and without fine-tuning on the BEA-test. As with Table 3, we extracted error types
with a frequency of 100 or more in the BEA-test. FT denotes fine-tuning.

Effects of different seeds. Here, we consider the
effect of different seeds in the BT model. In some
error types in Table 3, the GEC model using single
BT models with different seeds has the higher F0.5

score than that using different BT models. One of
the reasons for this is that there exists some varia-
tion (i.e., high standard deviation) in the F0.5 score
of each error type, even when changing merely the
seed of the BT model. For example, in the GEC
model using the Transformer, the standard devi-
ation of DET was 1.62, which is relatively high.
Then, the F0.5 score of DET using Transformer
& Transformer was higher than that using Trans-
former & CNN. Thus, in error types with some
variation, using single BT models with different
seeds may improve performance compared with
using different BT models.

5 Discussion

We examined the number of edit pairs in pseudo
data generated by each BT model. We annotated
pseudo data using ERRANT and extracted edit
pairs from the pseudo source sentences and target
sentences. Table 4 shows the number of edit pair to-
kens and types in the pseudo data generated by each
BT model. We expected that the higher the number
of errors in each error type, the better the F0.5 score
of the GEC model for each error type. However,
the results did not show such a tendency. Specifi-
cally, when the number of edit pair tokens and types
was the highest in each error type, only 6 of the
14 error types had the highest F0.5 score (ORTH,
SPELL, NOUN:NUM, VERB:TENSE, VERB, and
MORPH). This fact implies that simply increasing

the number of tokens or types in each error type
may not improve each error type’s performance in
the GEC model.

Moreover, we investigated the performance of
the GEC model with and without fine-tuning. As
shown in Table 4, when fine-tuning was not carried
out (i.e., pre-training only), the GEC model using
the Transformer had the highest F0.5 score, and
there was a 7.5 point difference in F0.5 between the
Transformer and the LSTM (Transformer: 32.7
> LSTM: 25.2). However, interestingly, when
fine-tuning was performed, the GEC model using
LSTM achieved a better F0.5 score than that us-
ing the Transformer (Transformer: 58.4 < LSTM:
58.5). This result suggests that even if the perfor-
mance of the GEC model is low in pre-training, it
may become high after fine-tuning.

6 Conclusions

In this study, we investigated correction tendencies
based on each BT model. The results showed that
the correction tendencies of each error type var-
ied depending on the BT models. In addition, we
found that the combination of different BT models
improves or interpolates the F0.5 score compared
with that of single BT models with different seeds.
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Abstract

The quality and quantity of parallel sentences
are known as very important training data
for constructing neural machine translation (N-
MT) systems. However, these resources are
not available for many low-resource language
pairs. Many existing methods need strong
supervision and hence are not suitable. Al-
though there have been several attempts at de-
veloping unsupervised models, they ignore the
language-invariant between languages. In this
paper, we propose an approach based on trans-
fer learning to mine parallel sentences in an un-
supervised setting. With the help of bilingual
corpora of rich-resource language pairs, we
can mine parallel sentences without bilingual
supervision of low-resource language pairs.
Experiments show that our approach improves
the performance of mined parallel sentences
compared with previous methods. In particu-
lar, we achieve good results at two real-world
low-resource language pairs.

1 Introduction

Parallel sentences are known as very important
training data for constructing machine translation
(MT) systems (Belinkov and Bisk, 2018). The
volumes of quality parallel sentences heavily affec-
t the performance of trained machine translation
systems. However, these resources are only avail-
able for a handful of language pairs and domains
while the others suffer from the scarcity problem
(Bouamor and Sajjad, 2018). In this situation, par-
allel sentences are very crucial for training machine
translation systems.

Transfer learning is an effective approach to
mine parallel data in low-resource scenarios.
(Artetxe and Schwenk, 2019) brought the evi-
dence of cross-lingual transfer to mine parallel data
for low-resource language pairs. However, their
method is not unsupervised and relies on bilingual

∗Corresponding author: Shaolin Zhu,
zhushaolin003@163.com

supervision (e.g, bilingual lexicon or sentences),
which is not available for low-resource language
pairs. Although (Kvapilíková et al., 2020) solved
the supervised limitation by employing an unsuper-
vised MT, the performance heavily depended on
MT’s quality.

In this paper, we propose a parallel sentences
mining model based on transfer learning in an un-
supervised setting1. As illustrated in Figure 1, we
obtain sentence embeddings by mean-pooling the
outputs of multilingual BERT (Lample and Con-
neau, 2019), which is trained on monolingual cor-
pora. In particular, we use a language discrimina-
tor to learn shared and refined language-invariant
representations for transfer learning. (Chen et al.,
2018; Ziser and Reichart, 2018) pointed out the
language-invariant is helpful for transfer learning.
Then, we treat detecting parallel sentences as a clas-
sification task and generate multi-view semantic
representations for the classifier. Generally, data
from different views contain complementary infor-
mation and multi-view learning exploits the consis-
tency from multiple views (Li et al., 2018; Fei and
Li, 2020). In our model, we use two views for the
classifier: (i) word representations; (ii) sentence
representations. In addition to achieving good re-
sults on BUCC 20182 shared task, we demonstrate
the effectiveness of our model using an example
of two low-resource language pairs where parallel
corpora are almost not available.

In summary, our contributions in this paper are
as follows:

(1) We propose an unsupervised method based
on transfer learning to mine parallel sentences with-
out any bilingual data for low-resource language

1 The unsupervised setting means we only have monolin-
gual corpora for a pair of language that bilingual resources
are not available, while there are some language pairs have
bilingual resources which we use for unsupervised transfer
learning in low-resource language pairs.

211th Workshop on Building and Using Comparable Cor-
pora
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Figure 1: Our proposed method that based on multi-view transfer training for parallel phrase detection on a non-
parallel sentence pair.

pairs. By designing a multi-view model, we encode
the representations on word-level and sentence-
level to obtain high-quality parallel data.

(2) We extensively consider the language-
invariant by constructing a language discriminator
to well capture the semantic similarity among lan-
guages. This makes the robustness of our model
for transfer learning.

2 Related Work

Many works mine parallel corpora from monolin-
gual data which contain potential mutual transla-
tions. Previous methods depended on engineer-
ing features. (Shi et al., 2006; Esplà-Gomis et al.,
2016) used metadata information from web crawls
to mine parallel data. Recent methods used cross-
lingual word embeddings to obtain parallel corpora
(Guo et al., 2018; Schwenk, 2018; Bouamor and
Sajjad, 2018; Schwenk et al., 2019b,a). (Artetxe
and Schwenk, 2019) encoded the universal lan-
guage embeddings that are agnostic to languages.
They used transfer learning to mine parallel sen-
tences of low-resource language pairs. This transfer
learning method inspired our work and the main d-
ifference is that they required bilingual supervision
(e.g, bilingual lexicon, parallel sentences), which
is not available for many low-resource language
pairs.

Recently, several works developed unsupervised
method to mine parallel data (Hangya et al., 2018;
Hangya and Fraser, 2019; Kvapilíková et al., 2020;

Keung et al., 2020). These approaches mainly rely
on unsupervised cross-lingual embeddings (Artetx-
e et al., 2018; Lample and Conneau, 2019) that
be trained on monolingual corpora. However, sev-
eral researchers question that these methods may
not well capture the semantic similarity among
languages (Karthikeyan et al., 2019; Pires et al.,
2019). Some researchers proposed to use trans-
fer learning to solve cross-lingual applications for
low-resource language pairs (Lakew et al., 2018;
Kocmi, 2020). (Eriguchi et al., 2018) used a multi-
lingual neural machine translation system to learn
the word representations of rich-resource language
pairs. Then, they used transfer learning to identify
parallel sentences for low-resource language pairs.
However, it has an implicit dependency on mul-
tilingual NMT that requires pre-training on large
parallel sentences. Our transfer learning is inspired
by (Fei and Li, 2020). The difference is that they
mainly solve cross-lingual unsupervised sentiment
classification.

3 Proposed Method

The overview of the model architecture is as shown
in Figure 1. Our proposed approach based on
transfer learning to mine parallel data is composed
of three components: an unsupervised multilin-
gual BERT, a language discriminator, and a multi-
view classifier. Motivated by the success of unsu-
pervised cross-lingual word embeddings (Artetxe
et al., 2018; Lample and Conneau, 2019) and its
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application in mining parallel data (Hangya and
Fraser, 2019; Keung et al., 2020), we use multilin-
gual BERT to initialize word and sentence embed-
dings. Although previous methods are effective,
they may ignore sentential context on using mul-
tilingual word embeddings, which could harm the
performance of mining parallel corpora. In our
work, we use multi-view representations to mine
parallel data. We can get good performance on
rich-resource language pairs. However, our aim is
to obtain parallel data for low-resource language
pairs. For this purpose, we use transfer learning
to mine parallel data of the low-resource scenarios
using rich-resource language pairs. Note that our
method doesn’t rely on any bilingual data of low-
resource language pairs. Therefore, we can call
that our method is unsupervised for low-resource
language pairs.

3.1 Language Discriminator

Previous works (Chen et al., 2018; Fei and Li,
2020) indicate that cross-lingual transfer learning
work well when their representations are language-
invariant. We use the unsupervised multilingual
BERT to map the word representations into a
shared space. Although we can generate shared
word representations for different languages by us-
ing the unsupervised multilingual BERT, there is
still a semantic gap between languages. Follow-
ing (Chen et al., 2018; Lample et al., 2018), we
employ a language discriminator for getting fine-
tuned word representations, which is necessary to
preserve language-invariant on language transfer.
In detail, the language discriminator is trained to
distinguish between the mapped source and target
embeddings. Then, we refine-turn the two language
embeddings with a cross-lingual Procrustes method
according to (Lample et al., 2018). The language
discriminator contains a feed-forward neural net-
work with two hidden layers as an encoder and one
softmax layer. The objective of the discriminator
is to maximize its ability to identify the source and
target embeddings. The discriminator loss can be
written as follows:

L(θD|W ) = − logPθD(source = 1|Wx)

+ logPθD(target = 1|y)
(1)

Where ΘD denotes parameters of the discrimi-
nator, (x, y) corresponds to source and target lan-
guage. PθD(source = 1|z) is a probability that a

vector z is the mapping W of a source embedding,
PθD(target = 1|z) is similar. In parallel, we use
the Procrustes analysis to fine-tune the mapping W
as follows (Lample et al., 2018). We can obtain
universal language-agnostic embeddings when the
discriminator is not able to identify the origin of an
embedding.

