
ReinforceBug: A Framework to Generate Adversarial Textual Examples

Bushra Sabir
University of Adelaide

CREST - The Centre for
Research on Engineering
Software Technologies

CSIRO Data61

Muhammad Ali Babar
University of Adelaide

CREST - The Centre for
Research on Engineering
Software Technologies

Raj Gaire
CSIRO Data61

Abstract

Adversarial Examples (AEs) generated by per-
turbing original training examples are useful
in improving the robustness of Deep Learn-
ing (DL) based models. Most prior works
generate AEs that are either unconscionable
due to lexical errors or semantically and func-
tionally deviant from original examples. In
this paper, we present ReinforceBug, a rein-
forcement learning framework, that learns a
policy that is transferable on unseen datasets
and generates utility-preserving and transfer-
able (on other models) AEs. Our experiments
show that ReinforceBug is on average 10%
more successful as compared to the state-of-
the-art attack TextFooler. Moreover, the target
models have on average 73.64% confidence in
wrong prediction, the generated AEs preserve
the functional equivalence and semantic simi-
larity (83.38%) to their original counterparts,
and are transferable on other models with an
average success rate of 46%.

1 Introduction

Machine Learning (ML) models have attained re-
markable success in several tasks such as classifi-
cation and decision analytics. However, ML Mod-
els specifically Deep Learning (DL) based models,
are often sensitive to Adversarial Examples (AEs).
AEs consist of modified training data samples that
preserve the intrinsic utilities of the ML solutions,
but influence target classifier’s predictions between
original and modified inputs (Fass et al., 2019).
Recent works (Fass et al., 2019; Li et al., 2020;
Biggio and Roli, 2018) have demonstrated that (i)
including AEs as a part of training data can en-
hance the robustness and generalization of the ML
models, and (ii) these examples can be utilized to
test the robustness of ML models and help under-
stand their security vulnerabilities and limitations.
Previous works on generating AEs have attained
success in image (Biggio and Roli, 2018) and on
a few conventional text classification tasks such

as sentiment, text entailment and movie reviews
(Li et al., 2018; Jin et al., 2020; Li et al., 2020).
Nevertheless, generating AEs for discrete textual
data is still a challenge (Jin et al., 2020).

Textual AEs generated by the prior works have
the following limitations:

Utility Preservation Textual AEs require to sat-
isfy task-specific constraints such as lexical rules
(spellings or grammar), semantic similarity and
functional equivalence to original examples. Yet,
most of the current state-of-the-art methods do not
satisfy these constraints, thereby generating imper-
ceivable AEs for end-users (Zhang et al., 2020). A
few recent works (Li et al., 2020; Wang et al., 2019;
Li et al., 2018; Jin et al., 2020) have considered se-
mantic similarity constraint, but other constraints
have been barely explored (Jin et al., 2020).

Knowledge Transferability Most prior works
Alzantot et al. (2018); Jin et al. (2020); Wang et al.
(2019) generate one to one example-specific AEs,
i.e., for a given example x, they create an exam-
ple x′. Each instance x is considered independent
in a corpus C, and no relationship between differ-
ent instances in the corpus is assumed. Therefore,
the knowledge gained by transforming an exam-
ple to AE is limited to a single example and is not
reused on other examples. This process is both
time-consuming and may not generalize the identi-
fied vulnerabilities of the target model.

Word Replacement Strategy Most prior works
use a single word replacement strategy such as syn-
onym substitution (Alzantot et al., 2018; Jin et al.,
2020; Wang et al., 2019) or character perturbation
(Gao et al., 2018) to generate AEs. This strategy
has two main disadvantages: (i) the AEs generated
by using a character-based replacement strategy,
contains many spelling errors that result in unnat-
ural text; and (ii) multiple word transformations
with its synonym in a synonym-based replacement

strategy affect the language’s fluency, making it
sound unnatural. For instance, Jin et al. (2020)
generated an AE “Jimmy Wales is a big, fucking
idiot liar friggin nincompoop deception". This AE
sounds unnatural and is grammatically incorrect.

Handling Noisy Datasets Most prior works gen-
erated AEs for datasets such as Yelp (Yelp) and
Fake News (Kaggle, 2018a) which do not contain
many spelling mistakes or out-of-the-vocabulary
words. However, human generated natural text is
prone to lexical errors. For example, tweets usu-
ally contain informal language, misspellings and
unknown words. Prior works, such as (Jin et al.,
2020; Wang et al., 2019; Alzantot et al., 2018; Li
et al., 2020) that considered synonym substitution
strategy, cannot deal with such noisy dataset.

Our contribution

We present ReinforceBug that addresses the afore-
mentioned limitations of prior works. Our code is
available at https://bit.ly/2QOZDMT. Our
main contributions are summarized as follows:

1. We propose a reinforcement learning frame-
work, ReinforceBug, that learns a policy to
generate utility-preserving AEs under the
black-box setting with no knowledge about
the target model architecture or parameters.

2. We evaluate ReinforceBug on four state-of-
the-art deep learning models Email spam,
Twitter spam, Toxic content and Review po-
larity detection respectively.

