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Abstract

We propose a general framework called Text
Modular Networks (TMNs) for building in-
terpretable systems that learn to solve com-
plex tasks by decomposing them into simpler
ones solvable by existing models. To ensure
solvability of simpler tasks, TMNs learn the
textual input-output behavior (i.e., language)
of existing models through their datasets.
This differs from prior decomposition-based
approaches which, besides being designed
specifically for each complex task, produce
decompositions independent of existing sub-
models. Specifically, we focus on Question
Answering (QA) and show how to train a
next-question generator to sequentially pro-
duce sub-questions targeting appropriate sub-
models, without additional human annotation.
These sub-questions and answers provide a
faithful natural language explanation of the
model’s reasoning. We use this framework to
build MODULARQA,' a system that can an-
swer multi-hop reasoning questions by decom-
posing them into sub-questions answerable by
a neural factoid single-span QA model and a
symbolic calculator. Our experiments show
that MODULARQA is more versatile than ex-
isting explainable systems for DROP and Hot-
potQA datasets, is more robust than state-
of-the-art blackbox (uninterpretable) systems,
and generates more understandable and trust-
worthy explanations compared to prior work.

1 Introduction

An intuitive way to solve more complex tasks, such
as multi-hop question-answering (Yang et al., 2018;
Khashabi et al., 2018; Khot et al., 2020) and nu-
merical reasoning (Dua et al., 2019), would be to
decompose them into already solved simpler prob-
lems, e.g., single-fact QA (Rajpurkar et al., 2016).
Besides allowing reuse of existing simpler models,
this approach would yield an interpretable system
that provides a faithful explanation (Jacovi and

"https://github.com/allenai/modularga

DROP Question: How many years did it take for the services sector to
rebound? (answer: 1)

Hey 5!In what year did the services sector
rebound?

ModularQA 4 I_lg

Hey 5! When did the services sector start to take a )
dip?

ModularQA 4 @ I_lg

(Hey | diff (2003, 2002)=? )

Existing QA system

Existing QA system
ModularQA

Okay, the answer is "1"@® @ E
ModularQA Existing QA system

HotpotQA Question: Little Big Girl was a Simpsons episode directed
by the animator and artist of what nationality? (answer: American)

@D

Existing QA system

« b

Existing QA system

(Hey | Who directed Little Big Girl? )
ModularQA £

(Hey ! What was Raymond S's nationality@
ModularQA 2~

(Okay, the answer is "Americarll )
ModularQA 2~

Figure 1: MODULARQA learns to ask sub-questions
to existing simple QA models, including a symbolic
calculator, to answer a given complex question. No-
tably, the approach does not rely on annotated decom-
positions. Despite this, the system learned to add “start
to take a dip” in the DROP dataset question.

Goldberg, 2020) of its reasoning as a composition
of simpler sub-tasks, as shown in Fig. 1. Motivated
by this, we ask the following question:

Given a set of existing QA models, can one lever-
age them to answer complex questions by commu-
nicating with these existing models?

We propose a general framework, Text Modu-
lar Networks (TMNs), that answers this question
by learning to decompose complex questions (of
any form) into sub-questions that are answerable by
existing QA models—symbolic or neural (hence-
forth referred to as sub-models ).> Unlike previ-
ous approaches (Talmor and Berant, 2018; Min
et al., 2019a), the decompositions are not based
on splits of the complex questions and aren’t built
independent of the sub-model. Instead, our frame-
work learns to generate sub-questions in the scope

2TMNS, in fact, treat sub-models as blackboxes, and can
thus use any model or function as a module.
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of existing models. For instance, the second sub-
question in the DROP dataset example in Fig. 1
requires the introduction of a new phrase, “start to
take a dip”, which is beyond the scope of standard
decomposition approaches. Additionally, the final
sub-question targets a symbolic calculator, which
operates over a different input language.

The core of our TMN framework is a
next-question generator that sequentially pro-
duces the next sub-question to ask as well as an
appropriate sub-model for answering it. The re-
sulting sequence of sub-questions and their an-
swers provides a human-interpretable description
of the model’s neuro-symbolic reasoning (Mc-
Carthy, 1988; Smolensky, 1988), as illustrated in
Fig. 1. Notably, TMNs learn to produce these de-
compositions using only distant supervision, with-
out the need for any explicit human annotation.

One of our key insights is that the capabilities of
existing sub-models can be captured by training a
text-to-text system to generate the questions in the
sub-model’s training dataset (e.g., SQuAD), given
appropriate hints. In our case, we train a BART
model (Lewis et al., 2020) to generate questions
given the context, answer, and preferred vocabu-
lary as hints. We then use these sub-task question
models to generate sub-questions (and identify ap-
propriate sub-models) that could lead to the likely
intermediate answers extracted for each step of the
complex question (“Raymond S.” and “American”
in the HotpotQA example in Fig. 1). The result-
ing sub-questions, by virtue of our training, are in
the language (i.e., within-scope) of the correspond-
ing sub-models. These sub-question sequences can
now be used to train the next-question generator
to sequentially produce the next sub-question. We
use this trained generator, along with existing QA
models, to answer complex questions, without the
need for any intermediate answers.

We use the TMN framework to develop MOD-
ULARQA, a modular system that explains its
reasoning in natural language, by decomposing
complex questions into those answerable by two
sub-models: a neural factoid single-span QA
model and a symbolic calculator. MODULARQA'’s
implementation' covers multi-hop questions that
can be answered using these two sub-models via
five classes of reasoning found in existing QA
datasets: composition, conjunction, comparison,
difference, and complementation.’

3Composition and conjunction questions are also referred

We evaluate MODULARQA on questions from
two datasets, DROP (Dua et al., 2019) and Hot-
potQA (Yang et al., 2018), resulting in the first
cross-dataset decomposition-based interpretable
QA system. Despite its interpretability and ver-
satility, MODULARQA scores only 3.7% F1 lower
than NumNet+V2 (Ran et al., 2019), a state-of-
the-art blackbox model designed for DROP. MOD-
ULARQA even outperforms this blackbox model
by 2% F1 in a limited data setting and demon-
strates higher (+7% F1) robustness (Gardner et al.,
2020). MODULARQA is competitive with and can
even outperform task-specific Neural Module Net-
works (Gupta et al., 2020; Jiang and Bansal, 2019)
while producing textual explanations. Further, our
human evaluation against a split-point based de-
composition model trained on decomposition anno-
tation (Min et al., 2019b) for HotpotQA finds our
explanations to be more trustworthy, understand-
able, and preferable in 67%-78% of the cases.

Contributions. (1) Text Modular Networks
(TMNs), a general framework that leverages ex-
isting simpler models—neural and symbolic—
as blackboxes for answering complex questions.
(2) MODULARQA,! an interpretable system that
learns to automatically decompose multi-hop and
discrete reasoning questions. (3) Experiments
on DROP and HotpotQA demonstrating MODU-
LARQA’s cross-dataset versatility, robustness, sam-
ple efficiency and ability to explain its reasoning in
natural language.