3.2 Transfer Learning for Mining Parallel
Data

In this paper, we propose to use transfer learning
to mine parallel data of the low-resource scenar-
ios by rich-resource language pairs. In this paper,
we first consider two views of input for classifier
in rich-resource language pairs:(i) the word-level
representations from languages; (ii) the sentence-
level representations from languages. The multi-
view classifier has been demonstrated useful as data
from different views contains complementary in-
formation (Chen and Qian, 2019; Fei and Li, 2020).
In this paper, we use a feed-forward neural net-
work based on LSTM with two hidden layers as
an encoder to balance two view representations.
Then, we train a classifier to match predicted labels
with ground truth from the parallel sentences in
rich-resource language pairs as follows:

P (s|t) =
eenc(θ)

1 + eenc(θ)
ε(0, 1) (2)

Where enc(θ) denotes parameters of the encoder.
Then, we use transfer learning to mine parallel
data for low-resource language pairs. The detail
process is as follows: We firstly train a classifier
on rich-resource language pairs (such as English-
Chinese or English-French). In parallel, we use
the language discriminator to fine-tune the differ-
ent language representations into a shared space to
keep language-invariant between languages. After
that, we transfer the pre-trained classifier to detect
parallel sentences for low-resource pairs. Finally,
we use detected parallel data to train the classifi-
er again in low-resource language pairs for better
performance.

4 Experimental Setting

In this section, we mainly present our experimental
settings and describe the datasets used.

Dataset: We test our proposed method
on four language pairs of BUCC sample da-
ta (English-French, English-German, English-
Russian, English-Chinese). The shared task of
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En-Fr En-De En-Ru En-Zh

P R F1 P R F1 P R F1 P R F1

supervised methods
Bouamor and Sajjad, 2018 87.5 65.8 75.1 - - - - - - - - -
Schwenk, 2018 84.8 68.6 75.8 84.1 70.7 76.9 81.1 67.6 73.8 77.7 66.4 71.6
Artetxe and Schwenk, 2019 91.5 93.3 92.3 95.6 95.1 95.4 90.6 94.0 92.2 91.9 91.3 91.6

unsupervised methods
Hangya and Fraser, 2019 50.5 38.1 43.4 48.5 39.1 43.3 37.4 18.7 24.9 - - -
Keung et al., 2020 - - 73.0 - - 74.9 - - 69.6 - - 60.1
Hangya et al., 2018 39.0 52.6 44.8 23.7 44.5 30.9 17.3 24.9 20.4 - - -
Kvapilíková et al., 2020 - - 78.7 - - 80.1 - - 77.1 - - 67.0
Proposed method 81.6 79.5 80.6 88.5 85.5 86.9 80.4 78.1 80.6 78.4 76.3 77.3

Table 1: Results of our proposed systems on the BUCC shared task’s training set for the 4 language-pairs. We also
report the results of baselines as described in their paper. "-" represents the result are not reported in ther paper,
respectively.

the workshop on Building and Using Comparable
Corpora (BUCC) is a well-established evaluation
framework for mining parallel corpora (Zweigen-
baum et al., 2018). The shared task provides a
gold standard to assess retrieval systems for pre-
cision, recall, and F1-score. We applied our ap-
proach to all language pairs of the BUCC18 shared
task. Moreover, we carry out an experiment on real-
world low-resource scenarios (English-Esperanto,
Chinese-Kazakh). For the monolingual data, we ex-
tract corpora from Wikipedia using WikiExtractor3.
As there is no gold standard to evaluate mining par-
allel sentences, we use mined parallel sentences to
train a machine translation system that can reflect
the quality of mined parallel sentences.

Baselines: In our experiments, we consider su-
pervised baselines (Bouamor and Sajjad, 2018;
Schwenk, 2018; Artetxe and Schwenk, 2019). We
also compare several unsupervised baselines which
contains (Hangya and Fraser, 2019; Keung et al.,
2020; Hangya et al., 2018; Kvapilíková et al.,
2020).

5 Results and Discussions

In this section, we present the results of mining
parallel sentences and our comparison to previ-
ous work. We also present results on real-world
low-resource language pairs and demonstrate our
obtained parallel corpora can improve the perfor-
mance of machine translation.

3https://github.com/attardi/wikiextractor

5.1 Results on BUCC

As BUCC provides a gold standard to assess mined
parallel data, we test our method on the BUCC
dataset. Although the language pairs used for e-
valuation are all high-resources, we only simulate
the low-resource scenario to justify our method
here and we will present results on real-world low-
resource language pairs in the section 5.3. We
show precision (P), recall(R) and F1 scores in Ta-
ble 1 for the four language pairs. Noted that, we
use English-German as the rich-resource language
pair to initialize our model. Then, we transfer this
model into other low-resource language pairs. We
also test different rich-resource language pairs for
transfer learning as Table 2.

Noted that, our method doesn’t rely on any bilin-
gual data of low-resource language pairs. There-
fore, we can call that our method is unsupervised
for low-resource language pairs. This is a fair
comparison to other unsupervised methods. From
Table 1, we achieve an increase of F1 compared
with unsupervised baselines for all language pairs.
It also can be seen that the precision and recall
of the proposed method is significantly increased
for all language pair than unsupervised methods.
(Artetxe and Schwenk, 2019) also used transfer
learning to mine parallel sentences. However, their
method needs strong supervision which is not avail-
able in low-resource language pairs. The proposed
method overcomes the limitation and obtains rela-
tively good results against (Artetxe and Schwenk,
2019).

139



En-Fr En-De En-Ru En-Zh

P R F1 P R F1 P R F1 P R F1

-language discriminator
(En-Fr) 87.5 85.8 86.6 78.1 76.8 77.4 63.6 63.4 62.5 63.1 61.8 62
(En-Ru) 66.3 63.1 64.7 64.2 60.7 62.4 86.8 83.6 85.2 63.7 63.4 63.5
(En-Zh) 61.2 63.3 62.2 60.6 62.1 61.3 60.8 64.2 62.5 83.7 81.6 82.6
(En-De) 75.5 74.5 75.0 88.5 85.5 86.9 74.1 74.2 74.2 71.7 70.7 71.3

+language discriminator
(En-Fr) 87.5 85.8 86.6 82.3 81.2 81.7 79.6 76.6 78.1 77.2 74.6 75.9
(En-Ru) 80.6 82.3 81.4 81.1 80.7 80.9 86.8 83.6 85.2 76.8 75.3 76.1
(En-Zh) 78.2 76.1 77.1 80.7 78.6 79.6 77.6 78.8 78.2 83.7 81.6 82.6
(En-De) 81.6 79.5 80.6 88.5 85.5 86.9 80.4 78.1 80.6 78.4 76.3 77.3

Table 2: Ablation study on the BUCC shared task. Note that, the first column indicates that we use different
rich-resource language pairs for transfer learning.

5.2 Ablation Study

To understand the effect of different components in
our model on the overall performance, we conduct
an ablation study in Table 2 to test the language
discriminator whether affects transfer learning or
not. "-language discriminator" is not adding the lan-
guage discriminator and "+language discriminator"
is adding the language discriminator. In Table 2,
the first column is that we use different rich-source
language pairs to implement transfer learning for
mining parallel sentences. We firstly can find that
different sources have similar results for transfer
learning of our model. Then, we can find that when
we don’t add the language discriminator, the per-
formances of the model are not good for transfer
learning. When we add the language discriminator
for transfer learning, we can find that our model
gets an obvious and stable improvement in all lan-
guage pairs. So from Table 2, we can conclude that
language-invariant is very important for transfer
learning.

5.3 Results on Low-resource Language Pair

In the above section, we simulate the low-resource
scenario to justify our method on the BUCC dataset.
In this section, we evaluate our mined parallel sen-
tences on real-world low-resource language pairs.
We apply our method to the English-Esperanto(En-
Es) and Chinese-Kazakh(Zh-Kz) language pairs.
As there is no gold standard to evaluate mining par-
allel sentences, we use mined parallel sentences to
train a machine translation system that can reflect
the quality of mined parallel sentences.

Methods En-Es Zh-Kz
(Hangya and Fraser, 2019) 18.5 21.6
(Keung et al., 2020) 20.2 22.8
(Hangya et al., 2018) 16.3 19.3
(Kvapilíková et al., 2020) 23.6 22.7
Proposed method 24.3 25.8

Table 3: BLEU scores on different language pairs.

We use openNMT4 to train the machine transla-
tion system. The results are as in Table 3. Based on
the scores in Table 3 it can be seen that we achieve
a significant performance increase compared to
the unsupervised baseline. It is well-known that
the quality and quantity heavily affect the perfor-
mance of machine translation. The results of Table
3 demonstrate that the proposed method is effective,
especially for low-resource language pairs.

6 Conclusion

In this paper, we propose an unsupervised method
that uses multi-view transfer learning to mine par-
allel sentences. Our method can effectively use
the bilingual data of rich-resource language pairs.
We transfer the model of rich-resource language
pairs into a low-resource situation without any su-
pervision of low-resource language pairs. In partic-
ular, we employ a language discriminator to cap-
ture language-invariant for benefiting transfer learn-
ing. In the experiments, the results show that our
method significantly and consistently outperforms
the baselines.

4https://opennmt.net/
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For the future, we would like to apply our model
on other low-resource language pairs to test univer-
sal applicability in different language pairs.
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Abstract

Neural machine translation (NMT) has re-
cently gained widespread attention because
of its high translation accuracy. However,
it shows poor performance in the translation
of long sentences, which is a major issue in
low-resource languages. It is assumed that
this issue is caused by insufficient number of
long sentences in the training data. There-
fore, this study proposes a simple data aug-
mentation method to handle long sentences.
In this method, we use only the given par-
allel corpora as the training data and gener-
ate long sentences by concatenating two sen-
tences. Based on the experimental results,
we confirm improvements in long sentence
translation by the proposed data augmentation
method, despite its simplicity. Moreover, the
translation quality is further improved by the
proposed method, when combined with back-
translation.

1 Introduction

Neural machine translation (NMT) can be used to
achieve high translation quality. However, it has
certain drawbacks, such as the degradation in the
translation quality for long sentences. Koehn and
Knowles (2017) reported that the translation qual-
ity of NMT is superior to that of statistical machine
translation (SMT) for input sentences within a cer-
tain length. However, they also stated that when
the sentence length exceeds a particular value, the
quality of NMT becomes inferior to that of SMT,
and the greater the sentence length, the lower the
translation quality.

Additionally, they presented the correlation be-
tween the size of the training data and the transla-
tion quality (Koehn and Knowles, 2017). In other
words, the less training data we have, the lower
will be the accuracy of the translation. This is-
sue is prevalent in low-resource languages. There-

∗Current affiliation: Recruit Co., Ltd.
†Current affiliation: Tokyo Institute of Technology

fore, various data augmentation methods for low-
resource parallel corpora have been studied. For
instance, the generation of pseudo data was pro-
posed by back-translating the monolingual corpora
or paraphrasing the parallel corpora as additional
training data (Wang et al., 2018; Sennrich et al.,
2016; Li et al., 2019).

Hence, this study proposes a data augmentation
method that can be effective in long sentence trans-
lations. The proposed method is illustrated in Fig-
ure 1. Long sentences were obtained by concate-
nating two sentences at random and adding them
to the original data. The translation quality is ex-
pected to be improved by this method because the
low quality of translation of long sentences was
caused by insufficient number of long sentences in
the training data, which reduces this concern in the
proposed method.

This study presents an improved BLEU score
and higher quality in long sentence translations on
English–Japanese corpus. Moreover, the BLEU
score further increases by incorporating back-
translation. In addition, human evaluation shows
that fluency is increased more than adequacy.

In summary, the main contributions of this paper
are as follows:

• We propose a simple yet effective data aug-
mentation method, involving sentence con-
catenation, for long sentence translation.

