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Abstract
Reference-free evaluation has the potential to
make machine translation evaluation substan-
tially more scalable, allowing us to pivot eas-
ily to new languages or domains. It has been
recently shown that the probabilities given by
a large, multilingual model can achieve state
of the art results when used as a reference-free
metric. We experiment with various modifica-
tions to this model, and demonstrate that by
scaling it up we can match the performance
of BLEU. We analyze various potential weak-
nesses of the approach, and find that it is sur-
prisingly robust and likely to offer reasonable
performance across a broad spectrum of do-
mains and different system qualities.

1 Introduction

Traditional automatic metrics for machine transla-
tion (MT), such as BLEU (Papineni et al., 2002),
score MT output by comparing it to one or more ref-
erence translations. This has several disadvantages.
First, high-quality reference translations are expen-
sive to create. This means that in practice, evalu-
ation is usually carried out with relatively small,
carefully curated test corpora. The need for care-
ful preparation limits the number of domains for
which an MT system can be conveniently assessed,
and small test-set sizes can make it difficult to draw
robust conclusions (Card et al., 2020). Second,
enshrining ground truth in a small number of refer-
ences (usually just one) is inherently problematic,
since valid translations can vary along many di-
mensions; Freitag et al. (2020b) demonstrate that
different (correct) references for the same test set
can result in different system rankings according to
the same reference-based metric. Finally, scoring
the similarity between an MT hypothesis and a ref-
erence translation involves recognizing the extent
to which they are mutual paraphrases. When gross
discrepancies exist, this is a relatively easy problem
for which surface-level metrics can provide a reli-
able signal, but capturing the subtle errors typical

of high-quality MT is more difficult, and it is not
clear whether it is substantially easier than scoring
the similarity between texts in different languages.

These problems can be avoided by looking only
at the source text when assessing MT output. There
is evidence that this is the best practice for human
evaluation (Toral, 2020). Moreover, it has recently
been investigated for automatic metrics as well
(Yankovskaya et al., 2019; Lo, 2019; Zhao et al.,
2020; Ma et al., 2019). Such reference-free metrics
are flexible and scalable, but since they are essen-
tially performing the same task as an MT model,
they raise a circularity concern: if we can reliably
score MT output, why wouldn’t we use the scoring
model to produce better output? One answer to this
is practical: the scoring model might be too large to
deploy, or it might not easily support efficient infer-
ence (Yu et al., 2016). A more interesting answer
is that a scoring model could be set up to provide a
signal that is complementary to the systems under
evaluation. That is, it might be capable of correctly
ranking competing MT hypotheses even when its
own preferred hypothesis is worse on average than
those of the systems it is evaluating. In our experi-
ments we find that this can indeed be the case.

In recent work, Thompson and Post (2020)
showed that a single multilingual MT model trained
on 39 languages can achieve excellent paraphrase
recognition when used in zero-shot mode to com-
pare MT output with reference sentences in the
same language. On the WMT 2019 metrics task,
their method (Prism) beat or tied all previous
reference-based metrics on all languages.1 Al-
though it was not the main focus of their work,
Prism achieved a new state-of-the-art as a reference-
free metric, simply scoring target given source text
using an MT model, in a post-competition compar-
ison to the 2019 “Quality Estimation as a metric”
shared task (Ma et al., 2019).

1Except Gujarati, which was absent from their training
corpus.
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Our aim in this paper is to characterize the condi-
tions under which the Prism approach—using one
MT system to perform peer evaluation on other
systems—can be successful: what properties does
the evaluating system need to have, how powerful
should it be, and how close can it be to the systems
under evaluation? We focus on system-level evalu-
ation, which we believe is the most compelling use
case for reference-free methods, targeting a broad
characterization that complements the potentially
more precise picture furnished by reference-based
metrics for a specific test corpus. We first repli-
cate the correlation with human judgment results
from Thompson and Post (2020) on WMT 2019,
using the same corpora and architecture. Next,
we examine several alternative design decisions in
an attempt to improve Prism and further our un-
derstanding. These include the effects of varying
training corpora (domain, number of languages,
use of monolingual data); model capacity (scal-
ing up and down from the original architecture);
and different methods for regularizing token-level
probabilities (Monte-Carlo dropout, subword sam-
pling) and for combining them into system-level
scores (summary statistics over tokens, confidence
thresholds over sentences). Finally, we analyze the
results of our best model, measuring how its perfor-
mance depends on various factors: language pair
and human-judgment methodology, output quality,
proximity to the systems under evaluation, and size
of the test set.

We demonstrate improvements over the original
Prism metric due to model capacity and different
methods for combining probabilities; surprisingly,
we find little gain from adjusting the domain or
languages in the original multilingual corpus (al-
though we show that a competition-grade English-
German system outperforms the generic multilin-
gual system). We find that the evaluating MT sys-
tem’s output quality is generally correlated with its
performance as a metric, although we corroborate
the surprising finding from Thompson and Post
(2020) that it is not necessary to be the best—our
system is middle-of-the-road or worse according
to BLEU across most WMT 2019 languages. We
measure the proximity between our system and the
systems under evaluation and find no evidence that
this is a source of bias. Despite using no references,
our model achieves approximate parity with BLEU
both in system-level correlation with human judg-
ment, and when used for pairwise comparisons.

