A Frustratingly Easy Approach for Entity and Relation Extraction

Zexuan Zhong Dangi Chen
Department of Computer Science
Princeton University
{zzhong, dangic}@cs.princeton.edu

Abstract

End-to-end relation extraction aims to identify
named entities and extract relations between
them. Most recent work models these two
subtasks jointly, either by casting them in one
structured prediction framework, or perform-
ing multi-task learning through shared repre-
sentations. In this work, we present a simple
pipelined approach for entity and relation ex-
traction, and establish the new state-of-the-art
on standard benchmarks (ACE04, ACEO5 and
SciERC), obtaining a 1.7%-2.8% absolute im-
provement in relation F1 over previous joint
models with the same pre-trained encoders.
Our approach essentially builds on two inde-
pendent encoders and merely uses the entity
model to construct the input for the relation
model. Through a series of careful examina-
tions, we validate the importance of learning
distinct contextual representations for entities
and relations, fusing entity information early
in the relation model, and incorporating global
context. Finally, we also present an efficient
approximation to our approach which requires
only one pass of both entity and relation en-
coders at inference time, achieving an 8-16x
speedup with a slight reduction in accuracy.

Introduction

Extracting entities and their relations from un-
structured text is a fundamental problem in infor-
mation extraction. This problem can be decom-
posed into two subtasks: named entity recogni-
tion (Sang and De Meulder, 2003; Ratinov and
Roth, 2009) and relation extraction (Zelenko et al.,
2002; Bunescu and Mooney, 2005). Early work
employed a pipelined approach, training one model
to extract entities (Florian et al., 2004, 2006),
and another model to classify relations between
them (Zhou et al., 2005; Kambhatla, 2004; Chan
and Roth, 2011). More recently, however, end-to-
end evaluations have been dominated by systems

'Our code and models are publicly available at https:
//github.com/princeton-nlp/PURE.

50

that model these two tasks jointly (Li and Ji, 2014;
Miwa and Bansal, 2016; Katiyar and Cardie, 2017;
Zhang et al., 2017a; Li et al., 2019; Luan et al.,
2018, 2019; Wadden et al., 2019; Lin et al., 2020;
Wang and Lu, 2020). There has been a long held
belief that joint models can better capture the in-
teractions between entities and relations and help
mitigate error propagation issues.

In this work, we re-examine this problem and
present a simple approach which learns fwo en-
coders built on top of deep pre-trained language
models (Devlin et al., 2019; Beltagy et al., 2019;
Lan et al., 2020). The two models — which we
refer them as to the entity model and relation model
throughout the paper — are trained independently
and the relation model only relies on the entity
model to provide input features. Our entity model
builds on span-level representations and our rela-
tion model builds on contextual representations spe-
cific to a given pair of spans. Despite its simplicity,
we find this pipelined approach to be extremely
effective: using the same pre-trained encoders, our
model outperforms all previous joint models on
three standard benchmarks: ACE04, ACEQO5 and
SciERC, advancing the previous state-of-the-art by
1.7%-2.8% absolute in relation F1.

To better understand the effectiveness of this ap-
proach, we carry out a series of careful analyses.
We observe that, (1) the contextual representations
for the entity and relation models essentially cap-
ture distinct information, so sharing their represen-
tations hurts performance; (2) it is crucial to fuse
the entity information (both boundary and type)
at the input layer of the relation model; (3) lever-
aging cross-sentence information is useful in both
tasks. Hence, we expect that this simple model
will serve as a very strong baseline in end-to-end
relation extraction and make us rethink the value
of joint modeling of entities and relations.

Finally, one possible shortcoming of our ap-
proach is that we need to run our relation model
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Figure 1: An example from the SciERC dataset (Luan et al., 2018). Given an input sentence MORPA is a fully
implemented parser for a text-to-speech system, an end-to-end relation extraction system is expected to extract
that MORPA and PARSER are entities of type METHOD, TEXT-TO-SPEECH is a TASK, as well as MORPA is a
hyponym of PARSER and MORPA is used for TEXT-TO-SPEECH. (a) Our entity model predicts all the entities
at once. (b) Our relation model considers every pair of entities independently by inserting typed entity markers
(e.g., [S:MD]: the subject is a METHOD, [O:TK]: the object is a TASK). (c) We also proposed an approximation
relation model which supports batch computations. The tokens of the same color share the positional embeddings

(see Section 4.3 for more details).

once for every pair of entities. To alleviate this is-
sue, we present a novel and efficient alternative by
approximating and batching the computations for
different groups of entity pairs at inference time.
This approximation achieves an 8-16x speedup
with only a slight reduction in accuracy (e.g., 1.0%
F1 drop on ACEOQ5), which makes our model fast
and accurate to use in practice. Our final system
is called PURE (the Princeton University Relation
Extraction system) and we make our code and mod-
els publicly available for the research community.