• We show that the translation quality can be fur-
ther improved by combining back-translation
and sentence concatenation.

2 Related Works

NMT exhibits a significant decrease in the trans-
lation quality for very long sentences. Koehn and
Knowles (2017) analyzed the correlation between
the translation quality and the sentence length by
comparing NMT with SMT. They showed that the
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Figure 1: Proposed method: Augmentation of data by combining the back-translation and the concatenation of
two sentences. During concatenation, each sentence is randomly sampled, so that they do not have context overlap
with each other.

overall quality of NMT is better than that of SMT
but that SMT outperforms NMT on sentences of 60
words and longer. They stated that this degradation
in quality was caused by the short length of the
translations. Additionally, Neishi and Yoshinaga
(2019) propose to use the relative position informa-
tion instead of the absolute position information to
mitigate the performance drop of NMT models for
long sentences. They conducted an analysis of the
translation quality and sentence length on length-
controlled English–to–Japanese parallel data and
showed that the absolute positional information
sharply drops the BLEU score of the transformer
model (Vaswani et al., 2017) in translating sen-
tences that are longer than those in the training
data.

Several data augmentation methods have been
proposed for NMT, such as back-translation, which
involves translating the target-side monolingual
data to create a pseudo dataset (Sennrich et al.,
2016). In their method, the back-translation model
is first learned by using parallel corpora from the
target-side to the source-side. Once converged,
this model generates pseudo data by translating the
target-side monolingual corpora to the source-side
language. A translation model is then trained us-
ing both the pseudo-parallel and original-parallel
data. Li et al. (2019) analyzed multiple data aug-
mentation methods. In their experiments, they ap-
plied self-training and back-translation. In self-
training, they fixed the source-side and used a for-
ward translation model to generate the target-side,
and in back-translation, they fixed the target-side

and used a backward translation model to generate
the source-side. It was observed that these methods
can effectively improve the translation accuracy for
infrequent tokens. These methods can be used with
the sentence concatenation method proposed in this
study.

In multi-source neural machine translation,
Dabre et al. (2017) proposed concatenating source
sentences in different languages corresponding to
a target sentence in training. However, they did
not aim to improve the translation accuracy of long
sentences. Our method concatenates two source
sentences in the same language at random.

3 Data Augmentation by Sentence
Concatenation

The proposed method augments the parallel data by
back-translation and concatenation. A schematic
overview of the proposed method is shown in Fig-
ure 1.

First, we back-translate the target-side of the
parallel corpus (Li et al., 2019; Sennrich et al.,
2016) to create pseudo data as additional training
data. Note that we do not use external data in back-
translation, and the diversity of target sentences
does not change.

Then, we randomly select two sentences exclu-
sively in the original or pseudo data and concate-
nate them to create another training data. Tech-
nically, we concatenate two source sentences and
insert a special token, “<sep>,” between them. Cor-
responding target sentences are concatenated in the
same way. Afterwards, we remove the sentences
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length all 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 51 – 60 61 – 70 71 –

sentences 1,812 73 529 600 341 164 74 18 13

vanilla (400K) 26.5 22.9 23.0 26.2 27.1 29.6 28.5 28.8 23.6
+ concat (+ 400K) 26.6 21.4 23.3 25.7 27.5 29.5 28.7 28.2 29.0
+ ST (+ 400K) 28.2 23.9 24.8 27.4 28.6 31.4 31.4 29.6 27.6
+ BT (+ 400K) 28.8 24.3 25.5 28.3 29.5 31.6 30.6 28.7 28.7
+ BT + concat (+ 1.2M) 29.4 25.4 25.6 28.6 30.1 33.1 31.5 29.9 30.1

Table 1: BLEU scores for each sentence length breakdown on the test data set: “vanilla + BT + concat” consists of
data from vanilla, BT, and concatenation of both.

Figure 2: Distribution of each data set.

consisting of less than 25 words from the pseudo
data.

Finally, we obtain an augmented training data
comprising original, pseudo, and concatenated sen-
tences, which has the quadruple data size of the
original training data.

We train our models on both single and concate-
nated sentences first because models can learn to
translate single sentences. We also expect models
to acquire a better absolute position encoding to
translate long sentences in the better quality with-
out generating a special token (i.e., <sep>) con-
tained in concatenated sentences in the inference
process.

During the testing process, a single sentence
is fed as the input, even though the training data
contains concatenated sentences.1

4 Experiments

4.1 Models

To investigate the effectiveness of the proposed
method when combined with previous data aug-

1We also conducted an experiment with two sentences as
input during the test, but the BLEU score was worse than the
proposed method.

mentation methods, five types of training data were
prepared from the original training data.

Figure 2 shows the number of training data used
in this experient. Note that the total number of
sentences in “vanilla + concat,” “vanilla + ST” and
“vanilla + BT” are nearly equal. In the source lan-
guage, the average sentence length of “vanilla” is
30.39, and that of “vanilla+concat” is 46.18.

We train the forward translation models using
the training data and compare the BLEU scores
obtained for the output of the test data.

vanilla. Original data.

vanilla + concat. Original data and augmented
data by sentence concatenation. Sentences with
length of less than 25 words after concatenation
were removed to improve the translation quality of
long sentences.

vanilla + ST. Original data and augmented data
by self-training.

vanilla + BT. Original data and augmented data
by back-translation.

vanilla + BT + concat. The composite data of
the original data, the back-translated data, and their
sentence concatenation.2

4.2 Setup

We used ASPEC3 from WAT17 (Nakazawa et al.,
2017) to perform English-to-Japanese translation.
This dataset contains 2M sentences as training data,
1,790 as valid data and 1,812 as test data. We also
followed the official segmentation using Sentence-
Piece (Kudo and Richardson, 2018) with a vocab-
ulary size of 16,384. A total of 400K sentences
were randomly extracted from the original training

2The results of the experiment showed that the score of
“vanilla + BT” was higher than that of “vanilla + ST.” There-
fore, in this study, the proposed method was combined only
with “vanilla + BT.”

3http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/snmt/

145



adequacy fluency

length win tie lose win tie lose

1 – 10 4 5 3 3 7 2
11 – 20 20 39 29 21 47 20
21 – 30 34 35 31 33 42 25
31 – 40 23 21 13 17 24 16
41 – 50 10 6 11 6 10 11
51 – 6 5 6 7 6 4

overall 97 111 93 87 136 78

Table 2: Human evaluation: Pairwise comparison of
“vanilla + BT” and “vanilla + BT + concat.” “win” de-
notes the sentence generated by our proposed method,
“vanilla + BT + concat,” is superior to that of “vanilla +
BT,” and “lose” denotes the opposite of “win.”

Figure 3: Effectiveness of the proposed method for
each data size by sentence length: Vertical axis repre-
sents BLEU score of “vanilla + concat + BT” minus
BLEU score of “vanilla + BT.”

data and selected as the training data to be used
in this experiment. Regarding self-training and
back-translation models, we used only the training
corpus, following Li et al. (2019).

The transformer models from Fairseq were used
in the experiment (Ott et al., 2019)4. Adam was set
as the optimizer with a dropout of 0.3, a maximum
of 300,000 steps in the training process, and a total
batch size of approximately 65,536 tokens per step.
The same architecture was also used to train the
self-training and the back-translation models.

The BLEU score (Papineni et al., 2002) was used
for automatic evaluation. We computed the aver-
age of the BLEU scores of three runs with differ-
ent seeds. Human evaluation was also conducted.
For three native Japanese evaluators, 100 sentences
were randomly selected from the test set per evalu-
ator. They performed pairwise evaluation between
“vanilla + BT” and “vanilla + BT + concat” from
two perspectives: adequacy and fluency.

4https://github.com/pytorch/fairseq

length sentences vanilla vanilla
+ BT + BT + concat

all 999,998 22.1 22.2

1 – 10 22,725 18.2 18.3
11 – 20 232,829 17.9 17.9
21 – 30 329,597 20.1 20.2
31 – 40 219,845 22.1 22.3
41 – 50 109,528 23.2 23.4
51 – 60 47,851 24.3 24.4
61 – 70 20,526 24.6 24.8

71 – 100 15,557 25.1 25.4
101 – 200 1,540 20.1 22.3

Table 3: BLEU scores for each sentence length break-
down on the pseudo test data set: pseudo test data con-
sists of 1M sentences from the training data that were
not used for training.

Figure 4: Effectiveness of the proposed method for
each data size by sentence length in 1M pseudo test
set.

4.3 Results
Automatic evaluation. The result of this experi-
ment is presented in Table 1. It describes the BLEU
scores measured for each test data classified by the
sentence length.

The BLEU score of “vanilla + concat” is more
stable when applied for translation with sentence
lengths of longer than 51 words, which are the
majority of data augmented by the sentence con-
catenation, although the score for the sentences
classified as 61–70, is slightly lower than that of
“vanilla.” Conversely, the quality of the translation
of short sentences is greatly reduced.

Additionally, the overall score of “vanilla + BT
+ concat” is higher than that of “vanilla + BT” by
0.6. In particular, the score of the sentence lengths
of longer than 41 is significantly improved, which
indicates that the proposed method is more effec-
tive for long sentence translation. In Addition, the
score of “vanilla + BT + concat” is much higher
than that of “vanilla + concat.” Consequently, it is
shown that the back-translation and concatenation
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src

Myanma is behind in market economization together with Laos, Canbodia, Vietnam, and the GDP per one person
is the lowest in the 4 countries, and it remains $ 180, but Myanma is thought to remarkably develop if political
problems are solved, because flatland occupies 7× 10% of the land and natural resources are rich, and because
personnel expenses are extremely cheap.

tgt

ミャンマーは自国とともに後発ＡＳＥＡＮ４カ国といわれるラオス，カンボディア，ベトナムと比
較しても市場経済化が遅れ，一人あたりのＧＤＰは最低で１８０ドルにとどまっているが，平地が
７割で天然資源もあり，人件費が極端に安価なので，政治的問題が解決されれば著しく発展すると
見られる。

vanilla ミャマは，陸上と自然資源の７割を占めるため，平地は土地と自然資源の７割を占めるので，人件
費が極端に安く，４か国で１人当たりＧＤＰが最低である。

vanilla
+concat

ミャンマーはラオス，カンボジア，ベトナムと共に市場経済化に遅れ，４国ではＧＤＰが１人あた
り最低であるが，国土の７割を占める平坦な土地と自然資源が豊富で人件費が極端に安く政上の問
題が解決されれば，顕著に発展すると考えられる。

Table 4: An example of the effectiveness of the proposed method.

are independent factors that improve the accuracy
of the translation.

Human evaluation. Table 2 presents the results
of human evaluation. We observed that the output
of the proposed method improved or were compara-
ble under almost all conditions except for “11–20”
on adequacy and “41–50” on fluency. The pro-
posed method added the sentences whose length is
more than 25 words and is effective in improving
the translation of such sentences.

4.4 Discussion

Test set. Figure 3 depicts the breakdown in the
difference between the BLEU scores of the pro-
posed method for each training data size per sen-
tence length. Notably, for sentences with 51 words
or longer, the translation quality improves when
the size of data is between 400K and 800K. How-
ever, the translation quality degrades when there
are more than 1M sentences. The proposed method
is not suitable when a large amount of training data
is available.