2 Related Work

Reference-free evaluation is widely used for many
NLP tasks such as grammatical error correction
(Napoles et al., 2016), dialog (Sinha et al., 2020;
Mehri and Eskenazi, 2020) and text generation
(Ethayarajh and Sadigh, 2020). There has been
recent interest in reference-free evaluation for MT,
which was a joint track between the WMT 2019
metrics task (Ma et al., 2019) and quality estima-
tion task (Fonseca et al., 2019). Reference-free
metrics competed head-to-head with standard met-
rics, and generally did worse. However, the re-
sults from the best reference-free systems, UNI+
(Yankovskaya et al., 2019) and YiSi-2 (Lo, 2019)
were surprisingly close to the standard metric
scores on the language pairs for which they were
evaluated.

UNI+ computes word-level embeddings for
source and MT output sentences using pre-trained
multilingual BERT and LASER (Artetxe and
Schwenk, 2019) models, then feeds averaged vec-
tors to a neural classifier trained to predict human
scores from previous MT metrics tasks. YiSi-2 is
similar, except that it works in an unsupervised
fashion, computing similarities between mBERT
embeddings for aligned source and target words,
and returning an F-measure statistic. In more recent
work, Zhao et al. (2020) adopt a similar approach
based on mBERT, aligning representations from
multilingual embedding spaces before computing
distances with MoverScore (Zhao et al., 2019), and
adding a GPT-based target-side language model.
The current state-of-the-art in reference-free evalu-
ation for MT is represented by the Prism approach
(Thompson and Post, 2020) which we extend here.

It is worth distinguishing reference-free evalua-
tion from two related tasks that share formal simi-
larities. The first is quality or confidence estimation
(Blatz et al., 2004; Specia and Shah, 2018; Chelba
et al., 2020), which aims to score the fitness of
MT output for a downstream application. This is
typically supervised, although a recent approach
(Fomicheva et al., 2020) dispenses with the need
to learn from human annotations, as do most of
the approaches we study in this paper. Quality es-
timation is most usefully applied at the sentence
level, and it can make use of powerful “glass-box”
features which capture the internals of an MT sys-
tem. In contrast, reference-free evaluation is most
naturally applied at the system (test-set) level, and
ideally should make no assumptions about the sys-
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tems under evaluation. The second task is parallel-
corpus mining (Zhang et al., 2020; Yang et al.,
2019), which aims to identify valid translations at
various levels of granularity. Its scoring aspect is
similar to reference-free evaluation, but it is applied
to a different input distribution, attempting to iden-
tify human-generated translation pairs rather than
scoring MT outputs for a given human-generated
source text.

3 Methods

We aim to generate a quality score s(X,Y ) =∑
x,y s(x, y) for source and target texts X,Y

which consist of segment (nominally, sentence)
pairs x, y. We assume no document or ordering
information among segments, and do not directly
evaluate scores for individual segment pairs. All
methods we consider make use of token-level log-
probabilities from a standard autoregressive neural
MT system: log p(yt|y<t, x), where y = y1 . . . yT .
We experimented with reverse probabilities p(x|y),
but like Thompson and Post (2020) found these
gave no advantage, and do not include them in our
reported results. The following sections describe
our model architecture, scoring techniques, and
evaluation methodology.

3.1 Model

Our baseline NMT model uses a standard Trans-
former architecture identical to that of Thompson
and Post (2020) (up to toolkit differences), trained
on the same multilingual corpus. To encourage
language-agnostic encoder representations for zero-
shot scoring, the baseline uses target-language tags
at the beginning of each target sentence (Johnson
et al., 2017). Since we do not require such repre-
sentations for reference-free evaluation, we also
tried introducing the tags earlier, at the beginning
of each source sentence. We vary training corpora
and model capacity as described in section 4.1, but
otherwise make no changes to the model.

3.2 Scoring

We investigated various techniques for deriving
segment-level scores s(x, y): regularization, differ-
ent methods for aggregating token-level probabili-
ties, and segment-level confidence thresholds.

Regularization
To obtain smoother scores, we used Monte-Carlo
dropout (Gal and Ghahramani, 2016) and subword

regularization (Kudo, 2018). These involve esti-
mates of the form:

log p(y|x) =
K∑
k=1

log pk(y|x)/K,

where pk(y|x) is a probability estimate that de-
pends on the smoothing method. For MC-dropout,
it is obtained by dropping neural connections
with probability α. For subword regulariza-
tion, pk(y|x) = p(ỹk|x̃k), where x̃k and ỹk are
randomly-sampled alternative subword segmenta-
tions of x and y.2 Note that MC-dropout decom-
poses over tokens, yielding smoother per-token
probabilities; subword regularization does not,
since it does not preserve tokenization.