3. We investigate the transferability of our
learned policy on a new dataset.

4. We also examine the transferability of our gen-
erated AEs on three other state-of-the-art deep
learning models.

2 Related Works

Adversarial attacks are extensively studied in com-
puter vision domain (Biggio and Roli, 2018; Good-
fellow et al., 2014). Early works in adversarial text
attacks were inspired by Generative Adversarial
Networks (GANs) (Wong, 2017; Zhao et al., 2018).
Wong 2017 showed that GAN-based reinforcement
learning algorithms become unstable after a few
perturbations. Later, heuristic-based methods such

as word removal (Ebrahimi et al., 2018), Out-Of-
Vocabulary (OOV) words (Gao et al., 2018) and
synonym replacement (Li et al., 2018; Jin et al.,
2020; Alzantot et al., 2018) have been proposed.
Among these studies, DeepWordBug (Gao et al.,
2018) generates AEs by randomly transforming
a word by OOV word in an example. This ap-
proach is practical in producing AEs efficiently;
however, it generates AEs that can be detected by
the end-user due to large proportion of lexical er-
rors. An attack framework named TextBugger (Li
et al., 2018) was proposed to generate adversarial
samples using the multi-level approach. It iden-
tified important words for each example and re-
placed them with optimal bugs. The approach con-
sidered both character-level and word-level trans-
formations. Another recent attack, TextFooler (Jin
et al., 2020) generates utility-preserving AEs by
replacing an important word in an example with
its grammatically equivalent synonym. The study
also evaluates the generated AEs against semantic
similarity constraint.

In this study, we compare our method with
TextBugger and TextFooler.

3 ReinforceBug

3.1 Definitions

Definition 1 A Deep Neural Network (DNN) is a
machine learning model that learns a function F :
X → Y over training data which maps from input
space X to a set of classes Y. F is then evaluated
on testing data X ′ and F predicts the output label
y′ for x′ ∈ X ′.

Definition 2 Prediction Confidence Score
PCS(x,y) of model F depicts the likelihood of an
input x ∈ X having a label y ∈ Y . The smaller
PCS(x,y) suggests F has low confidence that x
has a label y.

Definition 3 Given a real example x having a la-
bel y, a utility-preserving AE against x is an in-
put x′ ← x + ı with a minor perturbation ı such
that x′ satisfies a set of perturbation constraints
Pconst and F predicts an incorrect label for it with
high PCS i.e., y′ ← F (x′) such that y′ 6= y and
PCS(x′,y′)> ν.

Definition 4 A black-box attack is an attack
where an attacker does not know the target
model F architecture, training data X or hyper-
parameters θ. An attacker can only query F with

https://bit.ly/2QOZDMT

Figure 1: Overall of ReinforceBug

the input examples X ′ and gets the corresponding
PCS(x, y).

Definition 5 A non-targeted attack is an attack in
which the adversary’s goal is to maximize the mis-
classification rate of the model F on any generated
AE irrespective of its ground-truth label y. i.e.,
fool the model F to misclassify a spam email as
benign email or vice-versa.

3.2 Problem Formulation
Given a pre-trained target model F , we need to
simulate a non-targeted (Definition 5) black-box at-
tack (Definition 4) (Morris et al., 2020) to generate
a set of utility-preserving AEs (Definition 3) Aexp

from a Corpus C with N examples and having cor-
responding target label tg ∈ Y . Furthermore, our
approach should learn a policy πθ(s,a) to perform
perturbation ı on C such that the model generates
utility-preserving AEs (Definition 3) that have se-
mantic similarity (> ε) with the original example
but have low perturbation rate (number of words
perturbed) and lexical (grammatical and spelling)
errors. Moreover, the policy should be transferable
on unseen datasets.

3.3 System Overview
Fig 1 provides an overview of ReinfoceBug. We
model an attack as a reinforcement learning (Sutton
and Barto, 2018) process consisting of three main
components: an environment, Proximal Policy Op-
timization (PPO) agent (Schulman et al., 2017) and
action space. Firstly, the environment state (st) at
time t is processed as input by an agent followed
by an action at ∈ A determined by an agent to
update st to the next state st+1, whereA represents
an action space (set of valid actions given the state).

Subsequently, the environment’s actuator acts on
the corpus state to construct candidate examples.
These examples are then sent to the reward genera-
tor module, which is responsible for computing the
reward rt + 1 for action at. The reward generator
applies post constraints Post ⊂ Pconst, queries the
target model F and obtain scores of the candidate
examples to calculate the reward of action at. The
reward is sent back to the actuator which deter-
mines a valid update to the corpus state as well as
the next environmental state st+1. The experience
consisting of < st, at, rt+1, st+1, vat+1 > is sent
to the agent and the agent model is updated. Here
vat+1 shows the valid actions mask for next state.
The vat+1 is then used by the agent to update an
action space A and restrict the agent to only select
valid action on the new state st+1. Each of the
modules is discussed below:

3.3.1 Agent
We use a customized version of Proximal Proxi-
mate Optimal (PPO) (Tang et al., 2020) Reinforce-
ment Learning (RL) agent with action mask capa-
bility. PPO is an enhanced version of Actor-Critic
(AC) Model (Grondman et al., 2012) . In AC ar-
chitecture the agent consists of a separate policy
and Q-value network. They both take in environ-
ment state st at each time step as an input, while
actor determines an action at among the possible
valid action set A and critic yields value estimation
Vt(st). While an actor uses a gradient descent algo-
rithm to learn a policy that maximizes the rewards
Rt, the critic learns to estimate Rt via minimizing
a temporal loss. Further, the PPO algorithm avoids
large and inefficient policy updates by constraining
the new policy updates to be as close to the origi-

nal policy as possible. We have selected this agent
because our action and state space is substantially
large and to avoid enormous policy updates which
make the agent unstable (please refer to Schulman
et al. (2017) for more details).

3.3.2 Environment
The environment takes action at from the agent
as input and outputs the experience tuple et, AEs
Aexp and a flag done depicting the success of the
agent in achieving the goal.

3.3.3 States
The environment maintains the following states.

1. Corpus State (Ct): it is given by Ct =
E1, E2,, EN , where N is the number of
examples in the corpus and Ei is equivalent to
the set of words Wi = w1, w2, ..., wn for an
example i at time t.

2. Score State (scoret): it is a vector represent-
ing the PCS (Definition 2) of target model F
on examples E having a ground-truth label
tg in corpus C at time t. For instance, given
an example Ei the scoret[i] = PCS(Ei, tg)
where tg is a ground truth label of Ei.

3. Environment State (st): this state st =
w1, w2, ..., wk is observable by an agent. It
consists of k mutable important words in cor-
pus C.

4. Success rate (successt): it is the proportion
of utility-preserving AEs compared to all AEs
generated by the agent at time t.

3.3.4 Components
The environment contains following components:

Word selector This component takes C state at
t = 0 and pre-constraints Pre ⊂ Pconst as in-
puts. Pre are task-specific perturbation restrictions
on the specific entities in Ei. For example, spam
messages mostly contain URLs, IP addresses, or-
ganization names and email addresses pointing to
phishing websites. Perturbing these entities in the
spam message can change the functional semantics
of the message (Ranganayakulu and Chellappan,
2013). Hence, imposing pre-constraints ensures
that generated AE preserves the functional equiva-
lence toEi after applying perturbations. To achieve
this, we have designed a countvectorizer (sklearn)
using a customized tokenizer. The tokenizer finds

the list of immutable entities such as URLs and IP
addresses in the text using regular expressions or
named entity models (Florian et al., 2003). After
that, these words are segmented into immutable
words Imwords using word tokenizer and saved for
each example to be utilized later by actuator mod-
ule. For training ReinforceBug, our method first
computes the important words from the training
datasets as state (st) and then learns a policy to
identify best actions (at) to transform the st to a
next state (st+1) such that the success of our attack
is maximum.

Our work extends Jin et al. (2020) important
words component; however instead of generat-
ing example-specific words, our module identifies
corpus-specific important words. An important
word is selected using a word importance score
Iwidx

. The Iwidx
is calculated as the sum of pre-

diction change in all the examples (k) containing
widx before and after deleting widx. The candidate
words widx ∈ most frequent words in the training
dataset vocabulary. It is formally defined as follow.

Iwidx
=

{
k∑

i=1
(
|F (Ei)−F (widx /∈Ei)|

F (Ei)
)

k

(1)

If the Iwidx
is > 0, we consider it as an important

word. The final list of all the important words is
considered as the state st. st and mapping Cmap

that maps each word to the corpus examples are
sent back to the environment. For testing, the de-
signed countvectorizer is used to transform the test-
ing data onto these selected words.

Actuator This module is responsible to execute
an action at selected by an agent. Firstly, the ac-
tuator transforms action at into an action tuple
< widx, actidx, repidx >, where widx, actidx and
repidx depict the index of the word to be replaced,
the operation to be performed on that word and re-
placement word index respectively. Subsequently,
example indexesEidx containing the word widx are
obtained by querying the Cmap. After that, the ac-
tuator examines the scoret[k] (score state) of each
example k in Eidx. If scoret[k] > ν, only then it
is selected as an example to be perturbed, here ν
represent the PCS threshold. In this way, the ex-
amples for which AEs have already been found are
not perturbed further and other examples are given
a chance. Once these examples are selected, the
operation actidx is applied to widx which results in
multiple replacement options.