In the human evaluation, we observe that the pro-
posed method is more effective in terms of fluency
than adequacy. It is assumed that the translation
model can handle absolute positional encoding for
long sentences by the proposed method.

Pseudo test set. In this experiment, the number
of bilingual sentences in the test set was small, espe-
cially in long sentences. For this reason, additional
experiments were carried out to confirm the valid-
ity of the results. For evaluation, we extracted 1M
sentences from the training data that were not used
for training and used them as the pseudo test data.
Table 3 shows the average of the BLEU scores for
the three runs with 400K training data with differ-

ent seeds. Note that the overall BLEU score is,
however, lower than when using the test data, but
this is probably because the quality of the training
data is lower than that of the test data.

By comparing the results of “vanilla + BT” and
that of the proposed method, the proposed method
was shown to have a slightly better overall score.
Examining the scores by sentence length, there was
a significant increase in scores for longer sentences,
especially for “101 – 200” sentences. It indicates
that the proposed method is effective in improving
the translation accuracy of long sentences.

Also, a comparison similar to the one using the
test set was conducted using this 1M pseudo test
data. The results are shown in Figure 4. In this
setting, it is more evident that for sentences with a
sentence length of 51 words or more, the translation
accuracy improves when the data size is 800K or
less and decreases when the data size exceeds 1M.

4.5 Case Study

Tables 4 and 5 show the cases in which the pro-
posed method worked effectively in this experi-
ment, whereas Table 6 shows the cases in which
the translation quality deteriorated.

The example in Table 4 shows that the sentence
output by “vanilla” is shorter than expected, which
indicates that necessary information for translation
is missing. Conversely, the output of “vanilla +
concat” is a longer sentence, which reduces the
missing information.

The example in Table 5 shows an example of im-
proved translation by using the proposed method.
Similar to the previous example, “vanilla + BT”
completely loses the information in the first half of
the sentence, while “vanilla + BT + concat” pro-
duces a translation that includes the information of
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src

Results of the analysis shows high accuracy properties, such as the reproducibility of relative standard deviation
0.3~0.9% varified by repetitive analyses of ten times, the clibration curves with correlation coefficient of 1
verified by tests of standard materials in using six kinds of acetonitrile dilute solutions, and the formaldehyde
detection limit of 0.0018µg/mL.

tgt
結果は，相対標準偏差０．３〜０．９％の再現性（１０回の繰返し分析），相関係数１の検量線
（６種類のアセトニトリル希釈溶液による標準資料の検定），０．００１８μｇ／ｍＬのホルムア
ルデヒド検出限界，など高い精度を得た。

vanilla
+BT

６種のアセトニトリル希薄溶液を用いた標準物質の試験及びホルムアルデヒド検出限界は０．００
１８μｇ／ｍＬであった。

vanilla
+BT
+concat

分析の結果は１０回の繰り返し解析で相対標準偏差０．３〜０．９％の再現性，６種のアセトニト
リル希薄溶液を用いた標準物質の試験により検証された１の相関係数を持つクライテリア曲線，及
び０．００１８μｇ／ｍＬのホルムアルデヒド検出限界など高い精度を示した。

Table 5: An example where the proposed method worked well.

src These seemed to be noticeable complications in case of extracorporeal circulation for umbilical hernia repair.

tgt さい帯ヘルニア修復術における体外循環の合併症として注目すべきと思われた。

vanilla さい帯ヘルニア修復術における体外循環の合併症として注目すべきと思われた。

vanilla
+concat

以上の所見より，さい帯ヘルニアに対する体外循環では，特に合併症として特に合併症として，特

に，さい帯ヘルニアでは体外循環がより注意を要すると考えられた。

Table 6: An example where the proposed method may have caused errors.

the entire sentence.
However, as shown in the example in Table 6,

there were cases where the output of the model
trained including concatenated data showed repeti-
tive outputs that were not seen in the output of the
model trained on the original data. This type of
output occurs more frequently in the case of short
sentences. This suggests that the ability to output
long sentences may lead to unnatural repetition of
the output because of the attempt to generate long
sentences.

5 Conclusion

This study proposes a data augmentation method to
improve the translation quality of long sentences.
The experimental results confirmed that the data
augmentation method is straightforward but useful,
especially for the translation of very long sentences.
However, the quality of the translation of short
sentences is reduced.

In the future, we would like to develop a method
that works well when there is a large amount of
available parallel data. Moreover, since the ade-
quacy of the translation of short sentences is con-
siderably low in the proposed method, we would
like to compensate for this weakness by consider-
ing the reconstruction loss (Tu et al., 2017). Also,
it would be interesting to explore the use of in-
terpolation of hidden space for data augmentation

considering long sentences (Chen et al., 2020).
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Abstract
Although research on emotion classifica-
tion has significantly progressed in high-
resource languages, it is still infancy for
resource-constrained languages like Ben-
gali. However, unavailability of necessary
language processing tools and deficiency
of benchmark corpora makes the emotion
classification task in Bengali more challeng-
ing and complicated. This work proposes
a transformer-based technique to classify
the Bengali text into one of the six ba-
sic emotions: anger, fear, disgust, sadness,
joy, and surprise. A Bengali emotion cor-
pus consists of 6243 texts is developed for
the classification task. Experimentation
carried out using various machine learning
(LR, RF, MNB, SVM), deep neural net-
works (CNN, BiLSTM, CNN+BiLSTM)
and transformer (Bangla-BERT, m-BERT,
XLM-R) based approaches. Experimental
outcomes indicate that XLM-R outdoes all
other techniques by achieving the highest
weighted f1-score of 69.73% on the test
data. The dataset is publicly available
at https://github.com/omar-sharif03/
NAACL-SRW-2021.

1 Introduction
Classification of emotion in the text signifies
the task of automatically attributing an emo-
tion category to a textual document selected
from a set of predetermined categories. With
the growing number of users in virtual plat-
forms generating online contents steadily as a
fast-paced, interpreting emotion or sentiment
in online content is vital for consumers, enter-
prises, business leaders, and other parties con-
cerned. Ekman (Ekman, 1993) defined six ba-
sic emotions: happiness, fear, anger, sadness,
surprise, and disgust based on facial features.
These primary type of emotions can also be
extracted from the text expression (Alswaidan
and Menai, 2020).

The availability of vast amounts of on-
line data and the advancement of computa-
tional processes have accelerated the develop-
ment of emotion classification research in high-
resource languages such as English, Arabic,
Chinese, and French (Plaza del Arco et al.,
2020). However, there is no notable progress
in low resource languages such as Bengali,
Tamil and Turkey. The proliferation of the
Internet and digital technology usage produces
enormous textual data in the Bengali language.
The analysis of these massive amounts of data
to extract underlying emotions is a challenging
research issue in the realm of Bengali language
processing (BLP). The complexity arises due
to various limitations, such as the lack of
BLP tools, scarcity of benchmark corpus, com-
plicated language structure, and limited re-
sources. By considering the constraints of emo-
tion classification in the Bengali language, this
work aims to contribute to the following:

• Develop a Bengali emotion corpus consist-
ing of 6243 text documents with manual
annotation to classify each text into one
of six emotion classes: anger, disgust, fear,
joy, sadness, surprise.

• Investigate the performance of various
ML, DNN and transformer-based ap-
proaches on the corpus.

• Proposed a benchmark system to classify
emotion in Bengali text with the experi-
mental validation on the corpus.

2 Related Work

Substantial research activities have been car-
ried out on emotion analysis in high-resource
languages like English, Arabic, and Chinese
(Alswaidan and Menai, 2020). A multi-label
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with multi-target emotion detection of Ara-
bic tweets accomplished using decision trees,
random forest, and KNN, where random for-
est provided the highest f1-score of 82.6%
(Alzu’bi et al., 2019). Lai et al. (2020)
proposed a graph convolution network archi-
tecture for emotion classification from Chi-
nese microblogs and their proposed system
achieved an F-measure of 82.32%. Recently,
few works employed transformer-based model
(i.e., BERT) analyse emotion in texts. (Huang
et al., 2019; Al-Omari et al., 2020) used a pre-
trained BERT for embedding purpose on top
of LSTM/BiLSTM to get an improved f1-score
of 76.66% and 74.78% respectively.

Although emotion analysis on limited re-
source languages like Bengali is in the pre-
liminary stage, few studies have already been
conducted on emotion analysis using ML and
DNN methods. Irtiza Tripto and Eunus Ali
(2018) proposed an LSTM based approach
to classify multi-label emotions from Bengali,
and English sentences. This system considered
only YouTube comments and achieved 59.23%
accuracy. Another work on emotion classifi-
cation in Bengali text carried out by Azmin
and Dhar (2019) concerning three emotional
labels (i.e., happy, sadness and anger). They
used Multinomial Naïve Bayes, which outper-
formed other algorithms with an accuracy of
78.6%. Pal and Karn (2020) developed a logis-
tic regression-based technique to classify four
emotions (joy, anger, sorrow, suspense) in Ben-
gali text and achieved 73% accuracy. Das and
Bandyopadhyay (2009) conducted a study to
identify emotions in Bengali blog texts. Their
scheme attained 56.45% accuracy using the
conditional random field. Recent work used
SVM to classify six raw emotions on 1200 Ben-
gali texts which obtained 73% accuracy (Ru-
posh and Hoque, 2019).

3 BEmoC: Bengali Emotion Corpus

Due to the standard corpus unavailability, we
developed a corpus (hereafter called ‘BEmoC’)
to classify emotion in Bengali text. The
development procedure is adopted from the
guidelines stated in (Dash and Ramamoorthy,
2019).

3.1 Data Collection and Preprocessing
Five human crawlers were assigned to accumu-
late data from various online/offline sources.
They manually collected 6700 text documents
over three months (September 10, 2020 to De-
cember 11, 2020). The crawler accumulated
data selectively, i.e., when a crawler finds a
text that supports the definition of any of
the six emotion classes according to Ekman
(1993), the content is collected, otherwise ig-
nored. Raw accumulated data needs following
pre-processing before the annotation:

• Removal of non-Bengali words, punctua-
tion, emoticons and duplicate data.

• Discarding data less than three words to
get an unerring emotional context.

After pre-processing the corpus holds 6523
text data. The processed texts are eligible for
manual annotation. The details of the prepro-
cessing modules found in the link1.

3.2 Data Annotation and Quality
Five postgraduate students working on BLP
were assigned for initial annotation. To choose
the initial label majority voting technique is
applied (Magatti et al., 2009). Initial labels
were scrutinized by an expert who has several
years of research expertise in BLP. The expert
corrected the labelling if any initial annotation
is done inappropriately. The expert discarded
163 texts with neutral emotion and 117 texts
with mixed emotions for the intelligibility of
this research. To minimize bias during anno-
tation, the expert finalized the labels through
discussions and deliberations with the anno-
tators (Sharif and Hoque, 2021). We evalu-
ated the inter-annotator agreement to ensure
the quality of the annotation using the coding
reliability (Krippendorff, 2011) and Cohen’s
kappa (Cohen, 1960) scores. An inter-coder
reliability of 93.1% with Cohen’s Kappa score
of 0.91 reflects the quality of the corpus.