Aggregating token-level log-probabilities
Given a sequence of token probabilities
log p(yt|y<t, x), t = 1 . . . T , we derive segment-
level scores s(x, y) using various statistics.
Following Thompson and Post (2020), we sum
to obtain segment log-probabilities or average
to obtain mean token-wise log-probabilities. To
eliminate the effect of outliers, we tried the
median instead of the mean. To test the opposite
intuition, we also tried the minimum. Finally, to
reflect overall consistency, we compute standard
deviation.

Confidence Thresholds
Quality scores implicitly reflect the presence or
absence of errors in MT output. In some cases,
model probabilities provide strong evidence for or
against the existence of errors, but in other cases the
model may be agnostic. To capture this intuition,
we used the following mapping to obtain segment
scores:

s(x, y) =


−1, log p(y|x)/T < l
+1, log p(y|x)/T > h
0, else

To set the thresholds (l, h) we used a coarse grid
search on development data.

3.3 Evaluation
We evaluate reference-free metric scores on data
from the WMT19 metrics task (Ma et al., 2019),
consisting of outputs from different MT systems

2We perform an approximate search for the 10-best sub-
word segmentations, then sample from this list with probability
proportional to a unigram estimate qα(x̃|x).
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for 18 language pairs. For each language pair, we
compute a metric score for each system, then use
correlation with the provided human scores to as-
sess the quality of our metric.3 Following Ma et al.
(2019) we measure correlation using Pearson’s co-
efficient, and use Williams’ test (Williams, 1959) to
compute the significance of correlation differences,
with a p-value < 0.05.

Ma et al. (2019) note that correlation scores are
unrealistically high for many language pairs, and
suggest using only the best k systems for small
values of k. However, Mathur et al. (2020) show
that this results in noisy and unreliable estimates.
We adopt their suggestion to instead remove outlier
systems whose scores have large deviations from
the median according to the formula:

|h− h̃|
1.483×medianh(|h− h̃|)

> 2.5,

where h is a system-level human score, and h̃ is
the median score across all systems for a given
language pair.

To summarize a metric’s performance across a
set of language pairs, we report the weighted av-
erage of its Pearson correlations across languages.
We first apply the Fisher Z-transformation to nor-
malize raw language-specific correlations, then
weight by the number of MT systems per lan-
guage (post outlier filtering), then invert the Fisher
Z-transformation and take the mean (Hedges and
Olkin, 2014).

4 Experimental Settings

4.1 Data
We used four training corpora. Prism-39 consists
of noise-filtered multi-way parallel data curated
by Thompson and Post (2020), extracted primar-
ily from Wikimatrix, Global Voices, EuroParl, SE-
Times, and United Nations, consisting of 99.8M
sentence pairs in 39 languages, including direct par-
allel data for 706 language pairs. Wiki-39-Mono
consists of monolingual data extracted from the
multilingual Wikipedia corpus for the languages
available in Prism-39. WMT-15 is the parallel

3Human annotators assign segment-level scores on a
0− 100 scale which are averaged across segments, then nor-
malized to correct for annotator differences, then averaged
across annotators to produce system-level scores. For out-of-
English language pairs, annotations are made by comparison
to the source text, which directly corresponds to our setting;
for other pairs, they are made by comparing to reference trans-
lations.

training data provided for the WMT 2019 News
Translation Task (Barrault et al., 2019), augmented
with 5 languages from previous WMT years—
Estonian (et), Spanish (es), Latvian (lt), Hindi (hi)
and Turkish (tr). All language pairs are to/from En-
glish except French-German. Sizes range from
60 million sentence pairs for English-Czech to
10k pairs for English-Gujarati (Table 4). Finally,
WMT-15-Mono is the monolingual data provided
alongside WMT-15.

Test data is from the WMT 2019 Metrics Task
(Ma et al., 2019), consisting of system outputs on
news-domain text for all 18 language pairs included
in the task: English (en) to/from Czech (cs), Ger-
man (de), Finnish (fi), Gujarati (gu), Kazakh (kk),
Lithuanian (lt), Russian (ru), and Chinese (zh), ex-
cluding cs-en. There are three other language pairs
not including English: de-cs, de-fr and fr-de. The
average number of systems per language is 12, and
the average test-set size is 1,633.

4.2 MT Systems

Scale Params Layers Hidden Heads Model

Big 473M 6 8192 16 1024
Prism 900M 8 12288 20 1280
Massive 1.8B 8 16384 32 2048

Table 1: Model configurations used in our experiments.

We used the Lingvo toolkit (Shen et al., 2019), to
train Transformer sequence-to-sequence models of
various sizes as shown in Table 1, where the base-
line Prism configuration matches that of Thompson
and Post (2020). We use AdaFactor optimization
with a learning rate of 1.0 and batch size of ∼8000
samples. Our shared vocabulary comprises 64k
subwords.

