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Abstract

Recent work on unsupervised question answer-
ing has shown that models can be trained with
procedurally generated question-answer pairs
and can achieve performance competitive with
supervised methods. In this work, we con-
sider the task of unsupervised reading compre-
hension and present a method that performs
“test-time learning” (TTL) on a given con-
text (text passage), without requiring training
on large-scale human-authored datasets con-
taining context-question-answer triplets. This
method operates directly on a single test con-
text, uses self-supervision to train models on
synthetically generated question-answer pairs,
and then infers answers to unseen human-
authored questions for this context. Our
method achieves accuracies competitive with
fully supervised methods and significantly out-
performs current unsupervised methods. TTL
methods with a smaller model are also com-
petitive with the current state-of-the-art in un-
supervised reading comprehension.

1 Introduction

Reading comprehension is the task in which sys-
tems attempt to answer questions about a passage
of text. Answers are typically found in the passage
as text-spans or can be inferred through various
forms of reasoning (Rajpurkar et al., 2016). The
answer to the following question:

“Who is the President of the United States?”

depends on the timeframe and context of the pas-
sage provided, and will be different for news ar-
ticles written in 2001 vs. 2021. If the context is
the script of the TV series “The West Wing”, the
answer is “Jed Bartlet”, and even in this fictional
setting, it will later change to “Matt Santos”.
Knowledge sources such as Wikipedia get up-
dated when new events occur (such as the outcome
of elections), or new facts about the world are re-
vealed (such as scientific discoveries), with con-
tributors adding new information and removing

tgokhale,

chitta@asu.edu

information that is no longer valid (Almeida et al.,
2007). With such context-dependent answers and
continual changes in knowledge, it is hard to justify
training models over fixed corpora for tasks such as
question answering (QA). We would like models
to answer questions based on the given context and
not to learn biases from datasets or historical news
articles.

Moreover, supervised learning has been shown
to perform poorly in QA tasks with adversarial ex-
amples (Jia and Liang, 2017), domain shift (Jia and
Liang, 2017; Yogatama et al., 2019; Kamath et al.,
2020), and biased or imbalanced data (Agrawal
et al., 2018; McCoy et al., 2019). For example, QA
systems trained on Wikipedia fail to generalize to
newer domains such as Natural Questions (Ren-
nie et al., 2020) or biomedical data (Wiese et al.,
2017), and suffer a significant drop in accuracy.
Even small semantics-preserving changes to input
sentences, such as the substitution of words by syn-
onyms, have been shown to degrade performance
in NLP tasks (Alzantot et al., 2018; Jia et al., 2019).
Continual changes in text corpora are inevitable,
thus calling for the development of robust methods
that can reliably perform inference without being
subject to biases.

Supervised Question Answering faces chal-
lenges such as the need for large-scale (usually
human-authored) training corpora to train mod-
els. Such corpora typically require significant post-
processing and filtering to remove annotation arti-
facts (Sakaguchi et al., 2020). To address these
challenges, some recent methods (Lewis et al.,
2019; Li et al., 2020) approach question answering
as an unsupervised learning task. A significant ad-
vantage of this approach is that it can be extended
to domains and languages for which collecting a
large-sized human-authored training corpus is chal-
lenging. Methods for unsupervised QA procedu-
rally generate a large corpus of (context, question,
answer) triples, and train large neural language
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models, such as BERT (Devlin et al., 2019).

In this work, we focus on unsupervised reading
comprehension (RC) under evolving contexts and
present the “Test-Time Learning" paradigm for this
task. RC — the task of answering questions about
a passage of text, acts as the perfect setting for ro-
bust question-answering systems that do not overfit
to training data. While large-scale language mod-
els trained on large datasets may contain global
information, the answer needs to be extracted from
the given context. Thus, our work seeks to learn
unsupervised reading comprehension without ac-
cess to human-authored training data but instead
operates independently on each test context. This
makes our method ‘distribution-blind” where each
new context is assumed to be a novel distribution.
The test-time learning (TTL) framework enables
smaller models to achieve improved performance
with small procedurally generated question-answer
pairs, and is summarized below:

* a single context (text passage) c; is given, from
which we procedurally generate QA pairs;

* these QA pairs are used to train models to an-
swer questions about ¢;;

* the inference is performed on previously unseen
questions for ¢;.

This framework has a simple assumption that
every context comes from a distinct distribution.
Hence, parameters learned for the previous context
might not be useful to generalize to other contexts.
This assumption holds where the contexts evolve
over time, and rote memorization of answers might
lead to wrong predictions. As such, the above pro-
cess is repeated for each new context c;.