2 Related Work

Many early QA systems were designed as a com-
bination of distinct modules, often composing out-
puts of lower-level language tasks to solve higher-
level tasks (Moldovan et al., 2000; Harabagiu and
Hickl, 2006). However, much of this prior work
is limited to pre-determined composition struc-
tures (Berant et al., 2013; Seo et al., 2015; Nee-
lakantan et al., 2017; Roy and Roth, 2018).
Various modular network architectures have
been proposed to exploit compositionality (Rosen-
baum et al., 2018; Kirsch et al., 2018). The clos-
est models to our work are based on neural mod-
ule networks (NMN) (Andreas et al., 2016) which
compose task-specific simple neural modules. We

to as ‘bridge’ questions. Complementation refers to questions
such as ‘What percentage of X is not Y?” MODULARQA can
be easily extended to other reasoning types by defining the
corresponding hints (§4.3).
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compare against formulations of NMNs for Hot-
potQA (Jiang and Bansal, 2019) and DROP (Gupta
et al., 2020), both of which target only one dataset
and do not reuse existing QA systems. Moreover,
they provide attention-based explanations whose in-
terpretability is unclear (Serrano and Smith, 2019;
Brunner et al., 2020; Wiegreffe and Pinter, 2019).

Question decomposition has been pursued be-
fore for ComplexWebQuestions (Talmor and Be-
rant, 2018) and HotpotQA. Both approaches (Tal-
mor and Berant, 2018; Min et al., 2019b) focus on
directly training a model to produce sub-questions
using question spans—an approach not suitable for
DROP questions (as illustrated in Fig. 1). Our next-
question generator overcomes this limitation by
generating free-form sub-questions in the language
of existing models. Perez et al. (2020) also use
a text-to-text model to generate sub-questions for
HotpotQA. However, they generate simpler ques-
tions without capturing the requisite reasoning, and
hence use them mainly for evidence retrieval.

BREAK (Wolfson et al., 2020) follows an alter-
native paradigm of collecting full question decom-
position meaning representations (QDMR) anno-
tations. While this can be effective, it relies on
costly human annotation that may not generalize to
domains with new decomposition operations. Its
decompositions are generated in a model-agnostic
way and still need QA systems to answer the sub-
questions, e.g, high-level QDMR questions such as
“Which is earlier?” and “Which is longer?” would
need special systems that can map these to sym-
bolic comparisons. In contrast, TMNs start with
pre-determined models and learn to generate de-
compositions in their language.

While many multi-hop QA models exist for
HotpotQA and DROP, these are often equally com-
plex models (Tu et al., 2020; Fang et al., 2020; Ran
et al., 2019) focusing on just one of these datasets.
Only on HotpotQA, where supporting sentences are
annotated, can these models also produce post-hoc
explanations, but these explanations are often not
faithful and shown to be gameable (Trivedi et al.,
2020). TMNs are able to produce explanations for
multiple datasets without needing such annotations,
making it more generalizable to future datasets.

3 Text Modular Networks

TMNs are a family of architectures consisting
of modules that communicate through language
learned from these modules, to accomplish a cer-

qc: How many years did it take for the
services sector to rebound?

q1: In what year did the services sector rebound?

ay: 2002

“. g3 dif£(2003, 2002)=?
............... ;131..) QAC

>{ Answer: 1 ‘

Figure 2: A sample inference on a DROP ques-
tion using TMNs with the text-to-text interac-
tions between the next-question generator D and

existing QA models A .

tain goal (e.g., answering a question). Figure 2
illustrates this general idea in the context of an-
swering a DROP question. The core of our sys-
tem is a next-question generator D , a component
in charge of generating and distributing sub-tasks
among sub-models A; . The system alternates
between using D to produce the next question
(NextGen) and using the corresponding sub-model
to answer this question. Formally, solving a com-
plex question gc is an alternating process between
the following two steps:
Generate the next question q; for submodel t;:

(ti,qi) = D(qc, q1, a1, ..., Gi—1,a:1)
Find answer a; by posing q; to submodel t;:

a; = Ay, (g, p)

where ¢; is the i*" generated sub-question and a; is
the answer produced by a sub-model ¢; based on
a given context paragraph p. This simple iterative
process ends when ¢; 1 equals a special end-of-
sequence symbol (denoted throughout as [EOQ])
with the final output answer a;.

Building a Text Modular Network. The key
challenge in building a Text Modular Networks
is developing the next-question generator model.
Training this model requires a next-question pre-
diction dataset where each example is a step in the
iterative progression of sub-question generation.
For example, the second step in Fig. 2 is:
qc: How many years did it take for the ser-
vices sector to rebound?
E » q1: In what year did the services sector re-
bound?
ai: 2003
< { (ta, q2)= (SQUAD, “When did the services
O | sector start to take a dip?”’)
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While it may be possible to collect task-specific
datasets or design a task-specific next-question gen-
erator (Min et al., 2019b; Talmor and Berant, 2018),
our goal is to build a framework that can be easily
extended to new complex QA tasks reusing exist-
ing QA sub-models. To achieve this, we present a
general framework to generate the next-question
training dataset by: (1) Modeling the language of
sub-models; (2) Building decompositions in the
language of these sub-models using minimal dis-
tant supervision hints.

3.1 Modeling QA Sub-Models

To ensure the sub-questions are answerable by ex-
isting sub-models, we train a text-to-text sub-task
question model on the original sub-task to gen-
erate a plausible ¢; conditioned on hints, e.g., a
BART model trained on SQuAD to generate a ques-
tion given the answer. We can view this utility as
characterizing the question language of the sub-
model. For example, such a model trained on the
SQuAD dataset would produce factoid questions—
the space of questions answerable by a model
trained on this dataset.

While an unconditional text generation model
can also capture the space of questions, it can gener-
ate a large number of possibly valid questions, mak-
ing it hard to effectively train or use such a model.
Instead, we scope the problem down to conditional
text generation of questions given hints z. Specifi-
cally, we use the context p, answer a and question
vocabulary v as input conditions to train a question
generator model G : z — ¢ where z = (p, a,v).
Such a generator, Gg, produces the first two sub-
questions in the example in Fig. 4, when using
a=2003 (or 2002, resp.) and v=P(gc)={"service”,

“sector”, “ rebound”} as hints.

year”’ 3
3.2 Training Decompositions via Distant
Supervision

To generate training decompositions for a complex
question using a sub-task question model, we ex-
tract distant-supervision hints z corresponding to
each reasoning step. This is akin to the distant su-
pervision approaches used to extract logical forms
in semantic parsing (Liang et al., 2013; Berant et al.,
2013) and the intermediate entities in a reasoning
chain (Gupta et al., 2020; Jiang and Bansal, 2019).