5 Results

This section presents our main results. All correla-
tions in the tables below are for system-level scores,
after outlier systems have been discarded for each
language pair. For brevity, we report average cor-
relations, normalized and weighted as described in
section 3.3; full results are provided in Appendix B.
Unless otherwise stated, all methods score system
outputs using average log probabilities normalized
by segment length.
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Metric All en-xx xx-en xx-yy

BLEU 0.911 0.917 0.921 0.838
CHRF 0.933 0.937 0.919 0.954

UNI+* 0.808 0.746 0.822 -
Yisi-2* 0.487 0.272 0.646 0.489
Prism 0.861 0.814 0.887 0.911

Prism-trg2xx 0.853 0.812 0.872 0.907
Prism-src2xx 0.858 0.822 0.871 0.914

Table 2: Baseline results. All numbers are average
system-level correlations. *Average is computed over
language pairs for which the corresponding metric had
a submission in the WMT19 Metrics task.

5.1 Baselines

Table 2 shows key WMT19 baseline results for
reference-based metrics (top two lines), reference-
free metrics (next three lines), and our reimple-
mentation of the Prism model (bottom lines). We
achieve slightly better results for source-side tag-
ging (Prism-src2xx), and on average match the orig-
inal Prism results that use target-side tagging with
this configuration, which we adopt for further ex-
periments. The en-xx results are affected negatively
by the inclusion of en-gu, which is absent from the
Prism-39 corpus and has low correlation (0.400);
however, interestingly, results for gu-en are on par
with other language pairs, presumably due to the
prevalence of English in the corpus.

5.2 Training data

Data All en-xx xx-en xx-yy

Prism-39 0.858 0.822 0.871 0.914
WMT-15 0.840 0.776 0.890 0.854
Prism-13 0.863 0.828 0.888 0.888
Prism-39 + WMT-15 0.867 0.811 0.896 0.923

Adding monolingual data
Prism-39 + Wiki-39 0.832 0.792 0.859 0.869
WMT-15 + WMT-15-Mono 0.870 0.839 0.910 0.818
Prism-39 + WMT-15-Mono 0.851 0.831 0.863 0.874

Table 3: Effect of training data. Significant improve-
ment over baseline “Prism-39” systems are underlined.

Table 3 gives results for training on different cor-
pora described in section 4.1. The first four lines
correspond to different multilingual training cor-
pora, beginning with the Prism-39 model from the
previous section. We see no gain on average from
using the provided WMT-15 training corpora, de-
spite possibly better domain fit and generally larger
sizes for the language pairs in the test set (Table 4).

We speculate that this is due to preprocessing as
we made no effort to clean or filter the WMT-15
corpus. This hypothesis is supported by the Prism-
13 results, where we trained on the language pairs
in Prism-39 that overlapped with the WMT-15 cor-
pus, achieving slightly better average performance.
Combining Prism-39 and WMT-15 improves fur-
ther, yielding a relatively small but statistically sig-
nificant average gain over pure Prism-39, at the
cost of lower performance for the en-xx language
pairs.

LP Prism-39 WMT-15

en-zh 1.49 64.33
en-fr 3.52 40.44
en-ru 2.25 38.49
en-cs 0.65 25.98
en-es 4.40 15.18
de-fr 0.65 9.82
en-fi 0.28 6.58
en-de 1.36 4.50
en-et 0.22 2.17
en-lv 0.09 0.63
en-lt 0.16 0.63
en-kk 0.20 0.22
en-gu 0.00 0.01
de-cs 0.37 0.00

Table 4: Corpus size for overlapping language pairs
from Prism-39 and WMT-15 (in millions of segments):
WMT-15 has more parallel data available for all lan-
guages except de-cs, where no parallel corpora is avail-
able in the WMT-15 dataset.

Inspired by improvements for low-resource lan-
guages from monolingual data (Siddhant et al.,
2020), we used the MASS denoising objective to
add general-domain monolingual data (Wiki-39) to
Prism-39 and in-domain data (WMT-15-Mono) to
both Prism-39 and WMT-15 (Table 6 for a com-
parison on the relative sizes of the monolingual
corpora). Overall, the general-domain data hurts
correlation significantly, while in-domain helps sig-
nificantly, but only for WMT-15. As expected,
monolingual data tends to help lower-resource lan-
guages (gu, kk, lt) most, with a particularly large
gain for xx-en with WMT-15 + WMT-15-Mono.
However, the correlation for xx-yy language-pairs
degrades significantly, which we attribute to the
en-centric nature of the WMT-15 dataset.
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Data en-de en-lt en-ru en-zh de-en lt-en ru-en zh-en

BLEU 0.806 0.986 0.946 0.802 0.794 0.985 0.812 0.808

Prism-39 0.730 0.939 0.901 0.789 0.796 0.978 0.739 0.828
Bilingual Models 0.726 0.695 0.867 0.769 0.801 0.862 0.650 0.826

Competition-grade 0.913 - - - - - - -

Table 5: Bilingual vs multilingual models for scoring.