For question-answer generation, we use simple
methods such as cloze-translation (Lewis et al.,
2019), template-based question-answer genera-
tion (Fabbri et al., 2020) and question-answer se-
mantic role labeling (QA-SRL) (He et al., 2015).
We use two neural transformer-based language
models, BERT-Large (Devlin et al., 2019) and Dis-
tilBert (Sanh et al., 2019), to study the efficacy of
our framework with large and small transformer
models. We evaluate our method on two reading
comprehension datasets, SQuAD (Rajpurkar et al.,
2016) and NewsQA (Trischler et al., 2017). We in-
vestigate test-time training under multiple learning
settings: (1) single-context learning — the “standard”
setting, (2) K -neighbor learning — by retrieving top-
K multiple related contexts for each test context,
(3) curriculum learning — progressively learning on

question-types of increasing order of complexity,
(4) online learning — sequentially finetuning models
on each incoming test sample.

Our experimental findings are summarized below:
* Test-time learning methods are effective for
the task of reading comprehension and surpass
current state-of-the-art on two benchmarks:
SQuAD and NewsQA.

* Online TTL trained over K-neighboring con-
texts of the test context is the best version with
EM/F1 gains of 7.3%/7.8% on SQuAD 1.1
and 5.3%/6.9% on NewsQA.

* DistilBERT — which has less than éth of the
number of model parameters of BERT-Large
is competitive with current SOTA methods
that use BERT-Large.

2 Test-Time Reading Comprehension

Consider a reading comprehesion test dataset
Dlest={(¢;, q;,a;)}_, with context text passages
¢;, human-authored questions ¢; and true answers
a;. The QA model ¢g(-) is parameterized by 6 =
(6f,61) where 0 are parameters for the feature
extractor, and 6, for the answering head. The
answer is predicted as a text-span, given by the
start and stop positions [Ystart, Ystop). Contem-
porary unsupervised RC models (Lewis, 2019;
Li et al., 2020) are trained on a large dataset
f)t"“m:{(ci, i, ;) 11, where the QA pairs are
synthetically generated from the context.

In our setting, we do not use such large training
datasets, but instead directly operate on individual
test contexts ¢; € D', Given ¢;, M synthetic
question-answer pairs {(g/,a’)}}L, are procedu-
rally generated as described in Section 3. The QA
model parameters 6 are trained over the synthetic
data to predict the span of the answer [Jstart, Ustop)
by optimizing the 10ss {4s:

M
miniGmize Zl Eans(cga qua 0) (1)
J:

Eans - ECE (gstartv dstart) + ECE (gstopa &stop) (2)

where {¢ is cross-entropy loss. The inference is
performed on human-authored questions to predict
the answer spans:

[ystarta ystop] = g(c, CI)- 3)

Next, we describe the variants of test-time read-
ing comprehension.
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% Context Per-Context Training Dataset
2 The Normans (Norman: Nourmands; French: Q: What was someone descended from? Synthetic
w | Normands; Latin: Normanni) were the people who in A Norse \
E the 10th and 11th centuries gave their name to q Question
| Normandy, a region in France. They were descended Procedural Q: What evolved?
% from Norse (\"Norman\" comes from \"Norseman\") Q-A pair A: distinct cultural and ethnic identity of the Normans
o raiders and pirates from Denmark, Iceland and )
O | Norway who, under their leader Rollo, agreed to Generation Q: When did the distjnﬁt cultural and ethnic identity of QA Model
O | swear fealty to King Charles Ill of West Francia the Norm.ans emerge initially? 0
% Through generations of assimilation and mixing with A:  the first half of the 10" century
the native Frankish and Roman-Gaulish populations
< , . " . o
é their descendants would gradually merge with the AQ }-éom:jdld"someone merge with something?
w | Carolingian-based cultures of West Francia. The . radually
; dls‘t\rmtd@\lfrﬂ a»ndﬂothfmrt \ydo‘rfwmryt;f ’tl}z)(;y Nnmtmns Q: Who in the 10t and 11" century gave their name to
= | emerged initially in the first half of the h century, Normandy? 5 5
;‘ and it continued to evolve over the succeeding A NomYlans [ystarttystop]
& centuries Predicted answer span
o In what country is Normandy located ? Normandy
= . QA Model th th i
o When were the Normans in Normandy ?  _ " 10t and 11t centuries
w 0
= Who was the Norse leader ? Rollo

Figure 1: Overview of our self-supervised test-time learning framework for reading comprehension. Our method
does not require a human-authored training dataset but operates directly on each single test context and syntheti-
cally generates question-answer pairs over which model parameters 6 are optimized. The inference is performed
with trained parameters 8* on unseen human authored questions.