We summarize our contributions as follows:

* We present a simple and effective approach for
end-to-end relation extraction, which learns
two independent encoders for entity recogni-
tion and relation extraction. Our model estab-
lishes the new state-of-the-art on three stan-
dard benchmarks and surpasses all previous
joint models.

We conduct careful analyses to understand
why our approach performs so well and how
different factors impact the final performance.
We conclude that it is more effective to learn
distinct contextual representations for entities
and relations than to learn them jointly.

To speed up the inference time of our model,
we also propose a novel efficient approxima-
tion, which achieves a large runtime improve-
ment with only a small accuracy drop.
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2 Related Work

Traditionally, extracting relations between enti-
ties in text has been studied as two separate tasks:
named entity recognition and relation extraction.
In the last several years, there has been a surge of
interest in developing models for joint extraction
of entities and relations (Li and Ji, 2014; Miwa
and Sasaki, 2014; Miwa and Bansal, 2016). We
group existing joint models into two categories:
structured prediction and multi-task learning:

Structured prediction Structured prediction ap-
proaches cast the two tasks into one unified frame-
work, although it can be formulated in various ways.
Li and Ji (2014) propose an action-based system
which identifies new entities as well as links to
previous entities, Zhang et al. (2017a); Wang and
Lu (2020) adopt a table-filling approach proposed
in (Miwa and Sasaki, 2014); Katiyar and Cardie
(2017) and Zheng et al. (2017) employ sequence
tagging-based approaches; Sun et al. (2019) and
Fu et al. (2019) propose graph-based approaches
to jointly predict entity and relation types; and, Li
et al. (2019) convert the task into a multi-turn ques-
tion answering problem. All of these approaches
need to tackle a global optimization problem and
perform joint decoding at inference time, using
beam search or reinforcement learning.

Multi-task learning This family of models es-
sentially builds two separate models for entity



recognition and relation extraction and optimizes
them together through parameter sharing. Miwa
and Bansal (2016) propose to use a sequence tag-
ging model for entity prediction and a tree-based
LSTM model for relation extraction. The two mod-
els share one LSTM layer for contextualized word
representations and they find sharing parameters
improves performance (slightly) for both models.
The approach of Bekoulis et al. (2018) is similar
except that they model relation classification as a
multi-label head selection problem. Note that these
approaches still perform pipelined decoding: en-
tities are first extracted and the relation model is
applied on the predicted entities.

The closest work to ours is DYGIE and DY-
GIE++ (Luan et al., 2019; Wadden et al., 2019),
which builds on recent span-based models for coref-
erence resolution (Lee et al., 2017) and semantic
role labeling (He et al., 2018). The key idea of their
approaches is to learn shared span representations
between the two tasks and update span representa-
tions through dynamic graph propagation layers. A
more recent work Lin et al. (2020) further extends
DYGIE++ by incorporating global features based
on cross-substask and cross-instance constraints.”
Our approach is much simpler and we will detail
the differences in Section 3.2 and explain why our
model performs better.

3 Method

In this section, we first formally define the prob-
lem of end-to-end relation extraction in Section 3.1
and then detail our approach in Section 3.2. Fi-
nally, we present our approximation solution in
Section 3.3, which considerably improves the effi-
ciency of our approach during inference.

3.1 Problem Definition

The input of the problem is a sentence X con-
sisting of n tokens x1,xs,...,x,. Let S
{s1,52,...,sm} be all the possible spans in X
of up to length L and START (i) and END(i) de-
note start and end indices of s;. Optionally, we
can incorporate cross-sentence context to build bet-
ter contextual representations (Section 3.2). The
problem can be decomposed into two sub-tasks:

Named entity recognition Let £ denote a set of
pre-defined entity types. The named entity recog-
nition task is, for each span s; € S, to predict an

This is an orthogonal contribution to ours and we will
explore it for future work.
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entity type y(s;) € € or y.(s;) = € representing
span s; is not an entity. The output of the task is
Ye ={(si,e) : s, € S,ec &Y.

Relation extraction Let R denote a set of pre-
defined relation types. The task is, for every pair
of spans s; € S, s; € 9, to predict a relation type
yr(si,s5) € R, or there is no relation between
them: y,(s;,5;) = €. The output of the task is
Y, = {(si,s5,7) : si,85 € S,r € R}.

3.2 Our Approach

As shown in Figure 1, our approach consists of
an entity model and a relation model. The entity
model first takes the input sentence and predicts an
entity type (or €) for each single span. We then pro-
cess every pair of candidate entities independently
in the relation model by inserting extra marker to-
kens to highlight the subject and object and their
types. We will detail each component below, and
finally summarize the differences between our ap-
proach and DYGIE++ (Wadden et al., 2019).