In our running DROP example, under the defi-
nition of z = (p, a, v), we would need to provide
the context, answer, and question vocabulary for
each reasoning step. We can derive intermediate

answers by finding the two numbers whose differ-
ence is the final answer (see Fig. 4). We can use
words from the input question as vocabulary hints.*

As shown in Fig. 4, we generate the training sub-
questions in the language of appropriate systems
for each step ¢ using the question generation model
Gt,: qi = Gy, (7)) where z; = (p;, a;,v;) and the
model ¢; is determined by the answer type (or can
be a hint too).

Note that our framework does not depend on the
specific choice of z. Our key idea is to train the
sub-task question model conditioned on the same z
that we can provide for the complex task. The hint
z could be very general (just the context) or very
specific (exact vocabulary of the question), trading
off the ease of extracting hints with the quality of
the generated decomposition. Similarly, these hints
don’t have to be 100% accurate as they are only
used to build the training data and play no role
during inference.

Finally, we convert the decompositions into train-
ing data for the next-question generator. For each
question ¢; generated using the sub-task question
model G,, we create the training example:

Input: qc,qi1,a1,...,Gi—1,0i—1

Output: (t;, q;)

Training Data Generation Summary. Fig. 3 il-
lustrates the complete process for generating the
training data for the next-question generator. For
each complex question, we extract a set of possible
hints for each potential reasoning chain (e.g., all
number pairs that lead to the final answer). For
each step, we use the corresponding sub-task ques-
tion models to generate potential sub-questions that
lead to the expected answer. Finally we use these
generated sub-question decompositions as the train-
ing data for the next-question generator model.

4 MODULARQA System

We next describe a specific instantiation of the Text
Modular Network: MODULARQA — a new QA
system that works across HotpotQA and DROP. To
handle these datasets, we first introduce the two QA
sub-models(§4.1), the sub-task question models for
these models(§4.2), our approach to build training
data (§4.3), and the inference procedure used for
question-answering(§4.4).

4 As mentioned before, these are soft hints and the model
can be trained to handle noise in these hints.
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Complex Question

gc: How many years did it take
the services sector to rebound?,

Extracting distant
supervision hints

Training Data for NextGen

Set of possible hints

[a1=2003, v1=0(qo) —>{sub-task Model, Gs}—

[a2=2002, v2=0(qe) |—>{Sub-task Model, G}
[a3=1, va=('dif",2008,2002}} —>{Sub-task Model, G, }

Decompositions

Input:
gc: How many years did it take ...
q: (S) ... rebound?

it take ...

Training Data

(S) When did the services sector
take a dip?

as: 1

qc: How many years did

q1:(S) ... rebound?

(0]
2008 g ail:2003
. ) c q2: (S): ... take a dip?
Output: & a2: 2002

q3: (C): diff(2003, 2002)

qi

I(S): In what year did the services sector rebound ?H—
q2

’( S): When did the services sector take a dip? }(—
q3

]

\(C): diff(2003, 2002)

Figure 3: The overall flow of building the training data for the next-question generator, given a complex question.

Para, p: ... The sector decreased by 7.8 percent in 2002,
before rebounding in 2003 ...

Question, gc: How many years did it take for the services
sector to rebound? Answer a: 1

Hints — Sub-Questions

(a1=2003, p1=p, vi=¢(qc)) — ¢q1=Gs(p1,a1,v1): In
what year did the services sector rebound?

(a2=2002, p2=p, v2=¢(qc)) —  ¢2=Gs(pz2,az,v2):
When did the services sector start to take a dip?

(as=1, p3=p, vs={diff, 2003, 2002}) —
93=Ge(ps, as, va): diff2003, 2002)

B — q.=/[EO0Q]

Figure 4: An example decomposition generated for a
DROP example using hints and sub-question genera-
tors G. ¢(qc) indicates words in the input question qc.

4.1 QA Sub-Models, A

We use two QA models with broad coverage on the
two datasets:
SQuAD model, As, A RoBERTa-Large model
trained on the entire SQuAD 2.0 dataset includ-
ing the no-answer questions; and
Math calculator model, A, a symbolic Python
program that can perform key operations needed
for DROP and HotpotQA, namely:

diff(X, Y, Z) that computes the difference be-
tween X and Y in unit Z (days/months/years);

not(X) that computes the complement % of X,
ie., 100 - X;

if_then(X <op>Y, Z, W) that returns Z if X
<op>Y is true, otherwise returns W.

4.2 Sub-task Question Models, G

We define two sub-task question models corre-
sponding to each of our QA sub-models.

SQuAD Sub-task Question Model, Gs. We
train a BART-Large model on the answerable sub-
set of SQuAD 2.0 to build our sub-task question
model for SQuAD. We use the gold paragraph and

answer from the dataset as the input context and
answer. For the estimated question vocabulary, we
select essential words® from the gold questions (re-
ferred as the function ®) with additional irrelevant
words sampled from other questions.®

To train the text-to-text BART s model, we use
a simple concatenation of the passage, vocabu-
lary, and answer (with markers such as “H:” and
“A:” to indicate each field) as the input sequence
and the question as the output sequence. While a
constrained-decoding approach (Hokamp and Liu,
2017; Hu et al., 2019a) could be used here to fur-
ther promote the use of the vocabulary hints, this
simple approach was effective and more generally
applicable to other hints in our use-case.

Once this model is trained, we use it with nucleus
sampling (Holtzman et al., 2020) to generate k
sub-questions, @, and filter out those that lead an
incorrect or no answer using Ag:

Gs(p,a,v) = {q € Q | overlaps(As(p,q),a)}

Math Sub-task Question Model, Go.  Given the
symbolic nature of this solver, rather than training
a neural generator, we simply generate all possible
numeric questions given the context. Similar to
Gg, we first generate potential questions () and
then filter down to those that lead to the expected
answer using A¢:

Ge(p,a,v) ={q€ Q| Ac(p,q) = a}

4.3 Generating Training Decompositions

We broadly identify five classes of questions in Hot-
potQA and DROP dataset that can be answered us-
ing our two models.” These question classes, how

3®(q) = Non-stopword tokens with pos tags € {NOUN,
VERB, NUM, PROPN, ADJ, RB}

®More details in Appendix A

"Other questions require a QA model that can return mul-
tiple answers or a Boolean QA model, as discussed in §6.
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DROP

Example 1: How many days passed between the Sendling Christmas Day Massacre and the Battle of Aidenbach?
» Q: When was the Battle of Aidenbach? A: 8 January 1706 Q: When was the Sendling Christmas Massacre? A: 25 December 1705 Q: di £ £(8 January

1706, 25 December 1705, days) A: 14
Example 2: Which ancestral group is smaller: Irish or Italian?

» Q: How many of the group were Irish? A: 12.2 Q: How many Italian were there in the group? A: 6.1 Q: i1 f_then(12.2 < 6.1, Irish, Italian) A: Italian
Example 3: How many percent of the national population does not live in Bangkok?
» Q: What percent of the national population lives in Bangkok? A:12.6 Q: not(12.6) A: 87.4

HotpotQA

Example 4: 12 Years a Slave starred what British actor born 10 July 1977)

» Q: Who stars in 12 Years a Slave? A: Chiwetel Ejiofor Q: Who is the British actor born 10 July 1977? A: Chiwetel Umeadi Ejiofor

Example 5: How many children’s books has the writer of the sitcom Maid Marian and her Merry Men written ?