Single-Context Test-Time RC. This is the stan-
dard formulation of test-time learning in this paper,
with Equation 1 optimizing over 0, i.e. for each
context ¢;, the feature extractor 6 is re-initialized
with pre-trained BERT, and the answering head 6},
is randomly initialized.

K -neighbor Test-Time RC. In this version, K
contexts similar to the test-context ¢; are grouped
together, and Equation 1 is optimized over each set
of similar contexts as opposed to single contexts in
the standard setting. We index contexts in a Lucene-
based information retrieval system (Gormley and
Tong, 2015) and retrieve top-K similar contexts
given c;, which we call Context Expansion with IR
described in Section 3.

Curriculum Test-Time RC. In the curriculum
learning version, questions are ordered in increas-
ing order of complexity. We generate different
types of questions, such as, semantic role labelling,
cloze-completion, template-based and dependency
tree-based translation of cloze questions to natural
questions. This provides an ordering of complexity
and we study the effect of test-time training with
such an increasing complexity.

Online Test-Time RC. In the online test-time
learning (TTLO), test samples are considered to
be encountered in sequence. As such, answer-
ing head parameters 6, are updated sequentially
without being randomly re-initialized like in the
standard single-context setting. For each new test
context c;, 0, is initiliazed with the optimal pa-

rameteres from the previous test context ¢;_; to
optimize Equation 1.

3 Self-Supervised QA Generation

In this section, we detail our framework for proce-
durally generating QA pairs from a given context.
We use named-entity recognition from Spacy (Hon-
nibal and Montani, 2017), dependency parsing
from Berkeley Neural Parser (Stern et al., 2017)
and semantic role labeling (He et al., 2015) as our
core methods to extract plausible answers and gen-
erate natural questions. As described in our task
formulation, we create a set of M question-answer
pairs {(q/,a;)}}L, for the given context ¢;.

Cloze Generation. Statements in which the an-
swer is replaced with a mask or blank token are
called cloze questions. We follow the steps pro-
vided in Lewis et al. (2019) in which answers are
replaced with a special token depending on the
answer category. For example, in a sentence,

“They were descended from Norse raiders and pirates
from Denmark”

the answer Denmark is replaced by [LOCATION],
resulting a cloze question:

“They were descended from Norse raiders and pirates
from [LOCATION]”.

Cloze Translation is utilized to rephrase cloze
questions into more natural questions by using rule-
based methods from Lewis et al. (2019).
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Template-based Question Generation utilizes
simple template-based rules to generate questions.
Given a context of format:

[FRAGMENT A][ANSWER|[FRAGMENT B]

a template of the format “Wh+B+A+7” replaces
the answer with a Wh-word (e.g., who,what,where)
as described in Fabbri et al. (2020).

Dependency Parsing-based Question Genera-

tion. In this method, we use dependency recon-

struction to translate clozes to natural questions
as described in Li et al. (2020), according to the
following steps:

1. Right child nodes of the answer are retained
and left children are pruned.

2. For each node of the parse tree, if the child
node’s subtree contains the answer, the child
node is moved to the first child node.

3. An in-order traversal is performed on the re-
constructed tree. A rule-based mapping is ap-
plied to replace the special mask token of the
cloze with an appropriate “Wh-word”.

QA-Semantic Role Labeling (QA-SRL) was
proposed by He et al. (2015) as a method to anno-
tate NLP data, by using QA pairs to specify textual
arguments and their roles. As seen in Figure 1, for
the context sentences:

“They were descended from Norse raiders and pirates
from Denmark.”,
“The distinct cultural and ethnic identity of the Normans
emerged initially in the first half of the 10th century
and it continued to evolve.”
the following QA pairs were generated,

(“What was someone descended from?”, “Norse”),
(What evolved?, distinct cultural and ethnic diversty)
We can observe the questions are short and use
generic descriptors and pronouns such as “some-
thing” and “someone” instead of specific refer-
ences calling for the model to have greater semantic

understanding of the given context.

Context Expansion using IR is used in the K-
neighbor version of TTL. For Context Expansion,
we index all paragraphs present in a Wikipedia
dump in ElasticSearch. During test-time learning,
we preprocess the context ¢; by removing the most
frequent stop-words, and use it as a seed query to
search and retrieve top-K similar contexts. This
provides us with related paragraphs that describe
similar topics, and consequently more diverse and
slightly larger number of QA pairs to train com-
pared to only c;. We then generate QA pairs using

the above described methods. We study the effect
of varying the number of most similar contexts (K)
on the downstream QA performance.

4 Experiments

Datasets. We evaluate our learning frame-
work on two well-known reading comprehension
datasets: SQuAD 1.1 (Rajpurkar et al., 2016) and
NewsQA (Trischler et al., 2017).