Entity model Our entity model is a standard
span-based model following prior work (Lee et al.,
2017; Luan et al., 2018, 2019; Wadden et al., 2019).
We first use a pre-trained language model (e.g.,
BERT) to obtain contextualized representations X
for each input token z;. Given a span s; € 5, the
span representation h,(s;) is defined as:

h.(s;) = [XsTaRT(3); XEND(i); P(54)],

where ¢(s;) € R?F represents the learned embed-
dings of span width features. The span representa-
tion h.(s;) is then fed into a feedforward network
to predict the probability distribution of the entity
type e € EU{e}: Pe(e]| s4).

Relation model The relation model aims to take
a pair of spans s;,s; (a subject and an object)
as input and predicts a relation type or €. Pre-
vious approaches (Luan et al., 2018, 2019; Wad-
den et al., 2019) re-use the span representations
h.(s;), he(s;) to predict the relationship between
s; and s;. We hypothesize that these representa-
tions only capture contextual information around
each individual entity and might fail to capture the
dependencies between the pair of spans. We also
argue that sharing the contextual representations
between different pairs of spans may be subopti-
mal. For instance, the words is a in Figure 1 are
crucial in understanding the relationship between
MORPA and PARSER but not for MORPA and
TEXT-TO-SPEECH.



Our relation model instead processes each pair
of spans independently and inserts typed markers
at the input layer to highlight the subject and object
and their types. Specifically, given an input sen-
tence X and a pair of subject-object spans s;, s,
where s;, s; have a type of e;, e; € £ U {e} respec-
tively. We define text markers as (S:e;), (/S:e;),
(O:e;), and (/O:e;), and insert them into the input
sentence before and after the subject and object
spans (Figure 1 (b)) Let X denote this modified
sequence with text markers inserted:

X=.. (S:€i), TsTART(i)> - - - » LEND(3)> (/S:e:),

.. (0:€5), TSTART(j) - - - » TEND(j)» (/O€5) - - - -

We apply a second pre-trained encoder on X
and denote the output representations by X;. We
concatenate the output representations of two start
positions and obtain the span-pair representation:

hr(siv Sj) = [isﬂ"y(i); iSﬁT(j)L
where STXﬁ(i) and S TXI_{?( j) are the indices of
(S:e;) and (O:e;) in X. Finally, the representation
h, (s, s;) will be fed into a feedforward network
to predict the probability distribution of the relation
type r € R U {e}: Po(r|si, 55).

This idea of using additional markers to high-
light the subject and object is not entirely new as it
has been studied recently in relation classification
(Zhang et al., 2019; Soares et al., 2019; Peters et al.,
2019). However, most relation classification tasks
(e.g., TACRED (Zhang et al., 2017b)) only focus
on a given pair of subject and object in an input
sentence and its effectiveness has not been evalu-
ated in the end-to-end setting in which we need to
classify the relationships between multiple entity
mentions. We observed a large improvement in our
experiments (Section 5.1) and this strengthens our
hypothesis that modeling the relationship between
different entity pairs in one sentence require differ-
ent contextual representations. Furthermore, Zhang
et al. (2019); Soares et al. (2019) only consider un-
typed markers (e.g., (S), (/S)) and previous end-to-
end models (e.g., (Wadden et al., 2019)) only inject
the entity type information into the relation model
through auxiliary losses. We find that injecting type
information at the input layer is very helpful in dis-
tinguishing entity types — for example, whether

30ur final model indeed only considers e;,e; # €. We
have explored strategies using spans which are predicted as

€ for the relation model but didn’t find improvement. See
Section 5.3 for more discussion.
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“Disney” refers to a person or an organization—
before trying to understand the relations.

Cross-sentence context Cross-sentence infor-
mation can be used to help predict entity types
and relations, especially for pronominal mentions.
Luan et al. (2019); Wadden et al. (2019) employ
a propagation mechanism to incorporate cross-
sentence context. Wadden et al. (2019) also add
a 3-sentence context window which is shown to
improve performance. We also evaluate the impor-
tance of leveraging cross-sentence context in our
approach. As we expect that pre-trained language
models to be able to capture long-range dependen-
cies, we simply incorporate cross-sentence context
by extending the sentence to a fixed window size
W for both the entity and relation model. Specif-
ically, given an input sentence with n words, we
augment the input with (W — n)/2 words from the
left context and right context respectively.