LP WMT-15-Mono Wiki-39

de 275.69 59.93
en 199.90 130.79
fr 160.93 48.52
lt 106.19 4.85
ru 80.14 46.27
cs 72.15 9.44
fi 18.84 7.88
kk 13.82 3.34
gu 4.64 0.00
zh 2.15 21.79
et 51.68 3.03
es 43.81 36.17
hi 23.61 2.37
lv 10.20 1.36
tr 9.65 5.42

Table 6: Corpus size for overlapping languages from
WMT-15-Mono and Wiki-39 dataset (in millions). The
last five languages are not a part of WMT’19 Metrics
evaluation task but were included when training the
multilingual MT system.

5.3 Bilingual Systems

Can we use bilingual MT systems for peer eval-
uation? We chose four representative language
pairs from Prism-39 and trained “Big” models (see
Table 1) in eight directions, with dedicated 64k sub-
word vocabularies. Table 5 shows that for medium
and high resource languages (de, ru, and zh), the
bilingual model performs comparably to the multi-
lingual model. However, for the low resource lan-
guage “lt”, the multilingual model is significantly
better. As with the results elsewhere in this section,
this suggests that correlation tends to follow the
pattern one would expect if we were mainly inter-
ested in model quality. This is corroborated by the
results in the last line of the table, where we com-
pare a competition-grade model for en-de (Freitag
et al., 2020a), similar to the winning submission
from WMT19, to our models. The competition-
grade model achieves a much better correlation and
also improves on BLEU by a wide margin.

5.4 Model Capacity

Metric All en-xx xx-en xx-yy

BLEU 0.911 0.917 0.921 0.838

Big 0.808 0.745 0.838 0.885
Prism 0.858 0.822 0.871 0.914
Massive 0.883 0.858 0.890 0.927

Table 7: Effect of Model capacity.

Motivated by the link between correlation and
model quality, we varied model capacity accord-
ing to the settings in Table 1, using the Prism-39
training corpus. The results in Table 7 show a
clear pattern of gains with increasing capacity. The
Massive configuration does best overall, achieving
statistical parity with BLEU on average.

5.5 Scoring Methods

Aggregation Method All en-xx xx-en xx-yy

Mean 0.883 0.858 0.890 0.927
Std-dev 0.882 0.847 0.903 0.919
Median 0.870 0.859 0.876 0.887
Min 0.872 0.840 0.895 0.896

MC-dropout (Mean) 0.877 0.847 0.888 0.926
SP-Norm (Mean) 0.884 0.861 0.892 0.924

Confidence threshold 0.886 0.898 0.858 0.910

Table 8: Scoring methods. Significant improvements
over baseline Mean systems are underlined.

Table 8 shows results for the scoring methods
described in section 3.2 applied to the Massive con-
figuration. Aggregating token probabilities using
statistics other than mean gives small gains on some
languages, but hurts on average. Regularizing with
MC-dropout or subwords (SP-norm) leads to sig-
nificant gains in some cases, with a slight overall
increase over mean for SP-norm. We tuned con-
fidence thresholds on WMT18 Metrics task data
using a grid of 16 log-probability points in [−3, 0],
which yielded optimal thresholds (−1,−0.6). This
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produced our best overall result, with systematic
gains on en-xx pairs.

6 Analysis

In this section we analyze various aspects of metric
performance, confining our attention to the Massive
model with mean scoring for consistency.

6.1 Performance across conditions

Subset Avg

All 0.883
All - gu 0.893

Source-based evaluation 0.858
Source-based - gu 0.883
Reference-based evaluation 0.901
Reference-based - gu 0.901

Corpus ≥1M 0.839
Corpus <1M 0.924
No data 0.741

Table 9: Average Correlation for different subsets of
languages.

Different languages have different relations to
our model, to the systems participating in the WMT
task, and to the human scoring procedure used in
the WMT19 data. Table 9 shows results for various
conditions. Removing the language (gu) for which
we have no training data improves average corre-
lation substantially. The human evaluations for
out-of-English language pairs involve comparing
MT output to the source text; the evaluations for
remaining pairs involve comparing it to reference
translations. We see no boost from the language
pairs for which source-based human evaluation was
used (matching our setting), and in fact do some-
what worse on these pairs than the others, on av-
erage. Finally, we achieve better performance for
lower-resource (< 1M parallel segments) language
pairs than higher-resource pairs (with respect to the
Prism-39 corpora), but poor average performance
on the pairs (en-gu/gu-en) for which we had no
training data.

6.2 Pairwise comparisons
Correlation statistics give an overall picture of met-
ric performance, but do not directly reflect the fre-
quent use case of deciding which of two systems is
better. To measure this, we examined whether our
metric agrees with human pairwise ranking deci-
sions over all pairs of systems. Following (Mathur

et al., 2020), we apply the Wilcoxon ranksum test
and paired t-test to detect when such decisions are
significant according to human and metric scores
respectively.