QA Model. We focus on training two
transformer-encoder based models, BERT-
Large (Devlin et al., 2019) trained with whole-
word masking and DistilBERT (Sanh et al., 2019).
BERT-Large is used by current state-of-the-art
methods on unsupervised extractive QA tasks
and has 345 million trainable parameters. On the
other hand, DistilBERT is a knowledge-distilled
transformer-encoder based model and only
has 66 million parameters (~ 5x smaller than
BERT-Large), allowing us to study the efficacy of
TTL with respect to model-size.

Metrics. We use the standard metrics for extrac-
tive QA — macro Exact Match, where the predicted
answer span is directly matched with the ground-
truth, and macro F1, which measures the over-
lap between the predicted and the ground-truth
spans. For comparisons with existing unsupervised
methods, since TTL operates directly on test in-
stances, we report validation set performance only
for SQUAD 1.1, as the test set is hidden.

Training Setup. For all test-time learning vari-
ants, we limit the maximum number of questions
generated per context to 4000 and the maximum
number of training steps to 1500. The number
of training steps is linearly dependent on the se-
lected batch size € [16,64]. For our K -neighbor
TTL setup that uses Context Expansion, we limit
the number of retrieved contexts to 500. In Cur-
riculum Test-Time RC, we ensure that all variants
have an equal number (1000) of generated QA-
pairs per-context. We evaluate multiple learning
rates within the range le-5 to 5e-5. We use the
Adam (Kingma and Ba, 2014) optimizer and trun-
cate the paragraphs to a maximum sequence length
of 384. The number 384 was chosen by evaluating
the 99" percentile of the combined length of ques-
tion and the contexts, to reduce training overhead
and GPU memory size. Long documents are split
into multiple windows with a stride of 128. All
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SQUAD 1.1 NewsQA SQuAD 1.1 NewsQA
Models Dev Test Dev Test Models Dev Test Dev Test
DCR (2016) 62.5/712 625/71.0 /- /- BERT-Large
mLSTM (2016) 64.1/73.9 647/737 344/49.6° 34.9/50.0" +Dhingraetal.!  284/358 -/- 18.6/27.6 18.6/27.2
FastQAExt (2017) 70.3/78.5 70.8/78.9  43.7/56.1 42.8/56.1 + Lewis et al. 454/55.6 442/547 196/285 17.9/27.0
R-NET (2017) 71.1/79.5  71.3/79.7 /- /- +Lietal 62.5/72.6 61.1/714 33.6/463 32.1/45.1
BERgéﬁrTg?z(é%;)) 3442;911 Zgéjgig ; /-7/%-6 + Fabbri et al. 46.1/56.8 -/- 21.2/29.4 -/-
Span -/- 8794 -/- - /73, + our data 49.4/59.1 -/- 282/37.6 27.3/364
DistilBERT (2019)  77.7/85.8 -/- 572/648  56.1/63.5
DistilBERT
] +Lewisetal data  23.4/29.5 -/- 14.1/21.6 14.7/206
Table 1: Results (EM / F1) from supervised methods +Lietal. data 42.6/483 == 254/362 27.1/354
+Fabbrictal. data  37.5/45.6 -/- 163/223 16.1/229
on SQUAD 1.1 and NewsQA. +our data 38.9/46.8 - 232/319 224/31.1
BERT-Large TTL*  69.8/80.4 -/- 38.9/53.2 382/52.6
DistilBERT TTL* ~ 58.1/68.9 -/- 32.6/464 30.5/45.2

experiments were conducted on two Nvidia RTX-
8000 GPUs. We use ten percent of the training data
to perform three hyper-parameter trials for each
variant. We train models with three random seeds,
and report the mean F1 and EM scores.

Baselines. As we generate our own data using
QA-SRL, we use the following strong baselines.
First, we train BERT-Large with generated data
from previous methods described in Section 3 and
our method (which contains additional QA-SRL
samples). Second, we replicate the baselines us-
ing the low parameter-count model DistilBERT (66
million vs 345 million for BERT-Large). Third,
for a fair comparison to Single-Context and K-
neighbor test-time learning where we train models
for each context independently, we propose a base-
line where we train on all the test contexts together,
referred to as “All test contexts”. We also evaluate
all TTL variants on two initializations of feature-
extractor parameters —

1. “default” initialization of BERT-Large, i.e. 0 ¥
pre-trained on masked language modeling and
next-sentence prediction tasks, and 6y ran-
domly initialized for each context and trained
from scratch, or

2. 0 and 0), further pre-trained on 100K syn-
thetic QA pairs generated procedurally using
our methods described in Section 3 with con-
texts taken from the Wikipedia corpus.