Training & inference For both entity model and
relation model, we fine-tune the two pre-trained
language models using task-specific losses. We use
cross-entropy loss for both models:

— > log Pe(ef]s:)
$; €S
>

si,SjGSG,SﬁéSj

Le

L,

log P(r7; | si, 85,

where e represents the gold entity type of s; and
T ; represents the gold relation type of span pair
si, 5; in the training data. For training the relation
model, we only consider the gold entities S¢ C S
in the training set and use the gold entity labels
as the input of the relation model. We considered
training on predicted entities as well as all spans S
(with pruning), but none of them led to meaningful
improvements compared to this simple pipelined
training (see more discussion in Section 5.3). Dur-
ing inference, we first predict the entities by tak-
ing ye(s;) = argmax.ceyqe) Pe(els;). Denote
Spred = {5i © Ye(si) # €}, we enumerate all the
spans s, 5; € Spreq and use ye(s;), ye(s;) to con-
struct the input for the relation model P,.(7 | s;, 5;).

Differences from DYGIE++ Our approach dif-
fers from DYGIE++ (Luan et al., 2019; Wadden
et al., 2019) in the following ways: (1) We use
separate encoders for the entity and relation mod-
els, without any multi-task learning. The predicted
entity types are used directly to construct the input
for the relation model. (2) The contextual repre-



sentations in the relation model are specific to each
pair of spans by using the text markers. (3) We
only incorporate cross-sentence information by ex-
tending the input with additional context (as they
did) and we do not employ any graph propagation
layers and beam search.* As a result, our model is
much simpler. As we will show in the experiments
(Section 4), it also achieves large gains in all the
benchmarks, using the same pre-trained encoders.

3.3 Efficient Batch Computations

One possible shortcoming of our approach is that
we need to run our relation model once for every
pair of entities. To alleviate this issue, we propose a
novel and efficient alternative to our relation model.
The key problem is that we would like to re-use
computations for different pairs of spans in the
same sentence. This is impossible in our original
model because we must insert the entity markers for
each pair of spans independently. To this end, we
propose an approximation model by making two
major changes to the original relation model. First,
instead of directly inserting entity markers into the
original sentence, we tie the position embeddings
of the markers with the start and end tokens of the
corresponding span:

P((S:€;)), P((/S:€;)) := P(zsTART(S))s P(TEND(i))
P((O:¢;))

where P(-) denotes the position id of a token. As the
example shown in Figure 1, if we want to classify
the relationship between MORPA and PARSER,
the first entity marker (S: METHOD) will share the
position embedding with the token MOR. By doing
this, the position embeddings of the original tokens
will not be changed.

Second, we add a constraint to the attention lay-
ers. We enforce the text tokens to only attend to text
tokens and not attend to the marker tokens while
an entity marker token can attend to all the text
tokens and all the 4 marker tokens associated with
the same span pair. These two modifications allow
us to re-use the computations of all text tokens,
because the representations of text tokens are inde-
pendent of the entity marker tokens. Thus, we can
batch multiple pairs of spans from the same sen-
tence in one run of the relation model. In practice,
we add all marker tokens to the end of the sentence

“They also incorporated coreferences and event prediction
in their framework. We focus on entity and relation extraction
in this paper and we leave these extensions to future work.

,P({/0:¢;)) := P(staRT(j)), P(TEND(j))
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to form an input that batches a set of span pairs
(Figure 1(c)). This leads to a large speedup at in-
ference time and only a small drop in performance
(Section 4.3).

4 Experiments
4.1 Setup

Datasets We evaluate our approach on three
popular end-to-end relation extraction datasets:
ACEO05°, ACE04°, and SciERC (Luan et al., 2018).
Table 2 shows the data statistics of each dataset.
The ACEO5 and ACE(4 datasets are collected from
a variety of domains, such as newswire and online
forums. The SciERC dataset is collected from 500
Al paper abstracts and defines scientific terms and
relations specially for scientific knowledge graph
construction. We follow previous work and use
the same preprocessing procedure and splits for all
datasets. See Appendix A for more details.

Evaluation metrics We follow the standard eval-
uation protocol and use micro F1 measure as the
evaluation metric. For named entity recognition, a
predicted entity is considered as a correct predic-
tion if its span boundaries and the predicted entity
type are both correct. For relation extraction, we
adopt two evaluation metrics: (1) boundaries eval-
uation (Rel): a predicted relation is considered as
a correct prediction if the boundaries of two spans
are correct and the predicted relation type is correct;
(2) strict evaluation (Rel+): in addition to what is
required in the boundaries evaluation, predicted
entity types also must be correct. More discussion
of the evaluation settings can be found in Bekoulis
et al. (2018); Taillé et al. (2020).

