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Abstract

We present a simple method for extending
transformers to source-side trees. We define
a number of masks that limit self-attention
based on relationships among tree nodes, and
we allow each attention head to learn which
mask or masks to use. On translation from En-
glish to various low-resource languages, and
translation in both directions between English
and German, our method always improves
over simple linearization of the source-side
parse tree and almost always improves over
a sequence-to-sequence baseline, by up to
+2.1% BLEU.

1 Introduction

The transformer model for machine translation
(Vaswani et al., 2017) was originally defined as
a mapping from sequences to sequences. More re-
cent work has explored extensions of transformers
to other structures: a tree transformer would be able
to make use of syntactic information, and a graph
transformer would be able to make use of semantic
graphs or knowledge graphs.

There have been a number of proposals for
transformers on trees, including phrase-structure
trees and dependency trees for natural languages,
and abstract syntax trees for programming lan-
guages. One common strategy is to linearize a tree
into a sequence (Ahmad et al., 2020; Currey and
Heafield, 2019). Another strategy is to recognize
that transformers are fundamentally defined not
on sequences but on bags; all information about
sequential order is contained in the positional en-
codings, so all that is needed to construct a tree
transformer is to define new positional encodings
on trees (Shiv and Quirk, 2019; Omote et al., 2019).

In this paper, we present a third approach, which
is to enhance the encoder’s self-attention mech-
anism with attention masks (Shen et al., 2018),
which restrict the possible positions an attention
head can attend to. We extend this idea in two new

ways. First, our attention masks are based on re-
lationships among tree positions (for example, “is
an ancestor of” or “is a descendant of”) rather than
sequence positions (“is left of” or “is right of”).
Second, instead of pre-assigning different masks to
each attention head, we allow each attention head
to learn separately which mask or masks to use.

We experiment on machine translation of several
low-resource language pairs (Section 3). Compared
to linearization without masks, our method always
improves accuracy, by up to +1.7 BLEU (all BLEU
reported as percen t). Compared with a sequence-to-
sequence baseline, our method improves accuracy
by up to +2.1 BLEU. On tasks where linearization
hurts, our method is usually, but not always, able
to turn the loss into a gain.

2 Methods

Like several previous approaches, we use linearized
syntax trees. But whereas the usual linearization
traverses a node both before and after its descen-
dants, we use a preorder traversal of the tree. In
other words, our linearization does not have closing
brackets. Our linearization does not have enough
information to reconstruct the original tree; this
information is contained in the attention masks,
which we describe next.

Shen et al. (2018) introduce the idea of using
masks in a string transformer to allow attention
heads to attend only to the left or only to the right.
We apply this idea to tree transformers, with two
modifications. First, instead of masking out the
left or right context, we use masks based on the
structure of the tree. Second, instead of allocating
a fixed number of heads to each mask, we let the
model learn which mask(s) to use for each attention
head.

Given a query Q ∈ Rn×dk , key K ∈ Rn×dk , and
value V ∈ Rn×dv (where n is the number of input
tokens and dk = dv is dmodel divided by the number
of attention heads), scaled dot-product attention is
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normally computed as

α = softmax
QKT

√
dk

Att(Q,K,V) = αV

where α ∈ Rn×n is the matrix of attention weights,
and the softmax is performed per row. We modify
the definition of α to

α = softmax

QKT

√
dk
− exp

∑
m

smMm


where, for each m, the matrix Mm ∈ {0, 1}n×n is
a fixed mask and sm is its corresponding strength,
which is learnable. If [Mm]i j = 1 and sm is large,
then the attention at position i is prevented from
attending to position j. If [Mm]i j = 0 or sm is very
negative, then position i is free to attend to posi-
tion j. With multiple attention heads, each head has
its own strength parameters.

The strength parameters are initialized to zero
and learned by backpropagation with the rest of the
model. In this way, each attention head can learn
separately which mask or masks to use.