» Q: What writer was on Maid Marian and her Merry Men? A: Tony Robinson Q: How many children’s books has Tony Robinson written? A: sixteen

Example 6: Did Holland’s M. and Moond

e both begin in 1996?

» Q: When did Holland’s Magazine begin? A: 1876 Q: When did Moondance begin? A: 1996 Q: i f_then(1876#1996, no, yes) A: no

Table 1: Sample Reasoning Explanations generated by MODULARQA. Note that the system learns to generate
such explanations without relying on manually designed rules such as “smaller” = x < y.

they are identified and how we extract hints for each
question type is described next. Note that similar
rules for extracting distant supervision hints have
been used by prior work for DROP (Gupta et al.,
2020) and HotpotQA (Jiang and Bansal, 2019) too.
1. Difference (How many days before X did Y hap-
pen?): We identify these questions based on the
presence of term indicating a measurement :“how
many” and terms indicating difference such as
“shorter”, “more”, “days between”, etc. Also we
check for two dates or numbers in the context such
that their difference (in all units) can lead to the
final answer. If these conditions are satisfied, for
every pair n1, ne where the difference (in units u)
can lead to the final answer, we generate the hints:

p1 = p;a1 = ni; v = P(qe)

P2 = p;az = ng;v2 = $(qc)

p3 =¢;a3 = a;vz = [diff,ny, ng,ul
where € refers to the empty string.

2. Comparison (Which event happened before:
X or Y?): We identify the two entities e; and es
in such questions and find dates/numbers that are
mentioned in documents. For every ni, ne num-
ber/date mentioned close to e and es respectively,
we create the hints:
p1 =p;a; = ni;v; = (qe) \ e2
P2 = p;az = ng;v2 = P(ge) \ er
p3 = €;a3 = a;vV3 = [if_then, ni, N2, e1, 62]
The final set of hints are for use by the calculator
generator to create the questions: if_then(nj >
na, €1, 62) and if_then(m < ng,eq, 62).

3. Complementation (What percent is not X?):
We identify these questions mainly based on the
presence of “.* not .*” in the question and a number
n1 such that the ¢ = 100 — ny. The hints are:

p1 = p;a1 = ni;v; = ®(qe)

p2 = €;a2 = a;vy = [not,nq]

4. Composition (Where was 44th President
born?): For such questions(only present in Hot-
potQA), we need to first find an intermediate entity
e1 that would be the answer to a sub-question in
qc (e.g. Who is the 44th President?). This inter-
mediate entity is used by the second sub-question
to get the final answer. Given the two gold paras
dy and do, where dy contains the answer, we use
the mention of dy’s title in d; as the intermediate
entity.® While we could use the entire complex
question vocabulary to create hints, we can reduce
some noise by removing terms that appear exclu-
sively in the other document. So the final hints are:

p1 =di;a; = ey; 21 = ((qe, di, dz)

p2 = da;az = a; 22 = ((qc,da, dy) + ey
where ((q, d1, d2) indicates the terms in ®(q) that
appear in dy but not in d; .’

5. Conjunction (Who acted as X and directed
Y?): These class of questions do not have any in-
termediate entity but have two sub-questions with
the same answer e.g. “Who is a politician and an
actor?”. If the answer appears in both supporting
paragraphs, we assume that it is a conjunction ques-
tion. The hints for such questions are:

p1 =di;a1 = a; 21 = ((qc, dy, d2)

p2 = d2; a2 = a; z2 = ((qc, dz, d1)

While decomposition datasets such as BREAK
could be used to obtain more direct supervision for
these hints, we focus here on the broader feasibility
of distant supervision. We observe that our current
approach generates hints for 89% of the questions
and can find decompositions that lead to the gold
answer for 50% of them. So while the hints cannot

81f not found, we ignore such questions.
“We use the same for comparison questions in HotpotQA.
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be used directly to produce decompositions, the
next-question generator is able to generalize from
these examples to generate decompositions for all
questions with 81% of them leading to the gold
answer. App. D provides more details and example
of hints for each question class.

As described earlier, given these input hints and
our sub-task question models, we can generate
the sub-question for each step and the appropri-
ate sub-model (based on the model that produced
this question). We use nucleus sampling to sample
5 questions for each reasoning step. To improve the
training data quality, we also filter out potentially
noisy decompositions.'® We train a BART-Large
model, our next-question generator, on this training
data to produce the next question given the complex
question and previous question-answer pairs.

4.4 Inference

We use best-first search (Dijkstra et al., 1959) to
find the best decomposition chain and use the an-
swer produced at the end of the chain as our pre-
dicted answer. We sample ng sub-questions from
the next-question generator using nucleus sampling.
Each question is then answered by the appropri-
ate QA sub-model (defined by the prefix in the
question). This partial chain is again passed to
the next-question generator to generate the next ny
sub-questions, and so on.'! A chain is considered
complete when the next-question generator outputs
the end-of-chain marker [EOQ].

We define a scoring function that scores each par-
tial chain u based on the new words introduced in
the sub-questions compared to the input question.'?
For a complete chain, we additionally add the score
from a RoOBERTa model trained on randomly sam-
pled chains (chains that lead to the correct answer
are labeled as positive). Concretely, we use the
negative class score from this classifier, d(u), to
compute the final chain score as 6(u) + \d(u), i.e.,
lower is better.'?

5 [Experiments

To evaluate our modular approach, we use two
datasets, DROP and HotpotQA, that contain ques-

19if an intermediate answer is unused or vocabulary of ques-
tion chain is too different from the input question. See Ap-
pendix A.3 for more details.

"To enable early exploration, we use exponential decay on
the number of generated questions: n; = 10/2¢.

120 (u) = #new words/#words in input question

B3For more details, refer to App. A.4.

tions answerable using a SQUAD model and a math
calculator. We identify 14.4K training questions in
DROP that are within the scope of our system,'#
which forms 18.7% of the dataset.'> We similarly
select 2973 Dev questions (from 9536), and split
them into 601 Dev and 2371 Test questions.

We evaluate our system on the entire HotpotQA
dataset. Since the test set is blind, we split the Dev
set (7405 gns.) into 1481 Dev and 5924 Test ques-
tions. For training, we only use 17% of the training
dataset containing 15661 questions categorized as
“hard” by HotpotQA authors.'6

5.1 Explanation and Interpretability

A key aspect distinguishing MODULARQA is that
it can explain its reasoning in a human-interpretable
fashion, in the form of simpler sub-questions it cre-
ates via decomposition. Table 1 illustrates six sam-
ple reasoning explanations; the question context
and sub-models are omitted for brevity. We see
that MODULARQA is able to take oddly phrased
questions to create clean sub-questions (example
4), handle yes/no questions (example 6), recognize
the unit of comparison (example 1), and map the
phrase “smaller” to the appropriate direction of
comparison without any manual rules (example 2).