Implementation details We use bert-base-
uncased (Devlin et al., 2019) and albert-xxlarge-
vl (Lan et al., 2020) as the base encoders for
ACEO04 and ACEQS5, for a fair comparison with pre-
vious work and an investigation of small vs large
pre-trained models.” We also use scibert-scivocab-
uncased (Beltagy et al., 2019) as the base encoder
for SciERC, as this in-domain pre-trained model is
shown to be more effective than BERT (Wadden
et al., 2019). We use a context window size of
W = 300 for the entity model and W = 100 for

5cataloq .ldc.upenn.edu/LDC2006T06

6cataloq .ldc.upenn.edu/LDC2005T09

7 As detailed in Table 1, some previous work used BERT-
large models. We are not able to do a comprehensive study of
all the pre-trained models and our BERT-base results are gen-
erally higher than most published results using larger models.


catalog.ldc.upenn.edu/LDC2006T06
catalog.ldc.upenn.edu/LDC2005T09

Model Encoder ACE05 ACE04 SciERC
Ent Rel Rel+ Ent Rel Rel+ Ent Rel Rel+
(Li and Ji, 2014) - 80.8 521 495 797 483 453 - - -
(Miwa and Bansal, 2016) L 834 - 55.6 81.8 - 48.4 - - -
(Katiyar and Cardie, 2017) L 826 559 536 79.6 493 457 - - -
(Zhang et al., 2017a) L 83.6 - 57.5 - - - - - -
(Luan et al., 2018)%f L+E - - - - - - 642 393 -
(Luan et al., 2019)%f L+E 884 632 - 874 597 - 652 416 -
(Li et al., 2019) Bl 848 - 602 836 - 494 - - -
(Dixit and Al-Onaizan, 2019) L+E 86.0 - 62.8 - - - - - -
(Wadden et al., 2019)%f Bb 886 634 - - - - - -
(Wadden et al., 2019)%f SciB - - - - - - 675 484
(Lin et al., 2020) Bl 888 675 - - - - - - -
(Wang and Lu, 2020) ALB 895 67.6 643 886 633 596 - - -
Bb 887 667 639 881 628 583 - - -
PURE (ours): single-sentence SciB - - - - - - 66.6 48.2 35.6
ALB 89.7 69.0 656 888 647 602 - - -
Bb 90.1 67.7 648 892 639 60.1 - - -
PURE (ours): cross-sentence® SciB - - - - - - 68.9 50.1 36.8
ALB 909 694 67.0 903 66.1 622 - - -

Table 1: Test F1 scores on ACE04, ACEQS5, and SciERC. We evaluate our approach in two settings: single-sentence
and cross-sentence depending on whether cross-sentence context is used or not. ®: These models leverage cross-
sentence information. T: These models are trained with additional data (e.g., coreference). The encoders used in
different models: L = LSTM, L+E = LSTM + ELMo, Bb = BERT-base, Bl = BERT-large, SciB = SciBERT (size
as BERT-base), ALB = ALBERT-xxlarge-v1. Rel denotes the boundaries evaluation (the entity boundaries must
be correct) and Rel+ denotes the strict evaluation (both the entity boundaries and types must be correct).

# Sentences
Train Dev  Test

10,051 2,424 2,050
8, 683 (5-fold)
1861 275 551

Dataset  |£] IR|

ACEO5 7 6
ACE04 7
SciERC 6 7

(@)}

Table 2: The statistics of the datasets. We use ACE04,
ACEQS, and SciERC for evaluating end-to-end relation
extraction.

the relation model in our default setting using cross-
sentence context® and the effect of different context
sizes is provided in Section 5.4. We consider spans
up to L = 8 words. For all the experiments, we
report the averaged F1 scores of 5 runs. More im-
plementation details can be found in Appendix B.

4.2 Main Results

Table 1 compares our approach PURE to all the
previous results. We report the F1 scores in both
single-sentence and cross-sentence settings. As is
shown, our single-sentence models achieve strong
performance and incorporating cross-sentence con-

8We use a context window size W = 100 for the ALBERT
entity models to reduce GPU memory usage.

text further improves the results considerably. Our
BERT-base (or SciBERT) models achieve similar
or better results compared to all the previous work
including models built on top of larger pre-trained
LMs, and our results are further improved by using
a larger encoder ALBERT.

For entity recognition, our best model achieves
an absolute F1 improvement of +1.4%, +1.7%,
+1.4% on ACEO05, ACE04, and SciERC respec-
tively. This shows that cross-sentence information
is useful for the entity model and pre-trained Trans-
former encoders are able to capture long-range de-
pendencies from a large context. For relation ex-
traction, our approach outperforms the best previ-
ous methods by an absolute F1 of +1.8%, +2.8%,
+1.7% on ACEO05, ACE04, and SciERC respec-
tively. We also obtained a 4.3% higher relation
F1 on ACEQO5 compared to DYGIE++ (Wadden
et al., 2019) using the same BERT-base pre-trained
model. Compared to the previous best approaches
using either global features (Lin et al., 2020) or
complex neural models (e.g., MT-RNNs) (Wang
and Lu, 2020), our approach is much simpler and
achieves large improvements on all the datasets.
Such improvements demonstrate the effectiveness
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ACE05 SciERC
Model Rel Speed Rel Speed
(F1) (sent/s) (F1) (sent/s)
Full (single) 66.7 32.1 482 346
Approx. (single) 65.7 3847 47.0 301.1
Full (cross) 67.7 14.7 50.1 19.9
Approx. (cross) 66.5 237.6 48.8 194.7