5 Results and Discussion

5.1 Unsupervised Question Answering

We compare our results with current state-of-
the-art supervised methods (Table 1) and unsu-
pervised methods (Table 2) on SQuAD 1.1 and
NewsQA. The previous best unsupervised method
with both BERT-Large and DistilBERT is Li et al.
(2020). Our best TTL method is the Online version
(TTLO), with a pre-training phase and a randomly-
shuffled ordering of QA pairs with an average
of 3000 QA pairs per context, trained with only

Table 2: Comparison with previous unsupervised meth-
ods on SQUAD 1.1 and NewsQA. *We show the best
TTL model here, and results from all TTL variants in
Table 3. Metrics are EM / F1. Previous SOTA for both
models are shaded in gray. *results from Trischler et al.
(2017); T Lewis et al. (2019); ¥ Li et al. (2020).

Default init. 0 ¢ Pre-trained init. 05

TTL Models SQUAD 1.1  NewsQA SQUAD 1.1 NewsQA

BERT-Large
Single-Context 54.9 349 59.8 37.5
Single-Context Online 56.1 36.3 61.8 39.1
K -neighbor 66.2 41.6 783 50.7
K -neighbor Online 68.7 46.3 80.4 53.2
Curriculum 68.3 46.7 79.7 52.8
All test contexts 64.7 39.8 68.2 435

DistilBERT
Single-Context 37.2 232 49.4 34.6
Single-Context Online 38.5 25.3 55.6 39.8
K -neighbor 42.4 27.8 64.3 435
K -neighbor Online 49.7 29.1 68.9 46.4
Curriculum 493 28.7 68.7 45.8
All test contexts 424 28.2 474 38.7

Table 3: Comparison of Dev-set F1 scores for TTL vari-
ants, when 0 are trained from default initialization for
each test instance, or pre-trained on our generated data.
Scores surpassing previous best, are shaded in cyan for
SQuAD and red for NewsQA.

100 steps. With this setup, we are able to im-
prove the state-of-the-art for the SQuAD bench-
mark with BERT-Large by 7.8% exact-match ac-
curacy and 7.3% F1 score. With DistilBERT, the
best TTL method shows an improvement of 15.5%
EM and 20.6% F1 over DistilBERT-based baseline,
as shown in Table 2. In NewsQA, TTL improves
BERT-Large performance by 5.3% EM and 6.9%
F1 score, and with DistilBERT shows an improve-
ment of 7.2% EM and 7.2% F1 score.

Training BERT-Large and DistilBERT with “our
data” i.e. with a combined synthetic corpus cre-
ated via all four QA-pair generation methods,
marginally improves the F1 score. This shows
that our QA generation methods lead to an im-
provement over existing unsupervised QA gener-
ation methods as shown in Table 2. However, the
TTL framework leads to even larger gains (~20%
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Figure 2: Comparison of F1 scores of TTL models
when trained with an increasing number of labeled
training samples on SQuAD. TTLO-Online TTL.

for SQUAD and ~10% for NewsQA), indicating
the benefits of test-time learning. This result also
points to the limits of training with a large num-
ber of contexts compared to training on individual
contexts. This limitation is especially profound in
lower parameter models, such as DistilBERT. In
Reading Comprehension, since the answer comes
from the context, “understanding” the context is
much more relevant. It has a higher inductive bias
than learning to comprehend a significantly large
number of contexts during training.

For instance, there are multiple contexts about
Normans in the SQuAD dataset, one of which is
shown in Figure 1. But each context may have dif-
ferent historical persons referred to as the leaders or
rulers of the Normans. Answers to questions such
as “Who was the leader of the Normans” are better
learned for each context separately than from all
contexts. Pre-training on several contexts is indeed
beneficial to obtain better parameter initializations,
as observed in Table 2, which can be further inde-
pendently finetuned for each context during TTL.