Table 1: List of Operations

Operation Description Example
Homoglyph Replace a char with visually similar char. potentially vs potentia1Iy
Insertion Insert a char in a word. nearly vs n3early
BitSquatting Replace a character with one bit clearly vs glearly

different char.
Omission omit one char. standard vs stanard
Addition Add a char on start or end of a word. classified vs classifiedf
Repetition Repeat the previous char in the word. requested vs rrequested
get_synonyms Replace the word with its synonym control vs dominance
get_semantic Append the word with a word contextually like vs such like

related word
get_syntactic Replace the word with a word having similar bta vs bat

syntax.
currency_word If word contains currency symbol replace it $ vs dollar

with currency word and vice-versa. dollar vs $
word_to_num If word represents a number replace it with eigth vs 8

the number.
num_to_word If word is a number replace it to English word. 8 vs eight
word_weekday If word is a weekday, replace it with its Wednesday vs wed

abbreviation or vice-versa wed vs Wednesday
word_month If word is a month, replace it with its August vs Aug

abbreviation vice-versa aug vs August

Table 1 provides the list of operations considered.
For example, if an operation is Homoglyph and the
word indexed by widx is “solid" then following re-
placements can be done "so1id,sol1d,s0lid,5olid".
The new word wnew is selected by repidx. After
wnew is selected against the wold, if wold in not in
the immutable word list of example k than a candi-
date AEs are generated by substituting wold with
wnew in the previously selected examples. In this
way the functional equivalence is ensured before
generation of AE. The selected candidate exam-
ples are then sent to the reward generator. The re-
ward generator module returns the reward of chang-
ing the widx in the selected examples by applying
actidx and selecting repidx. The reward generator
also outputs the AEs that satisfies all the post con-
straints. Finally, the state is updated by replacing
the widx in st with index of new word wnew. All
further actions on widx are then invalidated. This is
done by setting the vat+1 for all actions on thewidx

in an action_space to False. In this way, multiple
actions on the same word cannot be performed in
one training episode. The successt+1 is updated,
the episode completes if the successt+1 for the cor-
pus state Ct+1 has reached the threshold specified
by φ or all the words in the state have been up-
dated. The module constructs an experience tuple
et for the agent and returns et, Ct+1, scoret+1 and
successt+1 to the environment.

Reward Generator (RG) Algorithm 1 shows
the pseudo-code of the RG module. RG takes can-
didate examples, Ct, time t and post constraints
as input and outputs the Advexp, the reward rt+1

of at and updated corpus state Ct+1. In this study,
we have considered three main post utilities that
the generated Advexp should preserve apart from

ALGORITHM 1: Reward_Generator
1 Input: Original examples org, candidate examples
cand, time t, Post ⊂ Pconst;

2 Output: Advexp, reward rt+1, Ct+1 ;
3 Initialize reward← 0, Advexp← {};
4 updated_cand, rewards;
5 if (t = 0) then
6 updated_cand = cand;
7 Query Target Model;
8 scoret ← target_model.query(cand);
9 else

10 Initialize thresholds for spellerror η,
gramerror ι, Semantic ε ∈ Post;

11 N ′ ← total candidate examples;
12 forall ck ∈ cand do
13 sem = Semantic(orgk, ck);
14 spell = spellerror(ck)

wordlen
;

15 gram = gramerror(ck)
wordlen

;
16 if sem > ε and spell <= η and

grammar <= ι) then
17 Query target_model;
18 new_sck = query(ck)

prev_sck ← scoret[k];
19 change[k] = prev_sck−new_sck

prev_sck
;

20 if change[k] > 0 then
21 update the corpus state;
22 Ct+1 ← Eidx[k]← ck;
23 update the score state;
24 scoret+1[k]← new_sck;
25 end
26 Compute Reward ;
27 if (scoret[k] < ν) then
28 Advexp.append(ck);
29 prate[k] =

wordsperturbed
wordlen

;
30 rt+1+ =

(orgscore[k]−score[k])

orgscore[k]
+sem[k]

spell[k]+gram[k]+prate[k]

31 else
32 rt+1+ = change[k] ;
33 end
34 end
35 end
36 rt+1= rt+1

N′ ;
37 end
38 return: Advexp, rt+1, Ct+1;

changing the output of the classifier. Firstly, the
percentage of the spelling and grammatical errors
should not be more than η and ι respectively, and
the semantic similarity between the original and
AE should be > ε. If the candidate example meets
all these utilities, then the target_model is queried
to obtain the score of the candidate example. RG
updates the corpus and score states for an example
where the difference between previous (before per-
turbation) and new (after perturbation) score of an
example > 0 .

Subsequently, the reward generator checks if the
candidate example score has converged to < ν or
not. When converged case, the example is added

to the list of valid AE against the original exam-
ple, and a reward rt+1 is computed as shown in
line 30 of Algorithm 1. Otherwise, the sum of
the change in the scores of an example is added
as a reward, as shown in line 31. In line 30, the
rt+1 represents the summation of reward attained
on successfully transforming the original examples
into well-constrained AE. It is calculated as a sum-
mation of the change in original and current score
of the example k, assisted by semantic similarity
with the original example and penalized by lexical
errors (spelling and grammatical) and perturbation
rate prate for generating each AE. In this way, the
agent learns to generate AEs with minimum per-
turbations and lexical errors and more PCS and
semantic similarity. Lastly, the rt+1 is normalized
by the factor N’, so that the agent can learn the im-
pact of action at on a single example irrespective
of the size of the corpus.

Target Model We have considered a black-box
attack (Definition 4) against the target model F . F
can be any DNN (Definition 1) that provides PCS
(Definition 2) score as an output.