Analyzing such explanations for 40 Dev ques-
tions (20 from each dataset), we found that among
the 28 questions MODULARQA answered cor-
rectly, it produced a valid reasoning chain in as
many as 93% of the cases, attesting to its strong
ability to provide understandable explanations.

To further assess the human readability of MOD-
ULARQA’s explanations, we compared them with
those produced by DecompRC (Min et al., 2019b),
the only decomposition-based system for the con-
sidered datasets. We identified 155 questions that
are within the scope of MODULARQA and for
which both systems produce a decomposition.'”
We then asked crowdworkers on Amazon Mechan-
ical Turk to annotate them along three dimensions:
(1) given the two explanations, which system’s an-
swer do they trust more; (2) which system’s expla-
nation do they understand better; and (3) which
system’s explanation do they generally prefer.

14See App. D for how this subset is automatically identified.

5Previous modular systems (Gupta et al., 2020) have tar-
geted even smaller subsets to develop modular approaches.

"®Increasing the training set didn’t affect performance.

"DecompRC failed to produce chains on 6x more questions
than our system. See App. C for details on how these questions
were selected and how they were normalized.
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DROP F1 HotpotQA F1
All Diff Comp Cmpl All Br Comp
Interpretable Cross-Dataset Models (§5.2)
MODULARQA 87.9 85.2 81.0 96.6 61.8 64.9 49.2
WordOverlap 80.5 825 58.3 95.8 57.5 61.7 40.5
Greedy 60.2 522 52.9 76.3 424 44.8 33.0
Limited Versatility (§5.3)

NMN-Df 79.1% - - - - - -
SNMN7T - - - - 63.1 63.7 60.1
DecompRCT - - - - 70.3 72.1 63.4

Limited Interpretability (§5.4)
NumNet+V2 91.6 86.5 94.5 95.5 - - -
Quark - - - - 75.5 78.1 64.9

Table 2: F1 scores on the DROP and HotpotQA questions and the individual classes: Difference(Diff), Com-
parison(Comp), Complementation(Cmpl) and Bridge(Br). TOP: Comparison to variations of MODULARQA that
work across datasets. MIDDLE: Comparison to fargeted interpretable systems. BOTTOM: Comparison to fargeted
blackbox systems. MODULARQA is competitive with previous approaches on DROP and mainly lags behind sys-

tems on HotpotQA that are able to exploit artifacts.

Trust Understand Prefer
DecompRC 50 33%) 34 (22%) 49 (32%)
MODULARQA 105 (67%) 121 (78%) 106 (68%)

Table 3: Human evaluation of the explanation quality.
Across all dimensions, crowdsource workers preferred
the explanations of MODULARQA over DecompRC.

Table 3 summarizes the aggregate statistic of
the majority labels, with 5 annotations per ques-
tion. Crowdworkers understood MODULARQA'’s
natural language explanations better in 78% of the
cases, trusted more that it pointed to the correct
answer, and generally preferred its explanations.

5.2 Interpretable Cross-Dataset Models

With MODULARQA being the first interpretable
model for DROP and HotpotQA, there were no
comparable existing cross-dataset systems. We in-
stead consider two baselines obtained by modifying
MODULARQA: (1) only the word-overlap based
scoring function f(w) for chains (no RoBERTa clas-
sifier); and (2) greedy inference, i.e., use the most
likely question at each step (no search).

As shown in Table 2 (top rows), MODULARQA
outperforms the purely word-overlap based ap-
proach by 7pts F1 on DROP and 4pts on HotpotQA.
A simple coverage-based decomposition is thus
not as effective, although HotpotQA suffers less
because of decompositions being explicit in it.!®
Performance drops much more heavily (18pts on
DROP and 19pts on HotpotQA) when we do not
employ search at all. This is primarily because

18Recall that our word-overlap based score penalizes missed
question words and words introduced during decomposition.

the optimal sub-question can often be unanswer-
able by the intended sub-model while an alternate
decomposition may lead to the right answer.

5.3 Comparison to Dataset-Specific Models

To assess the price MODULARQA pays for being
versatile, we compare it to three interpretable sys-
tems that target a particular dataset. Two are Neural
Module Networks, with modules designed specif-
ically for a subset of DROP (referred to as NMN-
D) (Gupta et al., 2020) and for HotpotQA (referred
to as SNMN) (Jiang and Bansal, 2019). The third
is DecompRC, whose split-based decomposition,
human annotations, as well as answer composition
algorithm was specifically designed for HotpotQA.

As seen in Table 2 (middle rows), MODU-
LARQA actually substantially outperforms the
DROP model NMN-D while being able to produce
textual explanations (rather than attention visualiza-
tion).!” On the HotpotQA dataset, MODULARQA
is comparable to S-NMN but underperforms com-
pared to DecompRC. Note that DecompRC can
choose to answer some questions using single-hop
reasoning and potentially exploit many artifacts in
this dataset (Min et al., 2019a; Trivedi et al., 2020).

5.4 Comparison to Black-Box Models

To assess the price MODULARQA pays for be-
ing interpretable, we compare it to two state-of-
the-art black-box systems that not only lack inter-
pretability but are also targeted towards specific
datasets: NumNet+V2 (Ran et al., 2019) for DROP

19Since NMN-D focuses on a different subset, we report its

score on the shared subset, on which MODULARQA achieves
an F1 score of 92.5 (not shown in the table)
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and Quark (Groeneveld et al., 2020) for HotpotQA.
Since we use the SQuAD QA system in our model,
we first fine-tune the LM in both of these systems
on the SQuAD dataset, and then train them on the
same datasets as MODULARQA.

As seen in Table 2 (bottom rows), we are compet-
itive with the state-of-the-art model on DROP but
underperform compared to the Quark system. Note
that Quark relies on supporting fact annotation and
trains a single end-to-end QA model, thereby being
more likely to exploit dataset artifacts.

Upon analyzing MODULARQA’s errors (defined
as questions with F1 score under 0.5) on HotpotQA,
we found 65% of the errors arise from intermediate
questions having multiple or yes/no answers. These
are not handled by modules in our current imple-
mentation, suggesting a path for improvement.

We also analyzed the errors on the DROP dev
set and identified question decomposition (53.3%)
and QA models (33.33%) as the main sources of
error.”’’ Within question decomposition, the key
cause of error is higher RoBERTa score for an in-
correct decomposition (50% of errors). Both the
SQuAD and Math QA models were responsible
for errors, with the latter erring only due to out-
of-scope formats (e.g., date ranges 1693-99). Ap-
pendix E provides more details.

5.5 Additional Benefits of TMNs

The last set of experiments support two distinct
benefits (besides interpretability) of our approach
even against state-of-the-art black-box models.