3.3 Data Statistics
The BEmoC contains a total of 6243 text doc-
uments after the preprocessing and annotation
process. Amount of data inclusion in BEmoC

1https://github.com/omar-sharif03/
NAACL-SRW-2021/tree/main/Code%20Snippets
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varies with the sources. For example, among
online sources, Facebook contributed the high-
est amount (2796 texts) whereas YouTube
(610 texts), blogs (483 texts), and news portals
(270 texts) contributed a small amount. Of-
fline sources contributed a total of 2084 texts,
including storybooks (680 texts), novels (668
texts), and conversations (736 texts). Data
partitioned into train set (4994 texts), valida-
tion set (624 texts) and test set (625 texts) to
evaluate the models. Table 1 represents the
amount of data in each class according to the
train-validation-test set.

Class Train Validation Test
Anger 621 67 71

Disgust 1233 155 165
Fear 700 89 83
Joy 908 120 114

Sadness 942 129 119
Surprise 590 64 73

Table 1: Number of instances in the train, valida-
tion, and test sets

Since the classifier models learn from the
training set instances to obtain more insights,
we further analyzed this set. Table 2 shows
several statistics of the training set.

Class Total
words

Unique
words

Avg. words
per text

Anger 14914 5852 24.02
Disgust 27192 7212 22.35

Fear 14766 5072 21.09
Joy 20885 7346 23.40

Sadness 22727 7398 24.13
Surprise 13833 5675 23.45

Total 114317 38555 -

Table 2: Statistics of the train set of BEmoC

The sadness class contains the most unique
words(7398), whereas the fear class contains
the least(5072). In average all the classes have
more than 20 words in each text document.
However, a text document in sadness class con-
tained the maximum number of words (107)
whereas fear class consisting of a minimum
number of words (4). Figure 1 represents the
number of texts vs the length of texts distri-
bution for each class of the corpus. Investigat-
ing this figure revealed that most of the data
varied a length between 15 to 35 words. In-
terestingly, most of the texts of Disgust class
have a length less than 30. The Joy & Sadness

classes seem to have almost similar number of
texts in all length distributions.

Figure 1: Corpus distribution concerning number
of texts vs length

For quantitative analysis, the Jaccard sim-
ilarity among the classes has been computed.
We used 200 most frequent words from each
emotion class, and the similarity values are
reported in table 3. The Anger-Disgust and
Joy-Surprise pairs hold the highest similarity
of 0.58 and 0.51, respectively. These scores in-
dicate that more than 50% frequent words are
common in these pair of classes. On the other
hand, the Joy-Fear pair has the least similarity
index, which clarifies that this pair’s frequent
words are more distinct than other classes.
These similarity issues can substantially affect
the emotion classification task. Some sample
instances of BEmoC are shown in Table 9 (Ap-
pendix B).

C1 C2 C3 C4 C5 C6
C1 1.00 0.58 0.40 0.43 0.45 0.47
C2 - 1.00 0.41 0.45 0.47 0.44
C3 - - 1.00 0.37 0.45 0.46
C4 - - - 1.00 0.47 0.51
C5 - - - - 1.00 0.48

Table 3: Jaccard similarity between the emotion
class pairs. Anger (c1), disgust (c2), fear (c3), joy
(c4), sadness (c5), surprise (c6).

4 Methodology

Figure 2 shows an abstract view of the used
strategies. Various feature extraction tech-
niques such as TF-IDF, Word2Vec, and Fast-
Text are used to train ML and DNN mod-
els. Moreover, we also investigate the Bengali
text’s emotion classification performance using
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transformer-based models.All the models are
trained and tuned on the identical dataset.

Figure 2: Abstract process of emotion classification

4.1 Feature Extraction
ML and DNN algorithms are unable to learn
from raw texts. Therefore, feature extraction
is required to train the classifier models.

TF-IDF: Term frequency-inverse docu-
ment frequency (TF-IDF) is a statistical mea-
sure that determines the importance of a word
to a document in a collection of documents.
Uni-gram and bi-gram features are extracted
from the most frequent 20000 words of the cor-
pus.

Word2Vec: It utilizes neural networks to
find semantic similarity of the context of the
words in a corpus (Mikolov et al., 2013). We
trained Word2Vec on Skip-Gram with the win-
dow size of 7, minimum word count to 4, and
the embedding dimension of 100.

FastText: This technique uses subword in-
formation to find the semantic relationships
(Bojanowski et al., 2017). We trained Fast-
Text on Skip-Gram with character n-grams of
length 5, windows size of 5, and embedding
dimension of 100.

For both Word2Vec and FastText, there are
pre-trained vectors available for the Bengali
language trained on generalized Bengali wiki
dump data (Sarker, 2021). We observed that
the deep learning models perform well on vec-
tors trained with our developed BEmoC rather
than the pre-trained vectors.

4.2 ML Approaches
We started an investigation on emotion detec-
tion system with ML models. Logistic Regres-

sion (LR), Support Vector Machine (SVM),
Random Forest (RF) and Multinomial Naive
Bayes (MNB) techniques are employed using
TF-IDF text vectorizer. For LR lbfgs’ solver
and ‘l1’ penalty is chosen and C value is
set to 1. The same C value with ‘linear’
kernal is used for SVM. Meanwhile, for RF
‘n_estimators’ is set to 100 and ‘alpha=1.0’ is
chosen for MNB. A summary of the param-
eters chosen for ML models are provided in
Table 6 (Appendix A).

4.3 DNN Approaches
Variation of deep neural networks (DNN) such
as CNN, BiLSTM and a combination of CNN
and BiLSTM (CNN+BiLSTM) will investi-
gate the performance of emotion classification
task in Bengali. To train all the DNN models,
‘adam’ optimizer with a learning rate of 0.001
and a batch size of 16 is used for 35 epochs.
The ‘sparse_categorical_crossentropy’ is se-
lected as the loss function.

CNN: Convolutional Neural Network
(CNN) (LeCun et al., 2015) is tuned over the
emotion corpus. The trained weights from the
Word2Vec/FastText embeddings are fed to
the embedding layer to generate a sequence
matrix. The sequence matrix is then passed
to the convolution layer having 64 filters
of size 7. The convolution layer’s output is
max-pooled over time and then transferred
to a fully connected layer with 64 neurons.
‘ReLU’ activation is used in the corresponding
layers. Finally, an output layer with softmax
activation is used to compute the probability
distribution of the classes.

BiLSTM: Bidirectional Long-Short Term
Memory (BiLSTM) (Hochreiter and Schmid-
huber, 1997) is a variation of recurrent neural
network (RNN). The developed BiLSTM net-
work consists of an Embedding layer similar to
CNN, a BiLSTM layer with 32 hidden units,
and a fully connected layer having 16 neurons
with ‘ReLU’ activation. An output layer with
‘softmax’ activation is used.

CNN+BiLSTM: An embedding layer fol-
lowed by a 1D convolutional layer with 64 fil-
ters of size three and a 1D max-pool layer is
employed on top of two BiLSTM layers with
64 and 32 units. Outputs of BiLSTM layer fed
to an output layer with ‘softmax’ activation.

Table 7 (Appendix A) illustrates the details
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of the hyperparameters used in the DNN mod-
els.

4.4 Transformer Models
We used three transformer models: m-BERT,
Bangla-BERT, and XLM-R on BEmoC. In re-
cent years transformer is being used exten-
sively for classification tasks to achieve state-
of-the-art results (Chen et al., 2021). The
models are culled from the Huggingface2 trans-
formers library and fine-tuned on the emotion
corpus by using Ktrain(Maiya, 2020) package.

m-BERT: m-BERT (Devlin et al., 2019)
is a transformer model pre-trained over 104
languages with more than 110M parame-
ters. We employed ‘bert-base-multilingual-
cased’ model and fine-tuned it on BEmoC with
a batch size of 12.

Bangla BERT: Bangla BERT (Sarker,
2020) is a pre-trained BERT mask language
modelling, trained on a sizeable Bengali cor-
pus. We used the ‘sagorsarker/Bangla-bert-
base’ model and fine-tuned to update the pre-
trained model fitted for BEmoC. A batch size
of 16 is used to provide better results.

XLM-R: XLM-R (Liu et al., 2019) is a size-
able multilingual language model trained on
100 different languages. We implemented the
‘xlm-Roberta-base’ model on BEmoC with a
batch size of 12.

All the transformer models have been
trained with 20 epochs with a learning rate
of 2e−5. By using the checkpoint best inter-
mediate model is stored to predict on the test
data. Table 8 (Appendix A) shows a list of

2https://huggingface.co/transformers/

parameters used for transformer models.

5 Results and Analysis

This section presents a comprehensive per-
formance analysis of various ML, DNN, and
transformer-based models to classify Bengali
texts emotion. The superiority of the models
is determined based on the weighted f1-score.
However, the precision (Pr), recall (Re) and
accuracy (Acc) metrics also considered. Table
4 reports the evaluation results of all models.

Among ML approaches, LR achieved the
highest (60.75%) f1-score than RF (52.78%),
MNB (48.67%) and SVM (59.54%). LR also
performed well in Pr, Re and Acc than other
ML models. In DNN, BiLSTM with Fast-
Text outperformed other approaches concern-
ing all the evaluation parameters. It achieved
f1-score of 56.94%. However, BiLSTM (Fast-
Text) achieved about 4% lower f1-score than
the best ML method (i.e., LR).

After employing transformer-based mod-
els, it observed a significant increase in all
scores. Among transformer-based models,
Bangla-BERT achieved the lowest of 61.91%
f1-score. However, this model outperformed
the best ML and DNN approaches (56.94%
for BiLSTM (FastText) and 60.75% for LR).
Meanwhile, m-BERT shows almost 3% im-
proved f1-score (64.39%) than Bangla-BERT
(61.91%). XLM-R model shows an immense
improvement of about 6% compared to Bangla-
BERT and 5% compared to m-BERT, respec-
tively. It achieved a f1-score of 69.73% that is
the highest among all models.

Method Classifier Pr(%) Re(%) F1(%) Acc(%)

ML models
LR 61.07 60.64 60.75 60.64
RF 55.91 54.72 52.78 54.72

MNB 60.23 54.08 48.67 54.08
SVM 61.12 60.10 59.54 60.00

DNN models

CNN (Word2Vec) 53.20 52.12 51.84 52.12
CNN (FastText) 54.54 53.45 52.52 53.48

BiLSTM (Word2Vec) 56.81 55.78 53.45 57.12
BiLSTM (FastText) 57.30 58.08 56.94 58.08

CNN + BiLSTM (Word2Vec) 56.48 56.64 56.39 56.64
CNN + BiLSTM (FastText) 55.74 55.68 55.41 55.68

Transformers
Bangla-BERT 62.08 62.24 61.91 62.24

m-BERT 64.62 64.64 64.39 64.63
XLM-R 70.11 69.61 69.73 69.61

Table 4: Comparison of various approaches on test set. Here Acc, Pr, Re, F1 denotes accuracy, weighted
precision, recall, and f1-score
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5.1 Error Analysis
It is evident from Table 4 that XLM-R is
the best performing model to classify emotion
from Bengali texts. A detailed error analysis is
performed using the confusion matrix. Figure
3 illustrates a class-wise proportion of the num-
ber of predicted labels. It is observed from the

Figure 3: Confusion matrix of XLM-R model

matrix that few data classified wrongly. For
example, 8 instances among 71 of the anger
class predicted as disgust. In fear class, 6 data
out of 83 mistakenly classified as sadness. In
the sadness class, misclassification ratio is the
higest (15.13%). That means, 18 data out of
119 in sadness class misclassified as disgust.
Moreover, among 73 data in surprise class 9
are predicted as sadness. The error analy-
sis reveals that fear class achieved the high-
est rate of correct classification (77.15%) while
surprise gained the lowest (61.64%).