4 Experimental Setup

This section presents our experiment details.

4.1 Datasets
We studied the effectiveness of ReinforceBug on
three noisy and one conventional text classification
tasks respectively. Table 2 enlists the statistics of
the considered datasets. Precisely during the target
model training, we held out 30% of the training
data as a validation set, and all parameters were
tuned based on it. After that, the testing dataset
was used to evaluate the performance of the model.
For training and testing our ReinforceBug, we split
the dataset into training (70%) and testing dataset
(30%). The stratified split was applied to ensure
the class distribution on these datasets remains con-
sistent with the actual testing dataset.

4.2 Attacking Target Models
For each dataset, we trained four state-of-the-art
models namely Word Convolution Neural Network
(CNN) (Jain et al., 2018), Character CNN (Zhang
et al., 2015), Word Bidirectional Long Term Short
Memory (BiLSTM) (Zhou et al., 2016) and Re-
current CNN (Lai et al., 2015) on the training set.
However, we did not consider the recent state-of-
the-art BERT (Devlin et al., 2019) model because

we found that its performance was significantly low
for our considered noisy datasets. Srivastava et al.
2020 also reported that the BERT model’s perfor-
mance notably degrades for noisy text datasets, and
further research is required to fine-tune BERT for
noisy datasets.

For training the considered models, we used
an open-source GitHub repository (Lee). Table 3
shows the performance of each model on the test-
ing set. From these models, we selected the models
with best performance accuracy as target models
(as highlighted in bold) to train ReinforceBug . For
the rest of the models trained on a similar dataset,
we studied the transferability of our generated AEs.
Moreover, we tested our ReinforceBug against an
unseen dataset to study the transferability of our
attack on other datasets. Lastly, for get_semantic
and get_synonym operations (Pennington et al.,
2014) and (Mrkšić et al., 2016) embeddings had
been used.

4.3 PPO Agent

We used stable-baselines (Hill et al., 2018) rein-
forcement learning library to implement our PPO
agent. We used a Multilayer perception (MLP)
model, as an actor and critic models. For training
the agent, we used 30 episodes for each model.

4.4 Utility-Preservation Constraints

To ensure the functional equivalence, we defined
immutable tokens as pre-constraints using Named
Entity Model provided by Spacy and regular ex-
pressions. For Enron dataset, names (Person or
Organization), IP, email addresses and URL, while
for Twitter and Toxic datasets URL, #Hashtags and
@Reference and lastly, for Yelp dataset, names and
URL were considered as immutable entities. For

Table 2: The Target Models training and testing data
sets statistics

Dataset Training Testing Avg Avg Spell- Avg Gram-
Data Data Length ing errors mar errors

Enron (Wiki) 28.6k 9.9k 244 3.07% 31%
Twitter (Kaggle, 2019) 8.1k 3.9k 15 10.67% 28.46%
Toxic (Kaggle, 2018b) 159.5k 12.4k 70 2.13% 25.60%

Yelp (Yelp) 560k 38k 139 0.81% 21.67%

Table 3: Balanced Accuracy of target models on test
datasets

Dataset WordCNN CharCNN BiLSTM RCNN
Enron 97.50% 96.50% 97.60% 98.30%
Twitter 93.44% 92.02% 93.72% 94.15%
Toxic 69.05% 86.62% 89.61% 88.56%
Yelp 94.74% 94.44% 95.60% 95.34%

semantic and lexical equivalence, we defined three
post constraints, i.e., the semantic similarity, which
were calculated using Universal Sentence Encoder
(USE) (Cer et al., 2018) considering ε = 0.60.
Moreover, for counting spelling mistakes Garbe
was used while for calculating grammar issues, we
used language tool (PYPI).

5 Results

Results of our experiments are presented here.

5.1 Attack Evaluation

Table 4 shows the samples of AEs generated by Re-
inforceBug and Table 5 illustrates the main results
of our experiments. It can be seen that Reinforce-
Bug produces AEs with a comparatively high PCS
(i.e., on average 74%), semantic similarity (i.e.,
on average 83.5%) than other two attacks for all
the datasets. However, its success rate is on av-
erage 15% less than TextBugger (Li et al., 2018)
for the all the models. One reason behind it is that
TextBugger generates unrealistic AEs with least
PCS (i.e., on average 66%), low semantical similar-
ity (i.e., on average 63%) and significantly high lex-
ical errors (i.e., on average 14% spelling and 27%
grammar errors). Additionally, TextBugger on av-
erage perturbs more than 59% words of the original
text to generate AEs. Such a high perturbation rate
is too large to be ignored by the end-user. More-
over, for Enron and Twitter datasets, TextBugger
perturbs 9.09% and 97.67% of the URLs present
in the text, thus adversely effecting the functional
semantics of the text. Therefore, the success rate of
TextBugger is an overestimation and deviates from
the semantic, functional and lexical constraints.