5.2 Few-Shot Question Answering

We evaluate our best method under the few-shot
setting, i.e. when models are trained with a lim-
ited number of human-authored QA pairs from the
training datasets. Figure 2 shows a comparison
with an increasing number of labeled training sam-
ples for SQUAD. TTL-Online is consistently better
than existing methods and achieves 81.6% F1 score
with just 100 labeled samples. This indicates that
this learning framework can reduce the number of
in-domain human-authored samples required for
training. TTL-Online is also consistently better
than (Li et al., 2020) which the previous best unsu-
pervised method for SQuAD. All methods (which
use BERT-Large as backbone) converge to similar

Curriculum Order Default init. 0 Pre-trained 65

(Left to Right) SQuAD  NewsQA SQuUAD  NewsQA
BERT-Large
Random Shuffled 68.7 46.3 80.4 53.2
QA-SRL > T >DP 68.3 46.7 79.7 52.8
T > QA-SRL > DP 67.6 454 77.6 50.0
T >DP > QA-SRL 65.8 443 75.3 472
DistilBERT
Random Shuffled 49.7 29.1 68.9 46.4
QA-SRL > T >DP 49.3 28.7 68.7 45.8
T > QA-SRL > DP 48.8 28.1 67.2 439
T >DP > QA-SRL 47.1 26.5 65.3 39.2

Table 4: Dev-set F1 scores for K -neighbor Online test-
time learning, for different Curriculum Learning order-
ings of QA-SRL (He et al., 2015), T (template-based
methods), DP (dependency parsing).

NewsQA

3

—f— BERT+TTL

—f— Dist+TTL

SQUAD
—@— BERT+TTLO

80

45
75

40

o 200 400 600 o 200 400 600
Number of Contexts Number of Contexts

F1 Score (%)
% 8 8 3
w

@
g

Figure 3: Comparison of F1 scores of TTL models
when trained with an increasing number of contexts, on
both SQuUAD and NewsQA.

performance, with an increasing number of addi-
tional human-authored samples. This indicates the
saturation of the inductive bias that can be incor-
porated into the architecture using current human-
authored annotations.

5.3 Analysis

We study the different variants of test-time learning
and effects of hyperparameters, such as the number
of training steps and the number of contexts, on the
validation split for both datasets.

Single-Context vs K -neighbor Test-Time RC.
In Table 3, we compare all TTL variants. We ob-
serve that training with additional contexts has a
significant impact on F1 score, compared to train-
ing on only the given test context c;. This may be
simply explained as more synthetic training sam-
ples from similar contexts leading to a better gen-
eralization to human-authored samples. Although
similar work in image classification (Sun et al.,
2020) and super-resolution (Shocher et al., 2018)
show a substantial performance improvement in
a single sample learning, we observe that context
expansion is beneficial for reading comprehension.

In Figure 3, we vary the number of retrieved
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Figure 4: Effect of number of train steps on F1 scores
of each TTL model on both SQuAD and NewsQA.
PT-Pre-Trained 0, 0;,, DEF-Default 6 ¢, 0j,.

neighbors contexts, K, and observe that F1 scores
continue to increase till a limit (~ 500). This is
consistent in both BERT-Large and DistilBERT, as
well as in the two datasets, SQuAD and NewsQA.
Our hypothesis is that there exists an optimal num-
ber of QA pairs that the model benefits from, and a
maximum threshold on the number of similar con-
texts after which, the model starts to overfit to the
synthetic nature of the QA pairs.

Randomly initialized v/s Pre-trained 0,0},
We study the effect of re-initializing the question
answering head and further pre-training using a
set of procedurally generated QA-pairs on down-
stream test-time learning in Figure 4 and Table 3.
While F1 scores achieved without pre-training are
comparable to prior methods, pre-training leads to
improved performance and also faster convergence,
as shown in Figure 4. This can be attributed to
better initial weights, which are further finetuned
during the test-time learning phase. We studied pre-
training with 50k, 100k, and 200k QA pairs and
observed the best performance with 100k samples.

Curriculum Test-time learning. In Table 4 we
study the effect of curriculum TTL, compared to
the baseline of the default random-shuffled QA
pairs. Interestingly, using a random ordering rather
than a defined curriculum begets the best perfor-
mance. Among the three curriculum ordering that
we utilized, [QA-SRL, TEMPLATE-BASED (T),
DP (DEPENDENCY- PARSING-BASED)] was effec-
tive but slightly lower than the performance with
random ordering. However, training with QA-SRL
at the end has a distinctly negative effect. We hy-
pothesize that the model starts to overfit to the
shorter vague questions from QA-SRL and “for-
gets" more natural questions. Hence, it loses gener-
alizability to the human-authored questions.

Online-Test-time Learning. In online test-time
learning, the model is continuously self-supervised

SQUAD NewsQA
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Figure 5: Effect of number of questions on F1 scores
of each TTL model on both SQuUAD and NewsQA.
PT-Pre-Trained 6.

and evaluated on a continuous stream of contexts
and QA-pairs. From Table 3 and Figures 3, 4 and 35,
we can observe that TTL-Online consistently out-
performs the single-context variant. One key ob-
servation is that the model achieves its best per-
formance within 100 training steps (batch size of
48), whereas the base version needs around 300
to 500 steps. This fast adaptation enables a faster
inference time, compared to 6y, being trained from
scratch. We studied the effect of different random
orderings of the test samples and observed the de-
viation as £1.6% in F1 scores, which indicates
ordering of test samples has a minor effect.