The possible reason for incorrect predictions
might be the class imbalance nature of the cor-
pus. However, the high value of Jaccard sim-
ilarity (Table 3) also reveals some interesting
points. Few words are used multi-purposely
in multiple classes. For instance, hate words
can be used to express both anger and disgust
feelings. Moreover, emotion classification is
highly subjective, depends on the individual’s
perception, and people may contemplate a sen-
tence in many ways (LeDoux and Hofmann,
2018). Thus, by developing a balanced dataset
with diverse data, incorrect predictions might
be reduced to some extent.

5.2 Comparison with Recent Works
The analysis of results revealed that XLM-R is
the best model to classify emotion in Bengali
texts. Thus, we compare the performance of

XLM-R with the existing techniques to assess
the effectiveness. We implemented previous
methods (Irtiza Tripto and Eunus Ali, 2018;
Azmin and Dhar, 2019; Pal and Karn, 2020;
Ruposh and Hoque, 2019) on BEmoC and re-
ported outcomes in f1-score. Table 5 shows a
summary of the comparison. The results show

Methods F1(%)
Word2Vec + LSTM (Irtiza Tripto
and Eunus Ali, 2018) 53.54
TF-IDF + MNB (Azmin and Dhar,
2019) 48.67
TF-IDF + LR (Pal and Karn, 2020) 60.75
BOW + SVM (Ruposh and Hoque,
2019) 59.17
XLM-R (Proposed) 69.73

Table 5: Performance comparison. Here F1 de-
notes weighted f1-score.

that XLM-R outperformed the past techniques
with achieving the highest f1-score (69.73%).

6 Conclusion
This paper investigated various ML, DNN and
transformer-based techniques to classify the
emotion in Bengali texts. Due to the scarcity
of benchmark corpus, we developed a corpus
(i.e., BEmoC) containing 6243 Bengali texts la-
belled with six basic classes. Co-hen’s Kappa
score of 0.91 reflects the quality of the corpus.
Performance analysis on BEmoC illustrated
that XLM-R, a transformer model provided a
superior result among all the methods. Specif-
ically, XLM-R achieved the highest f1-score
of 69.61% which indicates the improvement of
8.97% (than ML) and 11.53% (than DNN). Al-
though XLM-R exhibited the most elevated
scores, other technique (such as the ensemble
of the transformer models) can also investigate
enhancing performance. Additional categories
(such as love, hate, and stress) can also include
generalization. Moreover, transformer-based
models can also investigate extending the cor-
pus, including text with sarcasm or irony, text
with comparison and mixed-emotion.

Acknowledgements
We sincerely acknowledge the anonymous re-
viewers and pre-submission mentor for their
insightful suggestions, which help improve the
work. This work was supported by the Direc-
torate of Research & Extension, CUET.

155



References
H. Al-Omari, M. A. Abdullah, and S. Shaikh.

2020. Emodet2: Emotion detection in english
textual dialogue using bert and bilstm models.
In 2020 11th International Conference on Infor-
mation and Communication Systems (ICICS),
pages 226–232.

Nourah Alswaidan and Mohamed El Bachir Menai.
2020. A survey of state-of-the-art approaches
for emotion recognition in text. Knowledge and
Information Systems, pages 1–51.

S. Alzu’bi, O. Badarneh, B. Hawashin, M. Al-
Ayyoub, N. Alhindawi, and Y. Jararweh. 2019.
Multi-label emotion classification for arabic
tweets. In 2019 Sixth International Conference
on Social Networks Analysis, Management and
Security (SNAMS), pages 499–504.

S. Azmin and K. Dhar. 2019. Emotion detection
from bangla text corpus using naïve bayes clas-
sifier. In 2019 4th International Conference
on Electrical Information and Communication
Technology (EICT), pages 1–5.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching Word Vec-
tors with Subword Information. Transactions of
the Association for Computational Linguistics,
5:135–146.

Ben Chen, Bin Chen, Dehong Gao, Qijin Chen,
Chengfu Huo, Xiaonan Meng, Weijun Ren,
and Yang Zhou. 2021. Transformer-based lan-
guage model fine-tuning methods for covid-
19 fake news detection. arXiv preprint
arXiv:2101.05509.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

Dipankar Das and Sivaji Bandyopadhyay. 2009.
Word to sentence level emotion tagging for ben-
gali blogs. In Proceedings of the ACL-IJCNLP
2009 Conference Short Papers, pages 149–152.

Niladri Sekhar Dash and L Ramamoorthy. 2019.
Utility and application of language corpora.
Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training
of deep bidirectional transformers for language
understanding.

Paul Ekman. 1993. Facial expression and emotion.
American psychologist, 48(4):384.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780.

Chenyang Huang, Amine Trabelsi, and Osmar R.
Zaïane. 2019. ANA at semeval-2019 task 3:
Contextual emotion detection in conversations
through hierarchical lstms and BERT. CoRR,
abs/1904.00132.

N. Irtiza Tripto and M. Eunus Ali. 2018. Detecting
multilabel sentiment and emotions from bangla
youtube comments. In 2018 International Con-
ference on Bangla Speech and Language Process-
ing (ICBSLP), pages 1–6.

Klaus Krippendorff. 2011. Agreement and informa-
tion in the reliability of coding. Communication
Methods and Measures, 5(2):93–112.

Yuni Lai, Linfeng Zhang, Donghong Han, Rui
Zhou, and Guoren Wang. 2020. Fine-grained
emotion classification of chinese microblogs
based on graph convolution networks. World
Wide Web, 23(5):2771–2787.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. nature, 521(7553):436–
444.

Joseph E LeDoux and Stefan G Hofmann. 2018.
The subjective experience of emotion: a fearful
view. Current Opinion in Behavioral Sciences,
19:67–72. Emotion-cognition interactions.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

D. Magatti, S. Calegari, D. Ciucci, and F. Stella.
2009. Automatic labeling of topics. In 2009
Ninth International Conference on Intelligent
Systems Design and Applications, pages 1227–
1232.

Arun S Maiya. 2020. ktrain: A low-code library
for augmented machine learning. arXiv preprint
arXiv:2004.10703.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Aditya Pal and Bhaskar Karn. 2020. Anubhuti–
an annotated dataset for emotional analy-
sis of bengali short stories. arXiv preprint
arXiv:2010.03065.

Flor Miriam Plaza del Arco, Carlo Strapparava,
L. Alfonso Urena Lopez, and Maite Martin.
2020. EmoEvent: A multilingual emotion cor-
pus based on different events. In Proceedings
of the 12th Language Resources and Evaluation
Conference, pages 1492–1498, Marseille, France.
European Language Resources Association.

156



H. A. Ruposh and M. M. Hoque. 2019. A compu-
tational approach of recognizing emotion from
bengali texts. In 2019 5th International Con-
ference on Advances in Electrical Engineering
(ICAEE), pages 570–574.

Sagor Sarker. 2020. Banglabert: Bengali mask lan-
guage model for bengali language understading.

Sagor Sarker. 2021. Bnlp: Natural language pro-
cessing toolkit for bengali language. arXiv
preprint arXiv:2102.00405.

Omar Sharif and Mohammed Moshiul Hoque. 2021.
Identification and classification of textual ag-
gression in social media: Resource creation and
evaluation. In Combating Online Hostile Posts
in Regional Languages during Emergency Situa-
tion, pages 9–20, Cham. Springer International
Publishing.

Appendices
A Model Hyperparameters

Classifier Parameters

LR optimizer = ‘lbfgs’, max_iter
= 400, penalty = ‘l1’, C=1

SVM
kernel=‘linear’,

random_state = 0, γ=‘scale’,
tol=‘0.001’

RF criterion=‘gini’,
n_estimators = 100

MNB α = 1.0, fit_prior = true,
class_prior = none,

Table 6: Optimized parameters for ML models

Hyperparameters Hyperparameter Space CNN BiLSTM CNN +
BiLSTM

Filter Size 3,5,7,9 7 - 3
Pooling type ‘max’, ‘average’ ‘max’ - ‘max’

Embedding Dimension 30, 35, 50, 70, 90, 100, 150, 200,
250, 300 100 100 100

Number of Units 16, 32, 64, 128, 256 64 32 64,64,32
Neurons in Dense Layer 16, 32, 64, 128, 256 64 16 -

Batch Size 16, 32, 64, 128, 256 16 16 16
Activation Function ‘relu’, ‘tanh’, ‘softplus’,

‘sigmoid’ ‘relu’ ‘relu’ ‘relu’

Optimizer ‘RMSprop’, ‘Adam’, ‘SGD’,
‘Adamax’ ‘Adam’ ‘Adam’ ‘Adam’

Learning Rate 0.5, 0.1, 0.05, 0.01, 0.005, 0.001,
0.0005, 0.0001 0.001 0.001 0.001

Table 7: Hyperparameters for DNN methods

Hyperparameter Value
Fit method ‘auto_fit’

Learning rate 2e-5
Epochs 20

Batch size 12,16
Max sequence length 70

Table 8: Optimized hyperparameters for trans-
formers models
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B Data Examples

Data Class
যা শ‍ুনলাম সিতয্ই অসাধারণ িছল। িকছȺ মানুেষর জীবেন জমা ĐŶ গ‍ুেলা সিতয্ হয়। েতামায় না
েদখেল তা বুঝেত পারতাম না। (What I heard was really awesome. Some people’s
dreams come true. I couldn’t understand it without seeing you.)

Joy

িরয়ােকআিম কেয়ক বছরআেগ েদেখিছলাম।অেনক হািসখুিশ, িমǽ একটা েমেয় িছল।িকǔ
আজেক েসই উĵলতা েকাথায় েযন িবলীন হেয়েছ। (I saw Riya a few years ago. She was
a very happy, sweet girl. But today, that fun seems to have disappeared.)

Sadness

ফালতȼ িনউজ, পিØকা িবিÈ বũ হেয় যােĵ তাই এরকম িমথয্া তথয্ িদেĵআর মানুষেক মৃতȼ য্র
মুেখ েঠেল িদেত চােĵ এই পুিজবাদী শালারা। (False news, magazines are being stopped
selling so they are giving such false information and these capitalist bastards are
trying to push people to the brink of death.)

Anger

লােশর িমিছল হেব এবার। েচােখর সামেন লাশ পেড় থাকেব, দাফন করেতআসেবনা েকউ। েসই
িদন আসেতেস, েবিশ েদরী নাই ভাই। There will be a procession of corpses this time.
The dead bodies will be lying in front of the eyes, no one will come to bury it.
That day is coming soon brother.)