Higher Robustness. We evaluate on the DROP
contrast set (Gardner et al., 2020), a suite of test-
only examples created for assessing robustness via
minimally perturbed examples. On the 239 (out of
947) questions that are within our scope using the
same logic as before, we find that MODULARQA
outperforms NumNet+V2 by 7%-10%:

Contrast Test EM F1
MODULARQA | 55.7 63.3
NumNet+V2 452  56.2

Learning with Less Data. We next evaluate the
sample efficiency of MODULARQA by consider-
ing training sets of 3 different sizes: 100%, 60%,
and 20% (14448, 8782, and 2596 questions, resp.)
of the training questions selected for DROP.?! As

2'Remaining errors are due to dataset and scope issues.

IFor simplicity, we train MODULARQA on the DROP
questions only here. To obtain sufficient examples, we in-
crease the number of questions sampled for each decomposi-
tion step. See App. A.6 for more details.

shown below, the gap (in F1 score) between MOD-
ULARQA and the state-of-the-art model steadily
shrinks, and MODULARQA even outperforms it
when both are trained on 20% of the data.

Portion of Train set | 100% 60% 20%
MODULARQA 87.8 893 87.0
NumNet+V2 91.6 88.3 854

6 Conclusion & Future Work

We introduced Text Modular Networks, which pro-
vide a general-purpose framework that casts com-
plex tasks as textual interaction between existing,
simpler QA modules. Based on this conceptual
framework, we built MODULARQA, an instanti-
ation of TMNs that can perform multi-hop and
discrete numeric reasoning. Empirically, MODU-
LARQA is on-par with other modular approaches
(which are dataset-specific) and outperforms a state-
of-the-art model in a limited data setting and on
expert-generated perturbations. Importantly, MOD-
ULARQA provides easy-to-interpret explanations
of its reasoning. It is the first system that decom-
poses DROP questions into textual sub-questions
and can be applied to both DROP and HotpotQA.

Extending this model to more question classes
such as counting (“How many touchdowns were
scored by X?”) and Boolean conjunction (“Are
both X and Y musicians?”) are interesting avenues
for future work. To handle the former class, the
first challenge is building models that can return
a list of answers—a relatively unexplored task un-
til recently (Hu et al., 2019b; Segal et al., 2020).
For Boolean questions, the challenge is identifying
good sub-questions as there is a large space of ques-
tions such as “Did musicians work for X?”” that may
have the expected yes/no answer but are not part
of the true decomposition. Semantic parsing faces
similar issues when questions have a large number
of possible logical forms (Dasigi et al., 2019). Fi-
nally, end-to-end training of the next-question gen-
erator and QA models via REINFORCE (Williams,
1992) can further improve the score and allow for
faster greedy inference.
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A Model Settings

Each BART-Large model (406M parameters) is
trained with the same set of hyper-parameters —
batch size of 64, learning rate of 5e-6, triangular
learning rate scheduler with a warmup of 500 steps,
and training over 5 epochs. Each RoBERTa model
is trained with the same set of hyper-parameters
but a smaller batch size of 16. We selected these
parameters based on early experiments and did
not perform any hyper-parameter tuning thereafter.
All the baseline models are trained with their de-
fault hyper-parameters provided by the authors. All
the experiments are performed on single-GPU ma-
chines (either V100 GPUs or RTX 8000s).

We always used nucleus sampling to sample se-
quences from the BART models. To sample the
sub-question using the SQuAD sub-question gen-
erator, we sampled 5 questions for each step with
p=0.95 and max question length of 40. To sample
the question decompositions during inference, we
additionally set k=10 to reduce the noise in these
questions.

A.1 Training SQuAD Question Generator

We use the SQuAD 2.0 answerable questions to
generate the training data for our SQuAD question
generator. We use the nouns, verbs, nouns, adjec-
tives and adverbs (pos tags=[NOUN, VERB, NUM,
PROPN, ADJ, RB]) from the question to define the
vocabulary hints (after filtering stop words). To
simulate the noisy vocabulary, we also add distrac-
tor terms with similar pos tags from other questions
from the same paragraph. We sample j € [2,...,7]
distractor terms for each question and add them to
the vocabulary hints.

A.2 Generating sub-questions

For every step in the reasoning process, we gener-
ate 5 questions using nucleus sampling. We select
the questions that the corresponding sub-model is
able to answer correctly. For each sub-question, we
generate 5 questions in the next step (and so on).
At the end, we select all the successful question
chains (i.e each sub-question was answered by the
sub-model to produce the expected answer at each

step).

A.3 Selecting Question Decompositions

It is possible that some of these sub-questions,
while valid answerable questions, introduce other
words mentioned in the paragraph. However, these

may not be valid decompositions of the original
question. E.g., for the complex question: "When
was the 44th US President born?", the sub-question
may state "Who was the 44th President from
Hawaii?". While this a valid question with the
expected intermediate answer, it introduces irrele-
vant words that would not be possible for the next-
question generator to learn.

To filter out such potentially noisy decomposi-
tions, we compute three statistics based on non-
stopword overlap. We compute the proportion of
new words introduced in a decomposition © =
{--, @i, a;, ...ap, } that were not in the input ques-
tion or any of the previous answers, that is:

_ ‘Ui{weqz'\w¢qcande<iw§Zaj}‘

o) [{w € gc}|

We also compute the number of words from the
input question not covered by the decomposition:

_ [{w € qc|Viw & ¢}

p(w) Hw c qc}‘

Lastly, we compute the number of answers v
that were not used in any subsequent question, i.e.,
the sub-question associated with this answer is ir-
relevant:

v(u) = |{ai | =(Jw € a; s.t. w € g where j > i

or w € an)}|

We only select the decompositions where 6 <
0.3, 4 < 0.3,0+u < 0.4, and v = 0. To prevent a
single question from dominating the training data,
we select upto 50 decompositions for any input
question. These hyper-parameters were selected
early in the development and gave reasonable re-
sults. Minor variations did not have a substantial
impact and hence were not tuned on the target set.

A.4 Inference Parameters

We sample n; questions in the i question decom-
position step. To ensure sufficient exploration of
the search space, we initially sample a larger num-
ber of questions but scale them down every step
for efficiency. Due to the pipeline nature of our
system, it is difficult for our model to recover from
any missed question early in the search. We set
the number of sampled questions as n; = N * r’
where N=15 and r» = % When we use greedy
inference, we just sample one most-likely ques-
tion using beam search with width=4. For the QA
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DROP HotpotQA
All Diff Comp Cmpl All Bridge Comp.
E G R EM | F1 F1 F1 F1 EM | F1 EM | F1 EM | F1
MODULARQA vV vV V 86.61879 852 81.0 96.6 48.5161.8 50.71649 39.8149.2
BART X v X 26.7128.0 77 715 12.8  38.0149.0 4041529 28.0133.7
NMN-D¥ v ox o x  T71.0179.1% - - - - - -
NumNet+V2 X X X 90.6191.6 865 945 95.5 - - -
SNMNt VR - - - - 50.0163.1 48.8163.8 54.8160.1
Quark X X X - - - - 6171755 62.5178.1 5831649