Effect of Batch Size and Learning Rate. Batch-
size and learning rate have strong effects on online
test-time learning. We observe that resuming with
the learning rate of the last epoch of the pre-training
with synthetic QA pairs achieves the best F1 scores.
We do not use any weight decay. A persistent opti-
mizer state between contexts is critical. Similarly,
we hypothesize that the batch-layer normalization
statistics pre-computed in transformer encoder lay-
ers get updated in further pre-training with QA
pairs, leading to a better estimation during TTL.
For the base variant of TTL, a higher, fixed learn-
ing rate of 3e-5 with a batch size of 32-48 achieves
the best F1 scores.

Effect of number of Training steps and QA
pairs is studied in Figures 4 and 5. To limit infer-
ence time per test context, we observe TTL variants
initialized with pre-trained 6 achieve the top per-
formance within 150 training steps, whereas those
trained with default initialization need 200—300
steps. In Figure 5, we can observe the variants
achieve their best F1 scores around 3k QA pairs.
This appears consistent with 100 train steps with
a batch size of 24—32. Surprisingly, DistiIBERT
with pre-trained 6 performs equally well compared
to BERT-Large with no pre-training on synthetic
question-answer pairs.
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Effect of TTL on inference time. TTL and its
variants all increase the inference time as compared
to traditional inference. For the best variant of
TTL-Online with BERT-Large, we train for 100
steps with a batch size of 48 samples, which leads
to an inference time of ~5 minutes per context.
Each context contains, on average 6—7 questions
in SQuaD 1.1 and NewsQA. The best variant of
DistilBERT, although has a lower average inference
time of 1.6 minutes per context, by employing sev-
eral engineering tricks, such as saving models on
RAM instead of the disk by using tmpfs (Sny-
der, 1990), and using mixed-precision training (Mi-
cikevicius et al., 2018). In comparison, non-TTL
methods have inference times in the range ~ 10K
samples/sec with a GPU hardware of Nvidia V100
16GB. TTL inference time is limited by the current
computation power of the GPUs but is potentially
remediable. However, with an increase in CUDA
cores in GPUs and RAM size, we estimate the in-
ference time can be further improved. Moreover,
with newer efficient transformer architectures such
as Linformer (Wang et al., 2020) and Big Bird (Za-
heer et al., 2020), it is possible for this inference
time to be further reduced. It will be an interesting
future work to increase TTL’s efficiency further
while retaining its strength of generalizing to evolv-
ing distributions.

Error Analysis. We analyzed 100 wrongly an-
swered samples from SQuAD validation split and
observed the model is biased towards answering
named-entities. This is not unexpected as most
of our QA-pair generation methods are focused
on named-entity answers. For example, for the
question “Is it easier or harder to change EU law
than stay the same?”, the TTL DistilBERT model
generates “EU”, whereas the ground-truth answer
is “harder”. Although QA-SRL generates more
diverse answers, the corresponding questions are
vague and much more synthetic, leaving scope for
improving QA pair generation to include a variety
of question and answer types in the future. Another
source of errors is the alternate plausible answers
generated by our models, shown in Table 5.

6 Related Work

Extractive QA. The goal for extractive question
answering (EQA) is to predict a span of text in
a context document as the answer to a question.
Various benchmarks have been established to eval-
uate the capability of EQA models on corpuses

from different domains such as Wikipedia-based
question answering in SQuAD (Rajpurkar et al.,
2016), Natural Questions dataset (Kwiatkowski
etal., 2019), as well as questions requiring complex
reasoning to extract answers in HotPotQA (Yang
et al.,, 2018); questions about news’ articles in
NewsQA (Trischler et al., 2017); and about trivia-
facts in TriviaQA (Joshi et al., 2017).

Unsupervised QA. For many of the aforemen-
tioned extractive QA benchmarks, “human-like”
performance has been reached via supervised meth-
ods. Unfortunately, these methods do not transfer
well to new domains, and the collection of training
data in new domains and new languages may not
always be feasible. To address this, unsupervised
EQA has been proposed as a challenge (Lewis
et al., 2019), in which aligned (context, question,
answer) triplets are not available. Self-supervised
data-synthesis methods (Lewis et al., 2019; Baner-
jee and Baral, 2020; Rennie et al., 2020; Fabbri
et al., 2020; Li et al., 2020; Banerjee et al., 2020)
have been used for question answering by procedu-
rally generating QA pairs and training models on
these synthetic data.