Fear

বলেত লজ্জা হয় িকǔ সতয্ হেĵ জািত িহসােবই আমরা ধষর্ণকামী এবং ববর্র Ýকৃিতর। নাহেল
িকভােব সƉব, অেনয্র েমাবাইল নĊর েসাশয্াল িমিডয়ােত েপাƯ করা! (It is a shame to say
but the truth is that as a nation we are rapist and barbaric in nature.) Otherwise,
how is it possible to post someone else’s mobile number on social media !)

Disgust

আিম িসগােরেটর েধঁায়া ছাড়েত িগেয় িবষম েখেয় েগলাম!েছাŁ একটা েমেসজ।"আিম
আসিছ!" িনেজর েচাখেক িবĎাস করেত পারিছলামনা েয েস আসেলইআসেছ। (I was
smoking and got shocked! A short message. ”I’m coming!” I couldn’t believe my
eyes that he was really coming.)

Surprise

পাØী েদখেত এেস পাØীর মুেখ এমন অŝȇত ÝƠ শ‍ুেন আমার সামেন বেস থাকা ভÚেলাক েয
েবশ অবাক হেয়েছন তা আিম বুঝেত পারিছ(I understand that the gentleman sitting in
front of me was quite surprised to hear such a strange question on the face of the
bride when she came to see him)

Surprise

মিহলার েচহারায় েকান অিভবয্িĜ েনই িতিন হাউমাউ কাŪায় েভেİ পড়েলন।( There was no
expression on the woman’s face and she broke down in tears.) sadness

েসই িতিন মাƬ না পরার জনয্ িতনজন বয়Ƭ েলাকেক কােন ধরােĵ খুবই দঃুখজনক।(It is
very sad that he is holding the ears of three old men for not wearing a mask.) sadness

অেনেকই তােদর বয্ưতার মােঝ সময় কের উইশ করেছন, অেনেক উইশ কেরন নাই, িকǔ মন
েথেক েদায়া করেছন। সকেলর িনকটআিম কৃতজ্ঞ।(Many are wishing in their busy time,
many are not wishing but praying from the heart. I am grateful to everyone.)

joy

শত েচƤা থাকার সেŕও এইআতংিকত পিরিƲিতর মেধয্ বাসা েথেক েযেত না েদওয়ায় উপিƲত
হেত পারলাম নাহ।(Despite hundreds of attempts, I could not attend because I was
not allowed to leave the house in this panic situation.)

fear

বাংলােদেশর মানুষেদর মেধয্ একটা আইেডিůিট Èাইিসেস ভȼগার েমůািলিটআেছ, েয েয
েপশায় না িঠক অনয্ েপশার মানুষেক গািল িদেত এক েসেকŦও সময় েনয়না।(There is an
identity crisis mentality among the people of Bangladesh that they don’t take even
a second to abuse people of other professions.)

disgust

পাপন মাদারেচাদ এেক এেক সব িÈেকটােরর কয্ািরয়াের এভােব Ąংস কের ছাড়েব েযমন
সািকবেক করেছ।(Papon Motherchod will destroy the careers of all cricketers one by
one as done to Shakib.)

anger

Table 9: Sample instances in BEmoC.
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Abstract

This paper proposes a new abstractive sum-
marization model for documents, hierarchi-
cal BART (Hie-BART), which captures the
hierarchical structures of documents (i.e.,
their sentence-word structures) in the BART
model. Although the existing BART model
has achieved state-of-the-art performance on
document summarization tasks, it does not ac-
count for interactions between sentence-level
and word-level information. In machine trans-
lation tasks, the performance of neural ma-
chine translation models can be improved
with the incorporation of multi-granularity
self-attention (MG-SA), which captures rela-
tionships between words and phrases. In-
spired by previous work, the proposed Hie-
BART model incorporates MG-SA into the
encoder of the BART model for capturing
sentence-word structures. Evaluations per-
formed on the CNN/Daily Mail dataset show
that the proposed Hie-BART model outper-
forms strong baselines and improves the per-
formance of a non-hierarchical BART model
(+0.23 ROUGE-L).

1 Introduction

In recent years, improvements to abstractive doc-
ument summarization models have been devel-
oped through the incorporation of pre-training.
The BERTSUM model (Liu and Lapata, 2019)
has been proposed as a pre-training model for
document summarization tasks. For sequence-to-
sequence tasks, the T5 model (Raffel et al., 2020)
and the BART model (Lewis et al., 2020) have
been proposed as part of generalized pre-training
models. Among the existing pre-training models,
the BART model achieves state-of-the-art perfor-
mance on document summarization tasks. How-
ever, the BART model does not capture the hierar-
chical structures of documents when generating a
summary.

Neural machine translation has been improved

by the capture of multiple granularities of in-
formation in input texts such as “phrases and
words” and “words and characters”. In particular,
Transformer-based machine translation model has
been improved by incorporating multi-granularity
self-attention (MG-SA) (Hao et al., 2019), which
considers the relationships between words and
phrases by decomposing an input text into its el-
ements using multiple granularity (i.e., words and
phrases) and assigning each granular element (i.e.,
a word or a phrase) to a head in multi-head Self-
Attention Networks (SANs). This method enables
interactions not only between words but also be-
tween phrases and words, through self-attentions.

Inspired by previous work, this paper proposes
a new abstractive document summarization model,
hierarchical BART (Hie-BART), which captures a
document’s hierarchical structures (i.e., sentence-
word structures) through the SANs of the BART
model. Here, a document is divided into ele-
ments with word-level and sentence-level granu-
larity, where each element is assigned to a head
of the SANs layers of the BART encoder. Then,
information with multi-granularity is captured by
combining the output of the SANs layers, where
the ratio of combining word-level and sentence-
level information is controlled by a hyperparame-
ter.
We evaluated the proposed model in an abstrac-

tive summarization task with the CNN/Daily Mail
dataset. Our evaluation shows that our Hie-BART
model improves the F-score of ROUGE-L by
0.23 points relative to the non-hierarchical BART
model, and the proposed model is better than the
strong baselines, BERTSUM and T5 models.

2 Background

2.1 BART

The BART model (Lewis et al., 2020) is a general-
ized pre-training model based on the Transformer
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Pre-trained
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Figure 1: The overview architecture of BART. The en-
coder is a bidirectional model and the decoder is an
autoregressive model.

model (Vaswani et al., 2017). Five pre-training
techniques are introduced: token masking, sen-
tence permutation, document rotation, token dele-
tion, and text infilling.

Each of these is a denoising autoencoder tech-
nique that adds noise to the original text and re-
stores the original text. Token masking, as used
in BERT (Devlin et al., 2019), randomly masks
tokens. Sentence permutation randomly shuf-
fles the sentences in a document. Document ro-
tation randomly selects a token from a sentence
and then rotates the sentence so that it begins with
that token. Token deletion randomly deletes a to-
ken from the original sentence. Text infilling re-
places word sequences with a single mask token
or inserts a mask token into a randomly selected
position. A combination of sentence permutation
and text infilling achieves the best accuracy of all
techniques.

An overview of the BART model is given in
Figure 1. The encoder is a bidirectional model and
the decoder is an autoregressive model. This pre-
trained BART model is fine-tuned to various tasks,
such as the summarization task, for which, a doc-
ument is provided to the encoder, and the decoder
generates a document summary.

2.2 Multi-Granularity Self-Attention
(MG-SA)

MG-SA (Hao et al., 2019) is used to capture multi-
granularity information from an input text by di-
viding the input into elements with several types
of granularity and preparing heads of multi-head
SANs for each type of granularity. Provided with
the word-level matrix H , which is an input to the
SANs, this method first generates a phrase-level
matrix Hg representing phrase-level information,
as follows:

Multi-Head
Attention

Add & Norm

Multi-Head
Self-Attention

Add & Norm

outputs

Embeddings

Concatenate

Add & Norm

Feed Foward

Sentence Level
Multi-Head

Self-Attention

Linear

Softmax

×N ×N

Feed Foward

Add & Norm

output
probabilities

Add & Norm

Word Level
Multi-Head

Self-Attention

inputs

Embeddings

Create
Sentence Level

Vector

Figure 2: Overview architecture of Hie-BART. This
is based on the Transformer model. The SANs in the
encoder are divided into word and sentence levels and
computed.

Hg = Fh(H),

where Fh(・) is a function that generates a phrase-
level matrix for the h-th head. Specifically, a
phrase-level matrix is generated by running a max
pooling operation on word-level vectors in a word-
level matrix. After a phrase-level matrix is gener-
ated, SANs perform the following computations:

Qh,Kh, V h = HW h
Q,HgW

h
K ,HgW

h
V , (1)

Oh = ATT(Qh,Kh)V h, (2)

where Qh ∈ Rn×dh , Kh ∈ Rp×dh , V h ∈ Rp×dh

are respectively the query, key, and value repre-
sentations，W h

Q,W
h
K ,W h

V ∈ Rd×dh are parame-
ter matrices, and d, dh, n, and p are the dimen-
sions of the hidden layer, one head, a word vec-
tor, and a phrase vector, respectively. In addition,
ATT(X,Y) is a function that calculates the atten-
tion weights of X and Y. From these computa-
tions, the output Oh of each head in the SANs is
generated. Then, the output of MG-SA is gener-
ated by concatenating the outputs from all heads:
MG-SA(H) = [O1, ...,ON]. The outputs of each
head Oh contain information between words or
between words and phrases. Thus, in addition
to relationships between words, the relationships
between words and phrases can be captured with
MG-SA.
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Figure 3: Behavior of the create sentence level vector layer. Ewij
and E[BOS] are embedded vectors for the word

wij (j-th word in i-th sentence) and [BOS] token, respectively. Esi is the sentence-level embedded vector for the
i-th sentence si.
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Figure 4: An example of the behavior of the concatenate layer where the number of heads of the multi-head is
6 and the join point j = 4. The blue [O1

w, ..., O
6
w] designates the outputs of the word-level SANs and the red

[O1
s , ..., O

6
s ] shows the outputs of the sentence-level SANs.

3 Hie-BART

3.1 Architecture

The Hie-BART (Hierarchical-BART) model has a
sentence-to-word (sentence-level) SANs in addi-
tion to the word-to-word (word-level) SANs of the
original BART model. An overview of Hie-BART
is shown in Figure 2. Hie-BART has sentence-
level SANs, a create sentence level vector layer
and a concatenate layer, in addition to BART. In
the create sentence level vector layer, a sentence-
level matrix is created from a word-level matrix.
The concatenate layer concatenates the outputs of
word-level and sentence-level SANs. The outputs
of the concatenate layer are forwarded to the sub-
sequent feed-forward layer. To provide boundary
information between the sentences, each sentence
is prefixed with a [BOS] token.

3.2 Create Sentence Level Vector Layer

The behavior of the create sentence level vector
layer is shown in Figure 3. Ewij and E[BOS] are
embedded vectors for word wij (j-th word in the
i-th sentence) and [BOS] token, respectively. Esi

is the sentence-level embedded vector for the i-th
sentence si.