In comparison with TextFooler (Jin et al., 2020)
our method has significantly high success rate (i.e.,
on average more than 10%) for all the models.
It is expected because TextFooler relies on syn-
onym substitutes technique to generate AE, how-
ever, for noisy datasets with relative high lexical
errors such as Twitter (Table 2) this method tends
to fail. Lastly, TextFooler produces 5% more gram-
matical errors than ReinforceBug and similar to
TextBugger, TextFooler also perturbs URLs, thus
effecting the functional semantics of the generated
AEs. These findings suggest that ReinforceBug
produces effective and utility-preserving AEs (Def-
inition 3).

5.2 Knowledge Transferability

Table 6 shows the transferability of policy learned
by ReinforceBug on unseen datasets for each task.
For benchmarking the results are also compared
with the state-of-the-art attacks TextBugger and
Textfooler. It is evident from the results that Re-
inforceBug takes less time to generate adversar-
ial samples as compared to the other models. It
is because ReinforceBug utilizes the same impor-
tant word vocabulary selected while learning and
the agent has already explored and learned utility-
preserving operations on them during training. Ad-
ditionally, although TextFooler and TextBugger
both perform example-specific perturbation and
ReinforceBug might suffer from out-of-vocabulary
words but still the success rate of ReinforceBug on
test datasets is more than TextFooler attack and less
than TextBugger which are aligned with our finding
in section 5.1. Also, from Table 6 it is evident that
our ReinforceBug produces utility-preserving AEs
with high PCS and semantic similarity (i.e., on av-
erage more than 70% and 82% respectively) and
comparatively low perturbation rate (on average
8.5%) for all test datasets. It suggests that the im-
portant words and transformation learned from the
training datasets are transferable to unseen datasets
and can be used to generalize the vulnerabilities of
the target models.

5.3 Attack Transferability on Models

To determine whether AEs curated based on one
model can also fool other models for the same task,
we examined the transferability of AEs on other
models (see Table 3 for the performance of these
models). Table 7 shows the transferability result.
AEs generated by our method are more transferable
to other models in comparison to the state-of-the-
art attacks. However, there is a moderate degree
of transferability between models, and the trans-
ferability is higher for Twitter and Toxic detection
task as compared to Email and Yelp movie-review
classification task. Nevertheless, BiLSTM trained
on Enron dataset (having 97.60% accuracy) offers
more resilience to AEs generated by RCNN by
limiting the success rate of the attack to (<17%)
for all the attacks, while other models are highly
vulnerable to the AEs. It signifies that vulnerabil-
ities exploited by our AEs are task-specific and
moderately model-independent.

Table 4: Samples of Examples (red font depicts the change in the original example)

Task: Twitter Original Label Adversarial Label Task: Toxic/Non- Original Label Adversarial Label
Spam/Benign Benign (PCS 100%) Spam (PCS 98%) Toxic Comment Toxic (PCS 97%) non-Toxic (PCS 83%)

I should of just gone home yesterday and spent my day off today with my family relatives Even trolls surely deserve to eat, bastardx.
Task: Email Original Label Adversarial Label Task: Positive/ Original Label Adversarial Label
Spam/Benign Spam (PCS 100%) Benign (PCS 96%) Negative Review Negative (72%) Positive (PCS 86%)
Subject:soul mate one of your buddies hooked you up on a date scheduled with another buddy. Premium price for a standard sandwich. Would have been an amazingly

your invitation:a free dating web site created by women no more invitation: enjoyable visit had the deli guy been at least welcoming .

Table 5: ReinforceBug Attack on Training Dataset

Dataset Attacks Success Perturbation % of URLs Avg PCS Avg Semantic Avg Spelling Avg Grammar
Rate Rate Perturbed Similarity Errors Errors

Enron RCNN
TextBugger 43.09% 46.64% 35.21% 62.52% 61.51% 13.39% 35.7%
TextFooler 22.31% 10.60% 9.09% 59.76% 76.62% 3.08% 21.80%
ReinforceBug 33.21% 11.09% 0.00% 73.82% 85.66% 3.30% 9.88%

Twitter RCNN
TextBugger 65.98% 24.74% 97.67% 74.6% 58.8% 25.77% 35.64%
TextFooler 12.66% 11.89% 99.10% 79.17% 73.79% 5.22% 15.68%
ReinforceBug 14.99% 11.29% 0.00% 82.82% 80.86% 4.14% 13.99

Yelp BiLSTM
TextBugger 44.88% 21.89% 6.25% 58.62% 66.97% 5.22% 16.85%
TextFooler 33.80% 4.15% 4.73% 58.39% 80.60% 0.74% 14.13%
ReinforceBug 39.35% 3.18% 0.00% 63.78% 87.78% 1.88% 9.68%

Toxic BiLSTM
TextBugger 42.11% 24.78% 45.10% 62.85% 60.83% 11.36% 19.98%
TextFooler 21.00% 7.07% 28.57% 64.17% 76.68% 1.53% 14.70%
ReinforceBug 31.22% 9.43% 0.00% 71.52% 78.07% 3.69% 6.40%

Table 6: ReinforceBug Attack on Testing Dataset (Test time is given days-hours:minutes:seconds format)