Table 3: We compare our full relation model and the
approximation model in both accuracy and speed. The
accuracy is measured as the relation F1 (boundaries)
on the test set. These results are obtained using BERT-
base for ACEO5 and SciBERT for SciERC in both
single-sentence and cross-sentence settings. The speed
is measured on a single NVIDIA GeForce 2080 Ti GPU
with a batch size of 32.

of learning representations for entities and relations
of different entity pairs, as well as early fusion of
entity information in the relation model. We also
noticed that compared to the previous state-of-the-
art model (Wang and Lu, 2020) based on ALBERT,
our model achieves a similar entity F1 (89.5 vs
89.7) but a substantially better relation F1 (67.6 vs
69.0) without using context. This clearly demon-
strates the superiority of our relation model. Fi-
nally, we also compare our model to a joint model
(similar to DYGIE++) of different data sizes to
test the generality of our results. As shown in Ap-
pendix C, our findings are robust to data sizes.

4.3 Batch Computations and Speedup

In Section 3.3, we proposed an efficient approxi-
mation solution for the relation model, which en-
ables us to re-use the computations of text tokens
and batch multiple span pairs in one input sentence.
We evaluate this approximation model on ACEQS
and SciERC. Table 3 shows the relation F1 scores
and the inference speed of the full relation model
and the approximation model. On both datasets,
our approximation model significantly improves
the efficiency of the inference process.” For exam-
ple, we obtain a 11.9x speedup on ACEO5 and a
8.7x speedup on SciERC in the single-sentence
setting. By re-using a large part of computations,
we are able to make predictions on the full ACEOS
test set (2k sentences) in less than 10 seconds on

°Note that we only applied this batch computation trick at
inference time, because we observed that training with batch
computation leads to a slightly (and consistently) worse result.
We hypothesize that this is due to the impact of increased batch
sizes. We still modified the position embedding and attention
masks during training (without batching the instances though).
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a single GPU. On the other hand, this approxima-
tion only leads to a small performance drop and
the relaion F1 measure decreases by only 1.0% and
1.2% on ACEO5 and SciERC respectively in the
single-sentence setting. Considering the accuracy
and efficiency of this approximation model, we
expect it to be very effective to use in practice.

5 Analysis

Despite its simple design and training paradigm,
we have shown that our approach outperforms all
previous joint models. In this section, we aim to
take a deeper look and understand what contributes
to its final performance.

5.1 Importance of Typed Text Markers

Our key observation is that it is crucial to build
different contextual representations for different
pairs of spans and an early fusion of entity type
information can further improve performance. To
validate this, we experiment the following variants
on both ACEO5 and SciERC:

TEXT: We use the span representations defined
in the entity model (Section 3.2) and concatenate
the hidden representations for the subject and the
object, as well as their element-wise multiplication:
[he(si), he(s;), he(s;) © he(sj)]. This is similar
to the relation model in Luan et al. (2018, 2019).
TEXTETYPE: We concatenate the span-pair repre-
sentations from TEXT with entity type embeddings
P(es),P(ej) € R (dg = 150).

MARKERS: We use untyped entity types ((S),
(1S), (O), (/0)) at the input layer and concatenate
the representations of two spans’ starting points.

MARKERSETYPE: We concatenate the span-pair
representations from MARKERS with entity type
embeddings 1 (e;), ¥(e;) € RE (dp = 150).

MARKERSELOSS: We also consider a variant
which uses untyped markers but add another FFNN
to predict the entity types of subject and object
through auxiliary losses. This is similar to how
the entity information is used in multi-task learn-
ing (Luan et al., 2019; Wadden et al., 2019).

TYPEDMARKERS: This is our final model de-
scribed in Section 3.2 with typed entity markers.
Table 4 summarizes the results of all the vari-
ants using either gold entities or predicted entities
from the entity model. As is shown, different in-
put representations make a clear difference and the
variants of using marker tokens are significantly



Input ACEO05 SciERC
gold e2e gold e2e
TEXT 676 616 617 453
TEXTETYPE 68.2 62.6 63.6 457
MARKERS 70.5 63.3 68.2 49.1
MARKERSETYPE 71.3 63.8 68.9 49.7
MARKERSELOSs 70.7 63.6 68.0 492
TYPEDMARKERS 72.6 64.2 69.1 49.7

Table 4: Relation F1 (boundaries) on the development
set of ACEOS and SciERC with different input features.
e2e: the entities are predicted by our entity model;
gold: the gold entities are given. The results are ob-
tained using BERT-base with single-sentence context
for ACEOS and SciBERT with cross-sentence context
for SciERC. For both ACEOS and SciERC, we use the
same entity models with cross-sentence context to com-
pute the e2e scores of using different input features.