Metric Human-S Human-NS
C (↑) IC (↓) NS C (↑) IC (↓) NS

All Systems
BLEU 768 37 80 126 71 70
Prism 778 61 46 136 93 38
en-xx Systems
BLEU 411 25 53 38 25 26
Prism 421 36 32 39 29 21
xx-en Systems
BLEU 285 8 20 67 40 33
Prism 277 23 13 74 53 13
xx-yy Systems
BLEU 72 4 7 21 6 11
Prism 80 2 1 23 11 4

Table 10: WMT19 pairwise system level compar-
isons using the Massive configuration: Human-NS and
Human-S means insignificant and significant differ-
ences according to human scores; C and IC stands for
Correct and Incorrect ranking according to metric and
human scores; NS represents insignificant differences
according to the metric scores.

Table 10 shows ranking performance for Prism
compared to BLEU, categorized according to lan-
guage pair grouping. The general pattern across
all groupings is that Prism is more decisive: it
makes more significant decisions than BLEU, lead-
ing to higher rates of both correct and incorrect
rankings. Among the 885 system pairs (across all
languages) that are considered significantly differ-
ent according to human judgment, Prism correctly
ranks 88% with significantly different scores, com-
pared to 87% for BLEU.

6.3 Quality of the evaluating model

How good is our multilingual MT system com-
pared to the systems under evaluation? We gen-
erated translations of the test text for a subset of
languages and compared the quality of the gener-
ated system outputs using BLEU. Figure 1 shows
that our evaluating model achieves worse BLEU
scores than many of the systems under evaluation,
ranking around the median for most language pairs.
Although Table 5 provides evidence that stronger
systems produce better metrics, clearly it is not
necessary to be among the top-ranked systems in
order to generate a signal that is approximately as
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reliable as BLEU.4

Figure 1: Quality across language pairs.

6.4 Proximity Bias

A potential pitfall in peer evaluation is bias to-
ward one or more of the systems under evaluation.
Clearly, the evaluating system will prefer its own
output—how far from an evaluated system does
it have to be in order to judge it fairly? Lacking
access to the systems in the WMT19 task, we mea-
sure proximity using cross-BLEU score (using one
output as hypothesis and the other one as reference
translation) between the system output and the out-
put generated by our Prism model. In the presence
of bias, we would expect the metric to result in
higher ranking for closer systems and lower rank-
ing for farther systems (relative to human scores).

Figure 2: Relative Ranking of the closest and farthest
systems under evaluation to the Prism system as mea-
sured by cross-BLEU.

Figure 2 shows the relative ranking of the clos-
est and the farthest system to Prism (relative to
human). Since the model makes mistakes in both

4It would be interesting to try to characterize the relation
between system quality and metric strength more precisely,
but in the absence of human judgments of our output quality,
any such picture we could currently draw would be clouded
by metric noise.

directions—ranks closest and farthest system both
higher and lower than human—there is no evidence
from this analysis that it exhibits a strong bias in
favour of systems whose outputs are closer to its
own. A potential explanation is that it is sufficiently
far from most of the evaluated systems due to its
multilingual training corpus. To verify this, we
computed the average cross-BLEU for each evalu-
ated system (relative to all others), and compared
it to the same quantity for our system. Figure 3
shows that we are indeed an outlier system for
most language pairs. The systems with lower cross-
BLEU than Prism are mostly online or rule-based
systems.5

Figure 3: Average Cross-BLEU for all evaluated sys-
tems and Prism.

6.5 Test-set Size

Size Bleu Prism

100 0.735 0.720
200 0.783 0.771
400 0.804 0.784
800 0.828 0.807

Table 11: Average correlations versus test-set size for
the language pairs from Figure 2.

In principle, a major advantage of reference-free
evaluation is that it can make use of arbitrarily large
test sets, being constrained only by the amount of
source-language data in the domain of interest. We
hypothesize that this will improve metric perfor-
mance by reducing sampling error. To test this hy-
pothesis in the absence of larger human-scored test
sets for WMT19, we sampled subsets of various
sizes and measured average correlation. As shown

5For Kazakh (kk), Prism-39 includes the WMT-15 dataset,
resulting in higher cross-BLEU compared to other language
pairs.



1166

in Table 11, we observe a steady increase with test-
size size. This provides persuasive, though not
definitive, evidence that test sets beyond the scale
of WMT19 would yield further improvements in
accuracy for both metrics, a setting that would be
more feasible for Prism than BLEU. Full curves
are plotted in Figure 4 (See Appendix C).

7 Conclusion

In this paper, we have shed some light on the re-
markable finding by Thompson and Post (2020)
that a multilingual model trained on a large (but not
enormous) general-domain corpus can be highly
effective as an MT metric when used to score the
outputs of other MT systems in the absence of ref-
erence translations. By scaling up the model and
making small adjustments to tagging and scoring,
we improve over the original results and achieve ap-
proximate parity with BLEU in correlation with hu-
man judgment on WMT19 data. We argue that this
metric is a useful complement to reference-based
metrics—including ones that are significantly more
powerful than BLEU—due to its flexibility; and
we provide evidence that scoring reliability can be
further improved by using larger source-side-only
test sets.