Dataset Attacks Test Success Perturbation Avg PCS Avg Semantic Avg Spelling Avg Grammar
Time Rate Rate Similarity Errors Errors

Enron RCNN
TextBugger 1-18:55:48 42.42% 38.68% 62.52% 61.51% 13.39% 17.31%
TextFooler 2-03:07:54 20.98% 8.12% 61.19% 77.47% 7.23% 10.96%
ReinforceBug 1-08:15:21 31.80% 10.37% 66.34% 88.17% 6.86% 7.95%

Twitter RCNN
TextBugger 0-1:30:23 64.71% 20.52% 75.6% 58.5% 26.43% 58.17%
TextFooler 0-1:34:05 12.59% 9.17% 79.18% 74.65% 19.71% 14.01%
ReinforceBug 0-0:47:29 12.68% 13.43% 81.77% 75.84% 16.97% 20.17%

Yelp BiLSTM
TextBugger 2-13:26:43 50.42% 26.73% 58.73% 66.96% 5.23% 8.21%
TextFooler 2-16:17:21 39.33% 4.00% 58.85% 80.58% 3.15% 5.25%
ReinforceBug 1-15:27:12 46.19% 5.77% 61.22% 89.07% 3.62% 4.42%

Toxic BiLSTM
TextBugger 0-11:57:28 33.99% 36.24% 62.52% 61.49% 11.07% 18.65%
TextFooler 0-15:19:29 16.05% 7.93% 65.83% 77.23% 8.37% 7.94%
ReinforceBug 0-09:22:49 30.16% 10.52% 70.36% 78.43% 4.83% 4.13%

Table 7: Transferrability of AEs generated by ReinforceBug Attack on other models

Enron Twitter Yelp Toxic
CharCNN WordCNN BILSTM CharCNN WordCNN BILSTM CharCNN WordCNN RCNN CharCNN WordCNN RCNN

TextBugger 51.0% 17.3% 16.5% 11.7% 30.8% 50.0% 21.8% 21.6% 24.5% 50.9% 43.8% 42.5%
TextFooler 47.0% 12.5% 12.3% 24.0% 41.6% 49.7% 25.6% 22.5% 27.1% 66.3% 59.8% 52.9%

ReinforceBug 47.3% 27.5% 16.3% 53.5% 42.6% 52.0% 34.0% 37.2% 34.5% 70.3% 64.9% 72.2%

6 Analysis and Discussion

This section analyse the results.

6.1 Operations Distribution
Figure 2a illustrates the proportion of each opera-
tion chosen by the ReinforceBug to generate utility-
preserving AEs. We can see that get_semantic,
and get_synonyms operations are most domi-
nant for all the tasks. One reason could be that
get_semantic is deliberately designed for cre-
ating similar contextual adversarial texts with-
out deleting the original important word, while
get_synonyms replaces the word with similar
meaning word. That is why the semantic similar-
ity remains intact without impacting the linguistic
structure of the text. Other operations, i.e., addi-

tion, insertion, bitsquatting and omission that cause
common typos are moderately chosen, however,
generatehom is rarely selected by ReinforceBug.
This happens because it can only replace a charac-
ter with a visually similar character and produces
fewer replacement options for a word than other op-
erations. This reason is also valid of word_month
and word_to_num as only few words are either
words representing month or numbers in the corpus
vocabulary.

6.2 Distribution of words versus the number
of examples effected

To demonstrate the knowledge transferability, we
visualize the identified important words accord-
ing to the number of examples affected by their

(a) Operation Distribution
across Trained Models

(b) Word Cloud of important words versus the number of Examples affected for the target models

Figure 2: Analysis of AEs generated by ReinforceBug

replacements in Figure 2b. Here, the words impact-
ing more examples are represented with a larger
font. Figure 2b(i) shows that in emails, words such
as ‘click’, ‘attached’, ‘thanks’, and ‘deal’ are more
likely to affect the prediction of the target models
by decreasing the spam intent to benign. Whereas
for the Twitter dataset, Figure 2b(ii) shows that the
targeted RCNN model is more vulnerable to mi-
nor perturbation on words such as ‘news’, ‘trump’,
‘obama’, ‘state’ and ‘police’. For toxic content de-
tection, the model decision is manipulated for most
examples with words like ‘see’, ‘like’, ‘think’. Per-
turbing words like ‘stupid’ and ‘idiot’ decreases
the toxicity of the text. Lastly, for the yelp dataset,
changing words such as ‘like’, ‘great’ and ‘best’
increases the text’s negative extent. Therefore, it is
evident that models are vulnerable to these words
irrespective of a specific example; instead, these
vulnerabilities affect multiple examples in the cor-
pus and are transferable to new datasets as seen
in (section 5.2) as well as are transferable to other
models (section 5.3).

7 Conclusion

Overall, this study proposes ReinforceBug, a rein-
forcement learning-based framework to generate
utility-preserving AEs against the state-of-the-art
text classifiers under black-box settings. Extensive
experiments demonstrate that it effectively gener-
ates utility-preserving AEs that are transferable to
other models, and the learned policy is transfer-
able to the unseen datasets. It identifies semantic
concatenation and synonym substitution attacks as
a significant threat to text-classifiers and suggests
defences against these attacks should be explored
in the future to improve their robustness.