Shared encoder? Enity F1 Relation F1
X 88.8 64.8
4 87.7 64.4

Table 5: Relation F1 (boundaries) scores when entity
and relation encoders are shared and not shared on the
ACEOQS development set. This result is obtained from
BERT-base models with cross-sentence context.

better than standard text representations and this
suggests the importance of learning different repre-
sentations with respect to different pairs of spans.
Compared to TEXT, TYPEDMARKERS improved
the F1 scores dramatically by +5.0% and +7.4%
absolute when gold entities are given. With the
predicted entities, the improvement is reduced as
expected while it remains large enough. Finally, en-
tity type is useful in improving the relation perfor-
mance and an early fusion of entity information is
particularly effective (TYPEDMARKERS vs MARK-
ERSETYPE and MARKERSEL0OSS). We also find
that MARKERSETYPE to perform even better than
MARKERSELOSS which suggests that using entity
types directly as features is better than using them
to provide training signals through auxiliary losses.

5.2 Modeling Entity-Relation Interactions

One main argument for joint models is that mod-
eling the interactions between the two tasks can
contribute to each other. In this section, we aim
to validate if it is the case in our approach. We
first study whether sharing the two representation
encoders can improve performance or not. We train
the entity and relation models together by jointly
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ACEOS SciERC

Gold entities 64.8 49.7
10-way jackknifing 63.9 48.1
0.4n spans (typed) 64.6 50.2
0.4n spans (untyped) 56.9 48.4
0.4n spans (untyped + eloss) 63.0 48.5

Table 6: We compare relation F1 (boundaries) with
different training strategies on the development sets of
ACEO5 and SciERC. This result is from training BERT-
base and SciBERT models with cross-sentence context.
typed: typed markers, untyped: untyped markers, un-
typed + eloss: untyped markers with auxiliary entity
loss. See text for more details.

optimizing L. + L, (Table 5). We find that simply
sharing the encoders hurts both the entity and re-
lation F1. We think this is because the two tasks
have different input formats and require different
features for predicting entity types and relations,
thus using separate encoders indeed learns better
task-specific features. We also explore whether
the relation information can improve the entity per-
formance. To do so, we add an auxiliary loss to
our entity model, which concatenates the two span
representations as well as their element-wise multi-
plication (see the TEXT variant in Section 5.1) and
predicts the relation type between the two spans
(r € R or €). Through joint training with this
auxiliary relation loss, we observe a negligible im-
provement (< 0.1%) on averaged entity F1 over
5 runs on the ACEO5 development set. To sum-
marize, (1) entity information is clearly important
in predicting relations (Section 5.1). However, we
don’t find that relation information to improve our
entity model substantially'?; (2) simply sharing the
encoders does not provide benefits to our approach.

5.3 Mitigating Error Propagation

A well-known drawback of pipeline training is
the error propagation issue. In our final model,
we use gold entities (and their types) to train the
relation model and the predicted entities during in-
ference and this may lead to a discrepancy between
training and testing. In the following, we describe
several attempts we made to address this issue.

We first study whether using predicted entities

""Miwa and Bansal (2016) observed a slight improvement
on entity F1 by sharing the parameters (80.8 — 81.8 F1) on
the ACEOS development data. Wadden et al. (2019) observed
that their relation propagation layers improved the entity F1
slightly on SciERC but it hurts performance on ACEOS.
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Figure 2: Effect of different context window sizes, mea-
sured on the ACEO5 development set with the BERT-
base model. We use the same entity model (an entity
model with W = 300) to report the relation F1 scores
(boundaries).

— instead of gold entities — during training can
mitigate this issue. We adopt a 10-way jackknif-
ing method, which is a standard technique in many
NLP tasks such as dependency parsing (Agi¢ and
Schluter, 2017). Specifically, we divide the data
into 10 folds and predict the entities in the k-th fold
using an entity model trained on the remainder. As
shown in Table 6, we find that jackknifing strategy
hurts the final relation performance surprisingly.
We hypothesize that it is because it introduced ad-
ditional noise during training.

Second, we consider using more pairs of spans
for the relation model at both training and testing
time. The main reason is that in the current pipeline
approach, if a gold entity is missed out by the entity
model during inference, the relation model will not
be able to predict any relations associated with that
entity. Following the beam search strategy used
in the previous work (Luan et al., 2019; Wadden
et al., 2019), we consider using An (A = 0.4 and n
is the sentence length)'! top spans scored by the en-
tity model. We explored several different strategies
for encoding the top-scoring spans for the relation
model: (1) typed markers: the same as our main
model except that we now have markers e.g., (S:e),
(/S:€) as input tokens; (2) untyped markers: in this
case, the relation model is unaware of a span is
an entity or not; (3) untyped markers trained with
an auxiliary entity loss (e € £ or €). As Table 6
shows, none of these changes led to significant
improvements and using untyped markers is espe-

"'This pruning strategy achieves a recall of 96.7% of gold
relations on the development set of ACEQS.
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cially worse because the relation model struggles
to identify whether a span is an entity or not.