It remains to define the masks Mm. A mask can
be defined for any imaginable string or tree rela-
tionship. Because the model can always choose not
to use a mask, we can add as many masks as we
want. We use the following set:

self position i is equal to position j

parent position i is the parent of position j

child position i is a child of position j

left-sib position i is a left sibling of position j

right-sib position i is a right sibling of position j

anc position i is an ancestor (but not a parent) of
position j

desc position i is a descendent (but not a child) of
position j

left-other position i has none of the above relation-
ships with position j, but is left of position j

right-other position i has none of the above rela-
tionships with position j, but is right of posi-
tion j

Task Lines Avg. source
train dev test words nodes

En-Vi 131k 1,553 1,268 22.9 36.4
En-De 100k∗ 3,000 3,003 28.5 45.5
De-En 100k∗ 3,000 3,003 29.6 34.6
En-Tu 59k 1,114 544 28.7 39.1
En-Ha 45k 914 497 26.5 39.3
En-Ur 11k 1,271 652 22.5 30.7

Table 1: Dataset statistics. Nodes: average number of
interior nodes. ∗The original German–English dataset
had 4.5M lines, but we only trained on subsets of up to
100k lines.

Although none of the above masks overlap, there
would be no problem with defining masks that do.

Please see Figure 1 for an example. In (a) is an
English tree; (b) shows the same tree after applying
byte pair encoding (BPE) subword segmentation
(see Section 3 below); and (c) shows the relation-
ships of all the nodes with the second NP (the one
dominating my father).

3 Experiments

3.1 Data
We tested on the following datasets:

en-vi English to Vietnamese, from the IWSLT
2015 shared task.1 To test for dependence of
our method on training data size, we also used
random subsets of 20k and 50k.

de-en, en-de German↔English, from the WMT
2016 news translation task.2 For training, we
used random subsets of 20k, 50k, and 100k.
We used news-test2013 for validation and
news-test2014 for testing.

en-tu, en-ha, en-ur English to Turkish, Hausa,
and Urdu, from the DARPA LORELEI pro-
gram.

Some statistics of the datasets are shown in Table 1.
This table lists the average number of source words
and source interior nodes, from which the aver-
age number of tokens in the linearized and mask
systems can be derived.

We tokenized using the Moses tokenizer, then
divided words into subwords using BPE (Sennrich

1https://nlp.stanford.edu/projects/nmt/
2https://www.statmt.org/wmt16/

translation-task.html

https://nlp.stanford.edu/projects/nmt/
https://www.statmt.org/wmt16/translation-task.html
https://www.statmt.org/wmt16/translation-task.html
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Figure 1: (a) Example tree. (b) With BPE. (c) Relationships of all nodes to the second NP (dominating my father).

et al., 2016). For en-vi, en-tu, en-ha, and en-ur, we
used 8k joint BPE operations, and for en-de and
de-en, we used 32k operations.

To parse English or German sentences, we used
the Berkeley Neural Parser (Kitaev and Klein,
2018; Kitaev et al., 2019) with the included
benepar_en2model for English and benepar_de
for German. The parser reads in untokenized
strings and writes out tokenized trees; we used the
parser’s tokenization, but applied BPE to the leaves,
as shown in Figure 1b.

3.2 Evaluation

We compare against two baselines: Sequence is
a standard sequence-to-sequence model, run on
words only. Linearized is a standard sequence-to-
sequence model, run on linearized trees. A leaf
node w is linearized as w. An interior node X is
linearized as (X followed by the linearization of
its children followed by ) . Against these baselines,
we compare our model, Mask, which uses a pre-
order traversal of the tree together with the masks
described above in Section 2.

All systems are implemented on top of
Witwicky,3 an open-source implementation of the
transformer. We use all default settings; in particu-
lar, layer normalization is performed after residual
connections (Nguyen and Salazar, 2019).

3https://github.com/tnq177/witwicky

We score detokenized system outputs using case-
sensitive BLEU against raw references (except on
en-vi, where we use tokenized outputs and refer-
ences), using bootstrap resampling (Koehn, 2004;
Zhang et al., 2004) for significance testing.