8 Acknowledgements

This work was supported with super-computing
resources provided by the Phoenix HPC service at
the University of Adelaide.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Battista Biggio and Fabio Roli. 2018. Wild patterns:
Ten years after the rise of adversarial machine learn-
ing. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’18, page 2154–2156, New York, NY, USA.
Association for Computing Machinery.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Aurore Fass, Michael Backes, and Ben Stock. 2019.
Hidenoseek: Camouflaging malicious javascript in
benign asts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 1899–1913.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003. Named entity recognition

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.1145/3243734.3264418
https://doi.org/10.1145/3243734.3264418
https://doi.org/10.1145/3243734.3264418
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006

through classifier combination. In Proceedings of
the seventh conference on Natural language learn-
ing at HLT-NAACL 2003, pages 168–171.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In
2018 IEEE Security and Privacy Workshops (SPW),
pages 50–56. IEEE.

Wolf Garbe. wolfgarbe/symspell: Symspell: 1 million
times faster through symmetric delete spelling cor-
rection algorithm.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes,
and Robert Babuska. 2012. A survey of actor-critic
reinforcement learning: Standard and natural pol-
icy gradients. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
42(6):1291–1307.

Ashley Hill, Antonin Raffin, Maximilian Ernestus,
Adam Gleave, Anssi Kanervisto, Rene Traore, Pra-
fulla Dhariwal, Christopher Hesse, Oleg Klimov,
Alex Nichol, Matthias Plappert, Alec Radford, John
Schulman, Szymon Sidor, and Yuhuai Wu. 2018.
Stable baselines.

Gauri Jain, Manisha Sharma, and Basant Agarwal.
2018. Spam detection on social media using se-
mantic convolutional neural network. International
Journal of Knowledge Discovery in Bioinformatics
(IJKDB), 8(1):12–26.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Kaggle. 2018a. Fake news, kaggle.

Kaggle. 2018b. Toxic comment classification chal-
lenge , kaggle.

Kaggle. 2019. Utkml’s twitter spam detection competi-
tion , kaggle.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In Twenty-ninth AAAI conference on
artificial intelligence.

Dongjun Lee. dongjun-lee/text-classification-models-
tf: Tensorflow implementations of text classification
models.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting word vectors to lin-
guistic constraints. In Proceedings of HLT-NAACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

PYPI. language-tool-python · pypi.

Dhanalakshmi Ranganayakulu and C Chellappan.
2013. Detecting malicious urls in e-mail–an imple-
mentation. AASRI Procedia, 4:125–131.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

sklearn. sklearn.feature_extraction.text.countvectorizer
— scikit-learn 0.23.2 documentation.

Spacy. Linguistic features · spacy usage documenta-
tion.

Ankit Srivastava, Piyush Makhija, and Anuj Gupta.
2020. Noisy text data: Achilles’ heel of bert. In
Proceedings of the Sixth Workshop on Noisy User-
generated Text (W-NUT 2020), pages 16–21.

Richard S Sutton and Andrew G Barto. 2018. Rein-
forcement learning: An introduction. MIT press.

Cheng-Yen Tang, Chien-Hung Liu, Woei-Kae Chen,
and Shingchern D You. 2020. Implementing action
mask in proximal policy optimization (ppo) algo-
rithm. ICT Express.

Xiaosen Wang, Hao Jin, and Kun He. 2019. Natural
language adversarial attacks and defenses in word
level. arXiv preprint arXiv:1909.06723.

ACL Wiki. Spam filtering datasets.

Catherine Wong. 2017. Dancin seq2seq: Fooling text
classifiers with adversarial text example generation.
arXiv preprint arXiv:1712.05419.

https://github.com/wolfgarbe/SymSpell
https://github.com/wolfgarbe/SymSpell
https://github.com/wolfgarbe/SymSpell
https://github.com/hill-a/stable-baselines
https://www.kaggle.com/c/fake-news/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/twitter-spam
https://www.kaggle.com/c/twitter-spam
https://github.com/dongjun-Lee/text-classification-models-tf
https://github.com/dongjun-Lee/text-classification-models-tf
https://github.com/dongjun-Lee/text-classification-models-tf
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://pypi.org/project/language-tool-python/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://spacy.io/usage/linguistic-features#aligning-tokenization
https://spacy.io/usage/linguistic-features#aligning-tokenization
https://aclweb.org/aclwiki/Spam_filtering_datasets

Yelp. Yelp dataset.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 11(3):1–41.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classifica-
tion improved by integrating bidirectional LSTM
with two-dimensional max pooling. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, pages 3485–3495, Osaka, Japan. The COLING
2016 Organizing Committee.

https://www.yelp.com/dataset/download
http://arxiv.org/abs/1710.11342
https://www.aclweb.org/anthology/C16-1329
https://www.aclweb.org/anthology/C16-1329
https://www.aclweb.org/anthology/C16-1329