Table 4: Expanded version of the quantitative part of Table 2, reporting both F1 and EM scores in each case. The
first three columns, as before, denote qualitative capabilities of each model: whether it can Explain its reasoning,

Generalize well to multiple datasets, or Re-use existing QA models.
(S) What percent
of the population (C) not(9.8)
was ltalian? ’ 90.2 ] Chai
Complex ain +
. —> NextGen =—--» QA NextGen r--> QAC NextGen ---
Question s ng = N — n2 | Answer
Q A \
How many %«g\ . Q S \ S QC: How many percent were not
percent were 02 \\ \\ ltalian? QI: (S) What percent of
not Italian? <« the population was ltalian? A: 9.8
4 QAc QAC QI (C) not(9.8) A: 90.2 QS: [EOQ]

Figure 5: A sample inference chain scored by MODULARQA for a negation DROP question. For each ngy question
generated in the first step, we will explore ny questions in the second step (and so on). We use our scoring function
w to select the optimal inference chain+answer (and prune incomplete low-scoring chains).

models, we always select the most likely answer.
When there are multiple input paragraphs (e.g.,
HotpotQA), we run the QA model against each
paragraph independently and select the most likely
answer based on the probability.

To score each generated question, we again rely
on the same word-overlap statistic used to filter
decompositions. We only use the 6 metric that
captures the number of new words introduced in
a question chain. The other two metrics are non-
motonic i.e they could go down depending on fu-
ture questions and answers in the chain. At the end,
we use a chain scorer (described next) to score each
decomposition chain. While we use the 6 metric
to guide the search, we primarily rely on the chain
score 4 to select the right answer. As a result, the
final score for a chain « is a weighted combination
of these two metrics with higher emphasis on §

score(u) = O(u) + Ao(u)

where A=10 (was set initially during development
and not fine-tuned). ¢ can only be computed for a
complete decomposition and is set to zero for the
intermediate steps. Note that higher this score, the
worse the chain i.e. we need to find the chain with
the lowest score. This scoring function is mono-
tonically increasing as any continuation of a chain
will have the same or higher score. We can thus
ignore any partial chains with higher scores once

we find a complete chain with the lowest score.

A.5 Chain Scorer

To train the scorer, we first collect positive and
negative chains by running inference with just the
0 metric. For efficiency, we set the inference pa-
rameter N=5 here. For every complete chain, we
compute the F1 score of the final answer with the
gold answer. If the F1 score exceeds a threshold
(0.2 in our case), we assume this chain to be a posi-
tive example. We collect such positive and negative
chain examples from the training set and then train
a RoBERTa model to classify these chains. We use
the RoOBERTa model’s predicted probability for the
negative class as the score 9.

A.6 Less Data Training

Since we sample the training data for our next-
question generator, we can generate more training
data by sampling more questions. When training on
20% of the training data, i.e. only 2600 questions,
we sample 15 questions at each step when we are
generating the sub-questions(App. A.2). Similarly
we increase N=10 to generate more chains for the
chain scorer(App. A.5).

B Additional Results

Table 4 expands upon the quantitative results in
Table 2 and reports both F1 and EM (exact match)
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Operation QA Model, Ac

Question Generator, G¢

diff(X,Y,[Z]) Return absolute difference between X

and Y. If Z € {days, months, years},

find the difference in Z.
not(X) Return 100 - X
if_thenX If X is [<>#] Y, return Z else return W
[<>#]1Y,Z, W)

Generate questions with all possible date/number pairs as X,Y. If
Z € {days, months, years} is mentioned in the question, add Z

Generate questions for every number < 100 as X.
Generate questions with all possible date/number pairs as X and
Y. Use pair of entities in the question as Z and W.

Table 5: Set of operations handled by the symbolic calculator model A¢ and the corresponding approach to generate

such questions in G¢.

scores in each setting considered.

C Human Evaluation

To identify a subset of questions that might be
within the scope of our system, we used the
human-authored BREAK decompositions (Wolf-
son et al., 2020) and filtered out questions that
require Boolean operations or list operations. We
identified the former by the presence of patterns
such as "Which is true" and latter by the presence
of plural return terms in the sub-questions.

On this resulting subset of 253 questions, MOD-
ULARQAIs comparable to the DecompRC system
with only a 2pt F1 gap. Out of the 253 in-scope dev
questions, DecompRC did not produce a chain at
all (i.e., relied on single-hop reasoning) for 79 ques-
tions, whereas MODULARQA did produce a chain.
In contrast, MODULARQA failed on only 12 ques-
tions on which DecompRC succeeded in producing
a chain (both systems failed on 3 questions).

We used crowdworkers to annotate the gener-
ated explanations?? on 155 questions where both
systems produced a chain. The annotation cov-
ered three dimensions: (1) given the explanation,
which system’s answer do they trust; (2) which
system’s explanation do they understand better;
and (3) overall, which system’s explanation do they
prefer (subjective).

D Hints for Complex QA Tasks

To apply Text Modular Networks to any complex
QA dataset, we need to be able to extract the hints
needed by the sub-task question model. As men-
tioned earlier, these need not have full coverage or
have 100% precision.

2We normalized explanations from both the systems for a
fair comparison, e.g., lower-cased our explanations, used the
system’s answers for both, and converted symbolic terms in
both explanations to natural language.

D.1 HotpotQA

The questions gc in HotpotQA have two support-
ing gold documents: d; and do. Additionally they
are also partitioned into two classes: Bridge and
Comparison questions.

D.1.1 Bridge Questions

There are two forms of bridge questions in Hot-
potQA:

Composition questions: These questions need
to first find an intermediate entity e; that is referred
by a sub-question in HotpotQA. This intermediate
entity points to the final answer through the second
sub-question. Generally this intermediate entity
is the title entity of the document containing the
answer. Say ds is the document containing the
answer and d; is the other document. If we are
able to find a span that matches the title of d in d;
and the answer only appears in dz, we assume it to
be a composition question. We set e; to the span
that matches the title of ds in d;.

For the question vocabulary, we could use the
terms from the entire question for both steps. Also
the second sub-question will use the answer of the
first sub-question, so we add it to the vocabulary
too. However, we can reduce some noise by re-
moving the terms that are exclusively appear in the
other document. The final hints for this question
are:

p1=di;a1 = er; 21 = ((qe, di, dg)
p2 = da;as = a; z2 = ((qc, da, d1) + €1

where ((q, d1, d2) indicates the terms in ¢ that ap-
pear in dg but not in dj.