In sum, we do not find any of these attempts
improved performance significantly and our sim-
ple pipelined training turns out to be a surprisingly
effective strategy. We do not argue that this er-
ror propagation issue does not exist or cannot be
solved, while we will need to explore better solu-
tions to address this issue.

5.4 Effect of Cross-sentence Context

In Table 1, we demonstrated the improvements
from using cross-sentence context on both the en-
tity and relation performance. We explore the ef-
fect of different context sizes W in Figure 2. We
find that using cross-sentence context clearly im-
proves both entity and relation F1. However, we
find the relation performance doesn not further in-
crease from W = 100 to W = 300. In our final
models, we use W = 300 for the entity model and
W = 100 for the relation model.

6 Conclusion

In this paper, we present a simple and effective
approach for end-to-end relation extraction. Our
model learns two encoders for entity recognition
and relation extraction independently and our ex-
periments show that it outperforms previous state-
of-the-art on three standard benchmarks consider-
ably. We conduct extensive analyses to undertand
the superior performance of our approach and vali-
date the importance of learning distinct contextual
representations for entities and relations and using
entity information as input features for the relation
model. We also propose an efficient approximation,
obtaining a large speedup at inference time with
a small reduction in accuracy. We hope that this
simple model will serve as a very strong baseline
and make us rethink the value of joint training in
end-to-end relation extraction.
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A Datasets

We use ACE04, ACEQS5, and SciERC datasets in
our experiments. Table 2 shows the data statistics
of each dataset.

The ACE04 and ACEOQS datasets are collected
from a variety of domains, such as newswire and
online forums. We follow Luan et al. (2019)’s
preprocessing steps'? and split ACE04 into 5 folds
and ACEOQS into train, development, and test sets.

The SciERC dataset is collected from 12 Al con-
ference/workshop proceedings in four Al commu-
nities (Luan et al., 2018). SciERC includes anno-
tations for scientific entities, their relations, and
coreference clusters. We ignore the coreference an-
notations in our experiments. We use the processed
dataset which is downloaded from the project web-
site’? of Luan et al. (2018).

B Implementation Details

We implement our models based on Hugging-
Face’s Transformers library (Wolf et al., 2019). For
the entity model, we follow Wadden et al. (2019)
and set the width embedding size as dr = 150
and use a 2-layer FFNN with 150 hidden units and
ReLU activations to predict the probability distri-
bution of entity types:

P.(e | s;) = softmax(W FFNN(h.(s;)).

For the relation model, we use a linear classifier on
top of the span pair representation to predict the
probability distribution of relation types:

P,(r]s;, sj) = softmax(W,h,(s;, 55)).

For our approximation model (Section 4.3), we
batch candidate pairs by adding 4 markers for each
pair to the end of the sentence, until the total num-
ber of tokens exceeds 250. We train our models
with Adam optimizer of a linear scheduler with a
warmup ratio of 0.1. For all the experiments, we
train the entity model for 100 epochs, and a learn-
ing rate of le-5 for weights in pre-trained LMs,
Se-4 for others and a batch size of 16. We train the
relation model for 10 epochs with a learning rate
of 2e-5 and a batch size of 32.

C Performance with Varying Data Sizes

We compare our pipeline model to a joint model
with 10%, 25%, 50%, 100% of training data on

2We use the script provided by Luan et al. (2019):
https://github.com/luanyi/DyGIE/tree/
master/preprocessing.

Bhttp://nlp.cs.washington.edu/scilIE/

61

.. Ours Joint
Trainingdata " pol Ene Rel
10% 82.0 469 815 37.0
25% 849 57.6 846 490
50% 855 61.9 862 57.7
100% 872 634 874 61.0

Table 7: F1 scores on ACEOS development set when
only a subset of training samples (10%, 25%, 50%, or
100%) are provided.

the ACEQS dataset. Here, our goal is to understand
whether our finding still holds when the training
data is smaller (and hence it is expected to have
more errors in entity predictions).

Our baseline of joint model is our reimplementa-
tion of DYGIE++ (Wadden et al., 2019), without us-
ing propagation layers (the encoders are shared for
the entity and relation model and no input marker is
used; the top scoring 0.4n entities are considered in
beam pruning). As shown in Table 7, we find that
our model achieves even larger gains in relation F1
over the joint model, when the number of training
examples is reduced. This further highlights the im-
portance of explicitly encoding entity boundaries
and type features in data-scarce scenarios.


https://github.com/luanyi/DyGIE/tree/master/preprocessing
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