We find that the major determinant of success
in peer evaluation is the quality of the evaluating
model. However, there is no hard requirement that
it be better than the models under evaluation: sur-
prisingly, it can correctly rank models that out-
perform it on average. If we abstract away from
quality, performance does not appear to be highly
sensitive to the domain or the multilingual versus
bilingual nature of the training corpus. Taken to-
gether, these results have the important practical
implication that a single multilingual system such
as ours could be broadly applicable for evaluating
systems in a large number of language pairs (706
in our case), at different quality levels, and across
a wide range of domains. In future work, we look
forward to probing these results further, and de-
termining whether alternative architectures or loss
functions might be valuable in specializing an MT
model for evaluating its peers.
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Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto San-
chis, and Nicola Ueffing. 2004. Confidence esti-
mation for machine translation. In COLING 2004:
Proceedings of the 20th International Conference on
Computational Linguistics, pages 315–321, Geneva,
Switzerland. COLING.

Dallas Card, Peter Henderson, Urvashi Khandelwal,
Robin Jia, Kyle Mahowald, and Dan Jurafsky. 2020.
With little power comes great responsibility. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9263–9274, Online. Association for Computa-
tional Linguistics.

Ciprian Chelba, Junpei Zhou, Hideto Kazawa, Jeff
Klingner, Mengmeng Niu, et al. 2020. Data troubles
in sentence level confidence estimation for machine
translation. arXiv preprint arXiv:2010.13856.

Kawin Ethayarajh and Dorsa Sadigh. 2020. BLEU
neighbors: A reference-less approach to automatic
evaluation. In Proceedings of the First Workshop on
Evaluation and Comparison of NLP Systems, pages
40–50, Online. Association for Computational Lin-
guistics.

M. Fomicheva, Shuo Sun, L. Yankovskaya, F. Blain,
Francisco Guzmán, M. Fishel, Nikolaos Aletras,
Vishrav Chaudhary, and Lucia Specia. 2020. Unsu-
pervised quality estimation for neural machine trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 8:539–555.

Erick Fonseca, Lisa Yankovskaya, André F. T. Martins,
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A Outlier Systems

lang Outliers

de-cs CAiRE.6949
de-en online-X.0
de-fr -
en-cs -
en-de online-X.0, en de task.6790
en-fi apertium-fin-eng-unconstrained-en-fi.6448
en-gu -
en-kk NICT.6550, DBMS-KU ENKK.6730
en-lt -
en-ru NICT.6563
en-zh -
fi-en -
fr-de MSRA.MADL.6893, eTranslation.6262, online-X.0
gu-en Ju Saarland.6525
kk-en UMD.6736, DBMS-KU KKEN.6726
lt-en online-X.0
ru-en NICT.6561
zh-en online-X.0, Apprentice-c.6706

Table 12: Outlier systems using MAD filtering in WMT19.

B WMT 2019 System-Level results for all language pairs

Metric Avg en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

BLEU 0.911 0.994 0.806 0.939 0.737 0.575 0.986 0.946 0.802
CHRF 0.933 0.983 0.871 0.964 0.843 0.829 0.969 0.989 0.799

UNI+ 0.808 - - - - - - 0.746 -
Yisi-2 0.487 0.324 - 0.478 0.314 0.685 0.055 0.134 -0.097
Prism 0.861 0.865 0.754 0.858 0.444 0.789 0.908 0.903 0.793

Prism-trg2xx 0.853 0.867 0.717 0.876 0.365 0.811 0.936 0.902 0.778
Prism-src2xx 0.858 0.871 0.730 0.878 0.400 0.813 0.939 0.901 0.789

Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en de-cs de-fr fr-de

BLEU 0.794 0.985 0.975 0.912 0.967 0.812 0.808 0.743 0.891 0.846
CHRF 0.852 0.991 0.946 0.836 0.930 0.877 0.831 0.981 0.957 0.833

UNI+ 0.805 0.924 - - - 0.669 - - - -
Yisi-2 0.612 0.642 0.820 0.662 0.346 0.708 0.622 0.122 0.721 0.62
Prism 0.829 0.941 0.915 0.724 0.985 0.769 0.826 0.987 0.889 0.269

Prism-trg2xx 0.798 0.943 0.911 0.683 0.979 0.752 0.830 0.989 0.882 0.212
Prism-src2xx 0.796 0.942 0.893 0.709 0.978 0.739 0.828 0.991 0.882 0.203

Table 13: Baseline results. All numbers are system-level correlations. Avg gives averages over all language pairs.
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Data Avg en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

Prism-39 0.858 0.871 0.730 0.878 0.400 0.813 0.939 0.901 0.789
WMT-15 0.840 0.825 0.530 0.815 0.423 0.909 0.914 0.845 0.774
Prism-13 0.863 0.869 0.779 0.891 0.379 0.820 0.925 0.901 0.795
Prism-39 + WMT-15 0.867 0.862 0.653 0.854 0.446 0.860 0.932 0.880 0.789