The create sentence level vector layer uses av-
erage pooling to generate a sentence-level vector
from word-level vectors. Given the word sequence
W = (w1, ..., wN ), it is divided into sentences

S = (s1, ..., sM ), where N is the total number
of words, M is the total number of sentences, and
each si is the i-th sentence consisting of a word
subsequence wi1, . . . wiNi , where Ni is the total
number of words in the sentence. For each ele-
ment of S, we apply average pooling as follows:
gm = AVG(sm), where the AVG(・) is average
pooling. From this formula, G = (g1, ..., gM ) is
generated. Each element of W, S, and G is an
embedded vector. G is forwarded to the sentence-
level SANs as its input.

3.3 Concatenate Layer
The outputs of each of the word-level and
sentence-level SANs are combined in the concate-
nate layer. The outputs of the word-level and
sentence-level SANs layer are as follows:

SANs(W) = [O1
w, . . . , O

H
w ] = OALL

w , (3)

SANs(G) = [O1
s , . . . , O

H
s ] = OALL

s , (4)

where H is the number of heads, [O1
w, . . . , O

H
w ] =

OALL
w is the output of the word-level SANs,

consisting of the word-level head’s outputs, and
[O1

s , ..., O
H
s ] = OALL

s is the output of the
sentence-level SANs, consisting of the sentence-
level head’s outputs. The outputs of these
word/sentence-level SANs are combined as fol-
lows:

CONCAT(OALL
w ,OALL

s , j)

= [O1
w, ...,O

j
w,O

j+1
s , ...,OH

s ],
(5)
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Model ROUGE-1 ROUGE-2 ROUGE-L
LEAD-3 (Nallapati et al., 2017) 40.42 17.62 36.67
PTGEN (See et al., 2017) 36.44 15.66 33.42
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38
BERTSUMEXTABS (Liu and Lapata, 2019) 42.13 19.60 39.18
T5 (Raffel et al., 2020) 43.52 21.55 40.69
BART (Lewis et al., 2020) 44.16 21.28 40.90
BART (ours) 44.06 21.22 40.82
Hie-BART (ours) 44.35∗,∗∗ 21.37 41.05∗∗

Table 1: Results on the CNN/Daily Mail test set.

Word : Sentence ROUGE
1 2 L

16 : 0 44.72 21.73 41.43
15 : 1 44.95 21.92 41.68
14 : 2 45.01 21.92 41.75
13 : 3 44.91 21.87 41.64
12 : 4 44.74 21.66 41.49
11 : 5 44.88 21.81 41.62
10 : 6 44.78 21.75 41.51

9 : 7 44.70 21.71 41.46
8 : 8 44.79 21.77 41.58

Table 2: Results on the CNN/Daily Mail validation
set. The leftmost column shows the ratio of the num-
ber of multi-heads to combine. The highest score was
achieved for the ratio “Word:Sentence = 14:2”.

where CONCAT(X, Y, j) is a function that con-
catenates X and Y at the join point j of the multi-
heads. In the combined multi-head, the heads from
1 to j are word-level outputs, and the heads from
j + 1 to H are sentence-level outputs.

Figure 4 shows an example of the behavior
of the concatenate layer in Hie-BART, where the
number of heads of the multi-head is 6 and the
join point j = 4. The output of the word-
level SANs [O1

w, ..., O
6
w] and the output of the

sentence-level SANs [O1
s , ..., O

6
s ] are joined at

the join point j = 4, resulting in the output
[O1

w, O
2
w, O

3
w, O

4
w, O

5
s , O

6
s ].

The output of the concatenate layer is forwarded
to the feed-forward layer in the encoder.

4 Experiments

4.1 Dataset

We used the CNN/Daily Mail dataset1 (Her-
mann et al., 2015), a summary corpus of En-
glish news articles, consisting of 287,226 train-
ing pairs, 13,368 validation pairs, and 11,490 test
pairs. On average, the source documents and sum-
mary sentences have 781 and 56 tokens, respec-
tively. For data preprocessing, we followed the in-
struction provided in the CNN/Daily Mail dataset1

and fairseq2.

4.2 Parameters

We used the pre-trained BART model “bart.large”,
provided in fairseq2 for Hie-BART. The hyper-
parameters for BART and Hie-BART were de-
termined for the validation set; the gradient ac-
cumulation parameter (update-freq) was 10, the
total number of training steps was 20,000, and
the number of multi-heads was set to 16. The
ratio of the number of combined heads of out-
put in word-level and sentence-level SANs was
set to “Word:Sentence = 14:2” for Hie-BART.
We followed fairseq’s settings2 for the other hy-
perparameters. In our environments, the model
had 406,291,456 parameters for Hie-BART and
406,290,432 parameters for BART.

4.3 Results

The results of the evaluation of the Hie-BART
model for the CNN/Daily Mail test data are shown
in Table 1. The F-score for ROUGE-1, ROUGE-2,
and ROUGE-L (Lin, 2004) were used as evalua-
tion metrics. To calculate the ROUGE score, we

1CNN/Daily Mail dataset:
https://github.com/abisee/cnn-dailymail

2 Usage of BART by faireseq:
https://github.com/pytorch/fairseq/tree/master/examples/bart
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[Source Document]
(CNN)About a dozen Native American actors
have walked off the set of an Adam Sandler movie
comedy, saying the satirical Western’s script is in-
sulting to Native Americans and women, accord-
ing to a report. ... According to ICTMN, a Na-
tive American adviser hired to help ensure the
movie’s cultural authenticity also walked off the
set in protest. Hill, the Choctaw actor, seemed to
hold out hope that differences between the produc-
ers and Native American cast members could be
resolved . ... .
[Baseline Model’s Summary]
The walkout occurred on the set of "The Ridicu-
lous Six" near Las Vegas, New Mexico, according
to a report . The script called for native women’s
names such as "Beaver’s Breath" and "No Bra"
and an actress portraying an Apache woman to
squat and urinate while smoking a peace pipe,
ICTMN reports .
[Proposed Model’s Summary]
About a dozen Native American actors walked off
the set of an Adam Sandler movie comedy, a report
says . They say the script is insulting to Native
Americans and women, according to the Indian
Country Today Media Network . "The Ridiculous
Six" also stars Will Forte, Taylor Lautner, Steve
Buscemi and John Turturro .
[Gold Summary]
About a dozen Native American actors walk off
set of Adam Sandler comedy, says report . Actors
say satirical Western’s script is insulting to Native
Americans and women .

Table 3: An example of improved summaries. Note
that the source document is partially omitted.

[Source Document]
(CNN)It’s the kind of thing you see in movies,
like Robert Redford’s role in "All Is Lost" or Ang
Lee’s "Life of Pi." But, in real life, it’s hard to
swallow the idea of a single person being stranded
at sea for days, weeks, if not months and somehow
living to talk about it. Miracles do happen, though,
and not just in Hollywood. We’re not talking about
people who float aimlessly or run aground after
running out of gas or being let down by falter-
ing winds only to be picked up a few hours later
by the U.S. Coast Guard. ... After being spotted
by crew aboard a Japanese Maritime Self-Defense
Force destroyer and picked up in a smaller rescue
boat, he took a drink offered to him and burst into
tears, Kyodo reported. Shinkawa told his rescuers,
"I thought today was the last day of my life."
[Base Model’s Summary]
It’s hard to swallow the idea of a single person be-
ing stranded at sea for days, weeks, if not months
and somehow living to talk about it . Miracles
do happen, though, and not just in Hollywood .
Jose Salvador Alvarenga says his journey began in
Paredon Viejo, a port on Mexico’s Pacific coast in
late 2012 .
[Proposed Model’s Summary]
It’s hard to swallow the idea of a single person be-
ing stranded at sea for days, weeks, if not months
and somehow living to talk about it . Miracles
do happen, though, and not just in Hollywood .
Jose Salvador Alvarenga says his journey began in
Paredon Viejo, a port on Mexico’s Pacific coast,
in late 2012 . Louis Jordan says he used laundry
to trap and scoop up fish, rigged a makeshift mast
and sail .
[Gold Summary]
A South Carolina man says he spent 66 days alone
at sea before being rescued . Other sole survivor
stories include a Japanese man washed away by a
tsunami . An El Salvador man says he drifted from
Mexico to Marshall Islands over a year .

Table 4: An example of summaries that are not im-
proved.
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used files2rouge3. Hie-BART was compared with
LEAD-3 (Nallapati et al., 2017), PTGEN, PT-
GEN+COV (See et al., 2017), BERTSUMEXTABS

(Liu and Lapata, 2019), T5 (Raffel et al., 2020),
BART with our environment, and BART with
Lewis et al. (2020). The LEAD-3 method uses
the first three sentences of the source document as
a summary. PTGEN is a sequence-to-sequence
model that incorporates a pointer generator net-
work. PTGEN+COV introduces the coverage
mechanism into PTGEN. BERTSUMEXTABS is
a pre-training model that adapts BERT for sum-
marization tasks. T5 is a generalized pre-training
model for sequence-to-sequence tasks based on
the Transformer model. The statistical signifi-
cance test was performed by the Wilcoxon-Mann-
Whitney test. In Table 1, * and ** indicate that
the comparisons with BART (ours) are statistically
significant at 5% significance level and 10% sig-
nificance level, respectively.

Hie-BART improved the F-score of ROUGE-
1/2/L by 0.223 points on average relative to BART
with our environment, and by 0.143 points on av-
erage from BART reported in (Lewis et al., 2020).
Table 1 also shows that our Hie-BART model
significantly improved ROUGE-1 and ROUGE-L
scores of the baseline BART model.

4.4 Analysis

Table 2 shows a comparison of ROUGE scores
for the ratio of the number of multi-heads at the
word and sentence levels with the validation set
of the CNN/Daily Mail dataset. The leftmost
column shows the ratio of the number of multi-
heads to combine. As can be seen in Table 2,
the maximum ROUGE-1/2/L score was achieved
for "Word:Sentence = 14:2". In ROUGE-1/2/L,
smaller ratios of multi-heads at the sentence level
that are compared to the word level, the higher the
score tends to be. However, when the number of
multi-heads at the sentence level is 0 (the origi-
nal BART), the accuracy is lower than that of Hie-
BART.

Table 3 shows an improved example of sum-
maries: summaries generated by the baseline
model (BART) and the proposed model (Hie-
BART), and the gold summary. As can be seen in
Table 3, the summary of the proposed model is flu-
ent and close to the contents of the gold summary,
which indicates that the summary of the proposed

3files2rouge usage : https://github.com/pltrdy/files2rouge

model includes the important parts of the source
document.

Table 4 shows an example of summaries that
are not improved. In this example, the baseline
model’s summary and the proposed model’s sum-
mary include almost the same contents, but they
are far from and longer than the gold summary.

5 Conclusion

In this study, we proposed Hie-BART to can take
into account the relationship between words and
sentences in BART by dividing the self-attention
layer of encoder into word and sentence lev-
els. In the experiments, we confirmed that Hie-
BART improved the F-score of ROUGE-L by
0.23 points relative to the non-hierarchical BART
model, and the proposed model was better than the
strong baselines, BERTSUM and T5 models for the
CNN/Daily Mail dataset.

As future work, we intend to investigate meth-
ods to incorporate information between sentences
in addition to word-to-word and word-to-sentence
information.
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