Self-Supervised Learning. The key idea in self-
supervision is to design auxiliary tasks so as to and
extract semantic features from unlabeled samples,
for which input-output data samples can be created
from unlabeled datasets. Self-supervision has been
used to train large transformer-based language mod-
els such as BERT (Devlin et al., 2019) and T5 (Raf-
fel et al., 2020) for the auxiliary task of masked
token prediction, and XLNET (Yang et al., 2019)
for token prediction given any combination of other
tokens in the sequence. ELECTRA (Clark et al.,
2019) instead of masking tokens, jointly trains a
generator to substitute input tokens with plausible
alternatives and a discriminator to predict the pres-
ence or absence of substitution. MARGE (Lewis
et al., 2020) is trained to retrieve a set of related
multi-lingual texts for a target document, and to
reconstruct the target document from the retrieved
documents. The goal of self-supervised pretext task
design is to come up with tasks that are as close
to the main task, to learn better representations. In
NLP, QA format provides us such an opportunity
where we can leverage NER, SRL, Cloze Comple-
tion as auxiliary tasks for complex QA.

Learning at test-time. Our work is inspired by
image processing methods such as single-image
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Question

Predicted GT

‘What can block a legislation?

parliament majority in parliament

Which TFEU article defines the ordinary legislative procedure that ap- 294

plies for majority of EU acts?

TFEU article 294

Who was killed in Dafur ?

Red Cross employee Red Cross employee dead

Who does the African National Congress say should calm down ?

Archbishop Desmond Tutu ~ Tutu

Table 5: Error Analysis: Illustration of alternate plausible answers predicted by our models, but regarded as wrong

predictions for SQUAD and NewsQA.

super-resolution (Glasner et al., 2009; Freedman
and Fattal, 2011; Shocher et al., 2018) that do not
require access to external training datasets but in-
stead formulate a self-supervised task for upsam-
pling natural image patches recurring at different
scales in the image. Test-time training (TTT) (Sun
et al., 2020) for image classification makes use
of rotation prediction Gidaris et al. (2018) as an
auxiliary task to implicitly learn image classifica-
tion at test-time and shows improved robustness.
While we can directly synthesize main-task data
(QA pairs) from the context and do not require an
auxiliary task, our work is closely related to TTT.

Domain Adaptation. Pre-training for the tasks
such as masked language modeling or other syn-
thetic tasks on unlabeled corpora for a new do-
main has been evaluated for commonsense reason-
ing (Mitra et al., 2019) and classification tasks (Gu-
rurangan et al., 2020). On the other hand, our work
can be viewed as task-specific self-supervision with
each new context as a new domain.

7 Conclusion

In this work, we propose test-time learning (TTL)
as a new framework for unsupervised extractive
question answering (EQA). We present four vari-
ants of TTL with a simple but effective context ex-
pansion method. We utilize four question-answer
pair generation methods for EQA and propose us-
ing QA-SRL as an additional source of QA pairs, to
supplement prior methods. We show TTL enables
“understanding” of contexts at test-time, without
human-authored annotations, and significantly im-
proves EQA, including low parameter models.

We envision TTL as a framework that can direct
work in reading comprehension to be viewed as
a problem of ever-evolving datasets instead of a
static corpus. Natural language itself undergoes
continuous evolution (Gentner and France, 1988;
Traugott and Dasher, 2001; Hamilton et al., 2016)

via changes in preference for syntactical structures;
creation of new words and phrases; and chang-
ing usage frequencies and semantics for existing
words. TTL can potentially be applied to such sce-
narios with semantic drift or domain shift. Further
improvements w.r.t. selection of similar contexts
for K-neighbor TTL could be explored by leverag-
ing hard sample selection, hard negative mining,
bootstrapping, and contrastive learning, along with
improved currculum strategies.
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instance as a new distribution, and does not rely
on a human-authored training dataset. We believe
that this is a possible way to avoid learning spu-
rious correlations or linguistic priors, especially
when it comes to socio-cultural and historical bi-
ases that have been shown to percolate into models
for various NLP tasks (Hendricks et al., 2018; Ku-
rita et al., 2019; Sheng et al., 2019). On the other
hand, if the test context itself contains biased, false,
or propaganda statements, our model will use those
statements to extract answers. We would not want
models trained on such data to be deployed in the
real world. However, because model parameters
are randomly initialized for each new context in
the standard version of our framework, if contexts
are fact-checked by “reliable” sources, then we be-
lieve our model will be relatively bias-free, as com-
pared to pre-trained language models for which it
is hard to trace why a certain prediction was made.
Test-time learning allows us to disentangle biases
learned from single contexts, from biases learned
by language models from large corpora.
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