Adding monolingual data
Prism-39 + Wiki-39 0.832 0.839 0.649 0.854 0.446 0.823 0.917 0.877 0.757
WMT-15 + WMT-15-Mono 0.869 0.855 0.646 0.826 0.848 0.913 0.940 0.867 0.793
Prism-39 + WMT-15-Mono 0.851 0.869 0.766 0.871 0.487 0.850 0.945 0.892 0.754

Bilingual Models 0.726 0.695 0.867 0.769

Data de-en fi-en gu-en kk-en lt-en ru-en zh-en de-cs de-fr fr-de

Prism-39 0.796 0.942 0.893 0.709 0.978 0.739 0.828 0.991 0.882 0.203
WMT-15 0.815 0.954 0.918 0.509 0.986 0.841 0.835 0.970 0.851 0.116
Prism-13 0.845 0.943 0.911 0.745 0.983 0.749 0.836 0.985 0.863 0.124
Prism-39 + WMT-15 0.802 0.950 0.921 0.734 0.986 0.851 0.810 0.993 0.881 0.170

Adding monolingual data
Prism-39 + Wiki-39 0.742 0.934 0.907 0.684 0.975 0.680 0.836 0.982 0.822 0.117
WMT-15 + WMT-15-Mono 0.842 0.956 0.976 0.584 0.987 0.838 0.824 0.903 0.890 0.238
Prism-39 + WMT-15-Mono 0.803 0.944 0.952 0.680 0.952 0.722 0.754 0.972 0.875 0.233

Bilingual Models 0.801 0.862 0.650 0.826

Table 14: Effect of training data. Significant improvement over baseline “Prism-39” systems are underlined.

Metric Avg en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

BLEU 0.911 0.994 0.806 0.939 0.737 0.575 0.986 0.946 0.802
Big 0.808 0.791 0.541 0.833 0.381 0.785 0.898 0.861 0.698
Prism 0.858 0.871 0.730 0.878 0.400 0.813 0.939 0.901 0.789
Massive 0.883 0.900 0.819 0.899 0.423 0.820 0.953 0.923 0.819

Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en de-cs de-fr fr-de

BLEU 0.794 0.985 0.975 0.912 0.967 0.812 0.808 0.743 0.891 0.846
Big 0.702 0.926 0.891 0.649 0.970 0.640 0.819 0.989 0.827 0.040
Prism 0.796 0.942 0.893 0.709 0.978 0.739 0.828 0.991 0.882 0.203
Massive 0.840 0.948 0.906 0.751 0.981 0.789 0.834 0.991 0.906 0.301

Table 15: Effect of Model capacity.
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Aggregation Method Avg en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh

Mean 0.883 0.900 0.819 0.899 0.423 0.820 0.953 0.923 0.819
Std-dev 0.882 0.913 0.778 0.900 0.448 0.755 0.950 0.929 0.780
Median 0.870 0.849 0.868 0.884 0.408 0.862 0.945 0.908 0.849
Min 0.872 0.925 0.765 0.907 0.489 0.623 0.945 0.939 0.722

MC-dropout (Mean) 0.877 0.936 0.826 0.904 0.432 0.699 0.929 0.940 0.881
MC-dropout (Std-dev) 0.855 0.890 0.800 0.894 0.417 0.809 0.947 0.920 0.803
SP-Norm (Mean) 0.884 0.903 0.814 0.895 0.407 0.872 0.949 0.921 0.839

Confidence threshold 0.886 0.941 0.828 0.966 0.569 0.696 0.987 0.940 0.774

Aggregation Method de-en fi-en gu-en kk-en lt-en ru-en zh-en de-cs de-fr fr-de

Mean 0.840 0.948 0.906 0.751 0.981 0.789 0.834 0.991 0.906 0.301
Std-dev 0.831 0.970 0.946 0.712 0.987 0.769 0.809 0.989 0.907 0.276
Median 0.851 0.895 0.885 0.761 0.970 0.788 0.870 0.973 0.888 0.341
Min 0.829 0.973 0.902 0.644 0.990 0.757 0.794 0.978 0.900 0.280

MC-dropout (Mean) 0.813 0.956 0.485 0.189 0.941 0.834 0.821 0.974 0.923 0.330
MC-dropout (Std-dev) 0.837 0.946 0.903 0.743 0.981 0.786 0.837 0.992 0.901 0.286
SP-Norm (Mean) 0.834 0.948 0.902 0.795 0.980 0.801 0.833 0.990 0.906 0.318

Confidence threshold 0.823 0.930 0.906 0.670 0.970 0.716 0.765 0.971 0.935 0.386

Table 16: Scoring methods. Significant improvements over baseline Mean systems are underlined.

C Correlation versus test-set size

Figure 4: Correlation as test-size size increases, for BLEU (left panel) and Prism (right panel). Each point is the
average correlation over 10 random draws of subsets of the given size.