3.3 Results

The results are shown in Table 2. Relative to the
linearized baseline, our method (mask) always im-
proves, by up to +1.7 BLEU for English–Turkish.
The difference is statistically significant (p < 0.05)
except for English–Urdu.

Relative to the sequence baseline, the story is
more complex. Whenever linearized helps over se-
quence, our method helps more, up to a total of
+2.1 BLEU for German↔English (50k). But when
linearized hurts, our method sometimes helps over-
all (all tasks with 20k lines of training) and some-
times doesn’t (e.g., English–Urdu, with only 11k
lines of training). A simple possible explanation
is that additional tokens make training more diffi-
cult on the very smallest datasets, and the effect is
stronger for linearized, which has twice as many
extra tokens.

4 Analysis

4.1 Which masks get used

Figure 3 shows a heatmap of mask strengths for the
English–German task (100k lines), and Figure 2

https://github.com/tnq177/witwicky
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Figure 2: English–German attention masks. The cell in row i, column j shows the strength of the attention mask
for node i attending to node j. Light is the strongest (least attention) and dark is the weakest (most attention); see
Figure 3 for scale.

Figure 3: English–German mask strengths. Light is the
strongest (least attention) and dark is the weakest (most
attention).

displays the resulting sum of the masks for each
attention head for the parse tree of the sentence,
“He is my father.” There’s a strong left-right asym-
metry, with heads 2–4 and 7 attending to the left
and heads 1 and 5–6 attending to the right. There’s
also a strong preference to attend to nodes that are
nearby in the tree, with strongest weights on the
child, left-sib, and right-sib relations.

4.2 Usefulness of masks

Figure 4 shows the minimum, maximum, and range
of the mask strengths learned for various tasks.
Generally, a mask’s range correlates with its useful-
ness to the model. In particular, on Urdu–English,
where we saw the syntax-based models perform the

Dataset Min Max Range ∆BLEU

en-vi (full) −7.52 3.32 10.84 −0.24
en-de (100k) −5.77 2.96 8.73 1.49
de-en (100k) −6.29 2.59 8.88 1.41
en-tu −6.88 3.03 9.91 1.89
en-ha −4.49 2.41 6.90 1.16
en-ur −0.32 0.23 0.55 −1.32

Figure 4: Minimum, maximum, and range of mask
strengths. ∆BLEU = Change in test BLEU relative to
Sequence baseline.

worst, we also see the masks being used the least
and distinguished the least. English-Vietnamese
is clearly an exception to this, however, with the
highest maximum and widest range, but a small
(insignificant) loss in BLEU.

5 Conclusion

In this paper, we’ve shown that syntax can be both
helpful and easy to incorporate into low-resource
neural machine translation. We introduced learn-
able attention masks for the transformer that al-
low each attention head to focus more narrowly on
certain node relationships in the syntax tree, im-
proving translation across a variety of low-resource
datasets by up to +2.1 BLEU.
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English–Vietnamese (en-vi)

lines
20k 50k 131k

Sequence 19.44 27.23 31.99
Linearized 19.20 25.92 31.06
Mask 21.41 26.34 31.75

English–German (en-de)

lines
20k 50k 100k

Sequence 2.77 10.83 15.45
Linearized 2.18 11.78 16.42
Mask 2.88 12.95 16.94

German–English (de-en)

lines
20k 50k 100k

Sequence 4.19 13.37 18.64
Linearized 3.57 13.81 19.54
Mask 4.73 15.45 20.05

English to Other Languages

target language / lines
tu ha ur

59k 45k 11k

Sequence 22.30 23.46 12.98
Linearized 22.47 23.16 11.52
Mask 24.19 24.62 11.66

Table 2: Experiment results. In each column, the best
score and any scores not significantly different from the
best (p ≥ 0.05) are printed in boldface.
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