Conjunction questions: These class of ques-
tions do not have any intermediate entity but have
two sub-questions with the same answer e.g. “Who
is a politician and an actor?”. If the answer ap-
pears in both supporting paragraphs, we assume
that it is a conjunction question. The hints for such
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Complex Q

Input Hints 2z

Output Sub-Questions

qc: How many years did it
take the services sector to
rebound after the 2002 de-

crease?

ai: 2002, vi: ®(ge), p1: p

q1: When did the services sector take a decrease?; t1: S

az: 2003, vo: ®(ge), p2: p

q2: When did the services sector rebound?; ta: S

az: 1, vg: [“diff”, “20027,
20037, p3: p

q3: dif£(2002, 2003); ts: C

qc: Which ancestral group
is smaller: Irish or Italian?

ar: 12.2, v1: ®(qc), p1: p

q1: How many of the group were Irish?; t1: S

asz: 6.1, va: <I>(qc), p2:p

q2: How many Italian were there in the group?; ta: S

as: 1, vs: [“if_then”,
“12.2”,“6.1”], p3: p

qs: 1f_then(12.2 < 6.1, Irish, Ital-
ian); ts: C

gc:  How many percent
of the national population
does not live in Bangkok?

ai: 12.6, vi: ®(qe), p1: p

q1: What percent of the national population lives in

Bangkok?; t1: S

a2: 87.4,
“12.67], p2: p

vo:[“not”,

q1: not(12.6); t2: C

gc: Little Big Girl was a

a1: Raymond S Persi, v;:

Simpsons episode directed  ((qc,d1,d2), p1: d1

q1: Who directed “Little Big Girl”?;t1: S

by the animator and artist

. . as: American, Vg
f what nationality?
g C(ge,d2,di)+ a1,  pa:
da

q1: What nationality was Raymond S?; t2: S

Table 6: Sample hints and the resulting decomposition for DROP and HotpotQA examples. The function ¢ selects
non-stopword words and ((q, d1, dz) selects the words from ®(q) that don’t exclusively appear in ds.

questions are simple:

p1=di;a1 = a; 21 = ((qc, di, da)
p2 = do;as = a; 22 = ((qc, da, dy)

D.2 Comparison Questions

These questions compare certain attribute between
two entities/events mentioned in the question. E.g.,
“Who is younger: X or Y?”. We identify the
two entities e; and e in such questions and find
dates/numbers that are mentioned in documents.
For every nj, no number/date mentioned in the
document d; and do respectively, we create the
following hints:

p1 = di;a1 = ni; 21 = ((qc, di, da)
p2 = da; az = ng; 22 = ((qc, da, dy)
p3 = ¢;a3 = a; 23 = [1f_then,ni, ng, e1, e

The final set of hints would be used by the
calculator generator to create the questions:
if_then(m > ng,el,eg) and if_then(n1 <
ng, €1,€2).

D.3 DROP

For the questions in DROP, we first identify the
class of question that it may belong to and then
generate the appropriate hints. Note that one ques-
tion can belong to multiple classes and we would
generate multiple sets of hints in such cases. The
questions gc in DROP have only one associated
context p.

D.3.1 Difference Questions

We identify these questions based on the presence
of term indicating a measurement: "how many"
and terms indicating difference such as “shorter’,
“more”, “days between”, etc. We remove questions
that match patterns indicating counting or mini-
mum/maximum such as “shortest”, “how many
touchdown”, etc. Table 7 shows the regexes that
must match and ones that must not match for a
question to be categorized as a difference question.

Finally we check for two dates or numbers in
the context such that their difference (in all units)
can lead to the final answer. If these conditions are
satisfied, for every pair n1, no where the difference
(in units u) can lead to the final answer, we generate
the hints:

p1 = p;a1 =ny; v = P(ge)
p2 = p;az = na; vy = ®(gc)
p3 = ¢;a3 = a;v3 = [diff, ny, no, u

D.3.2 Comparison questions

We identify these questions based on the presence
of the pattern: “ques: e; or eo”(specifically we
match  “([7,1+) [:,]1(.x) or (.x)\2").
We handle them in exactly the same way as
HotpotQA. Since DROP contexts can have more
dates and numbers, we select numbers and dates
that are close to the entity mentioned (Gupta et al.,
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Must match

Should not match

" *how many (daysimonthslyears).*", " *how
many.*(dayslmonthslyears).* between .*", ".*how many.*
shorter .+ than .*", ".*how many.* shorter .+ compar.*", ".*how
many.* longer .+ than .*", ".*how many.* longer .+ compar.*",
".*how many.* less .+ than .*", ".*how many.* less .+ compar.*",
"*how many.* more .+ than .*", ".*how many.* more .+
compar.*", " *difference.*"

" Fminimum.*", " *maximum.*" ".*longest.*", ".*shortest.*",
" *highest.*", ".*lowest.*", " *first.*", " *last.*", ".*second.*",
" *third.*", ".*fourth.*", ".*how many touchdown.*", ".*how
many field goal.*", ".*how many point.*", ".*more touch-
down.*", ".*more field goal.*", ".*more point.*"

Table 7: Regexes used to identify difference questions and filter out false positives.

Type Sub-Type Description #Errs
Low Score RoBERTa chain scorer model returned a lower score for the 5
correct decomposition
Decomposition Incomplete The decomposition missed a key part of the complex question 3
(e.g. "When did Killgrew marry?" instead of "When did Killgrew
marry Catherine?")
Sampling A correct and better scoring decomposition exists but was not 3
generated during the search
Long Question A sub-question exceeded the max token length of 40 set during 2
question generation
Missed Decomp Valid decomposition was not generated 2
Noisy Q Questions in the generated decomposition were ill-formed 1
Incorrect Ans SQuAD QA model produced an incorrect answer 3
QA No Answer SQuAD QA model produced no answer i 2
Partial Answer SQuAD QA model produced a partial answer span 1
MathQA format mismatch | Math QA model was unable to handle input format (e.g. 4
if _then(1683-99 > 1591-92,...
Out-of-scope Question can not be handled by our sub-models 2
Dataset Question makes assumptions not stated in text 2

Table 8: Break down of errors in 30 DROP questions incorrectly answered (F1 < 0.5) by MODULARQA

2020).

p1 = p;a1 = n1;v1 = P(ques) +e;
p2 = p;az = na;va = P(ques) + ez

p3 = ¢;a3 = a;vz = [if_then,ni, ny,e1, 2]

D.3.3 Complementation questions

We  identify  these  questions  purely
based on the presence of “* not .*7
in the question(specifically we  match

“*(.xpercent.*) (\Wnot\W|n’t\W) (.=*)S$*)
and a number in the context n; such that the

a = 100 — n;. The hints are pretty straightforward
too:

p1 = p;a1 =ni;v; = $(qe)

p2 = ¢;az2 = a;vy = [not, n]
E Drop Error Analysis

See Table 8 for the different error types and their
counts. Since the search does not explore all pos-
sible decompositions, it is possible that there are
other decompositions not considered in this analy-
sis. For example, we marked a question to have an
error due to “sampling” if running inference again

found a higher scoring, valid decomposition that
led to the correct answer. However, it is possible
that an exhaustive search would find an invalid de-
composition with an even lower score. Similarly
the error cases due to "Incomplete” decomposition
or "No Valid" decomposition could also be due to
sampling issues.
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