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Abstract

We study semantic parsing in an interactive set-
ting in which users correct errors with natural
language feedback. We present NL-EDIT, a
model for interpreting natural language feed-
back in the interaction context to generate a
sequence of edits that can be applied to the ini-
tial parse to correct its errors. We show that
NL-EDIT can boost the accuracy of existing
text-to-SQL parsers by up to 20% with only
one round of correction. We analyze the limi-
tations of the model and discuss directions for
improvement and evaluation. The code and
datasets used in this paper are publicly avail-
able at http://aka.ms/NLEdit.

1 Introduction

Major progress in natural language processing has
been made towards fully automating challenging
tasks such as question answering, translation, and
summarization. On the other hand, several studies
have argued that machine learning systems that can
explain their own predictions (Doshi-Velez and
Kim, 2017) and learn interactively from their end-
users (Amershi et al., 2014) can result in better user
experiences and more effective learning systems.
We develop NL-EDIT—an approach that employs
both explanations and interaction in the context of
semantic parsing.

Most existing systems frame semantic parsing
as a one-shot translation from a natural language
question to the corresponding logical form (e.g.,
SQL query) (Yu et al., 2018a; Guo et al., 2019;
Wang et al., 2020, inter alia). A growing body of
recent work demonstrates that semantic parsing
systems can be improved by including users in
the parsing loop—giving them the affordance to
examine the parses, judge their correctness, and
provide feedback accordingly. The feedback often
comes in the form of a binary correct/incorrect

∗Most of the work was done while the first author was an
intern at Microsoft Research.

Semantic Parsing:

What is the full name of the candidate with the most votes?

Vote_ID State Candidate_ID
4235 NC 1
2355 CA 2
1894 PA 2

Candidate_ID First_Name Last_Name
1 Donald Trump
2 Joe Biden

Votes Candidates

Answer: Donald
Explanation: 
1. For each vote_id, find the number of rows in Votes
2. Find first_name with the largest value in the result of step 1

SQL: SELECT first_name FROM candidates
JOIN votes ON candidates.candidate_id =
votes.candidate_id GROUP BY voter_Id
ORDER BY COUNT(*) DESC LIMIT 1

Correction:
It should be candidate id in step 1. Also find last name in step 2.

Answer: Joe Biden
Explanation: 
1. For each candidate_id, find the number of rows in Votes
2. Find first_name, last_name with the largest value in the result of step 1

SQL: SELECT first_name, last_name
FROM candidates JOIN votes ON
candidates.candidate_id =
votes.candidate_id GROUP BY
candidate_Id ORDER BY COUNT(*)
DESC LIMIT 1

                     Edit:
GROUP-BY: remove vote_id
GROUP-BY: add candidate_id
SELECT: add last_name

Figure 1: Example human interaction with NL-EDIT to
correct an initial parse through natural language feed-
back. In the Semantic Parsing Phase (top), an off-
the-shelf parser generates an initial SQL query and pro-
vides an answer paired with an explanation of the gen-
erated SQL. In the Correction Phase (bottom), the
user reviews the explanation and provides feedback that
describes how the explanation should be corrected. The
system parses the feedback as a set of edits that are ap-
plied to the initial parse to generate a corrected SQL.

signal (Iyer et al., 2017), answers to a multiple-
choice question posed by the system (Gur et al.,
2018; Yao et al., 2019), or suggestions of edits that
can be applied to the parse (Su et al., 2018).

Unlike other frameworks for interactive semantic
parsing that typically expect users to judge the cor-
rectness of the execution result or induced logical
form, Elgohary et al. (2020) introduced a frame-
work for interactive text-to-SQL in which induced
SQL queries are fully explained in natural lan-

http://aka.ms/NLEdit
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guage to users, who in turn, can correct such parses
through natural language feedback (Figure 1). They
construct the SPLASH dataset and use it to evaluate
baselines for the semantic parse correction with
natural language feedback task they introduce.

We present a detailed analysis of the feedback
and the differences between the initial (incorrect)
and the correct parse. We argue that a correction
model should be able to interpret the feedback in
the context of other elements of the interaction (the
original question, the schema, and the explanation
of the initial parse). We observe from SPLASH that
most feedback utterances tend to describe a few
edits that the user desires to apply to the initial
parse. As such, we pose the correction task as
a semantic parsing problem that aims to convert
natural language feedback to a sequence of edits
that can be deterministically applied to the initial
parse to correct it. We use the edit-based modeling
framework to show that we can effectively generate
synthetic data to pre-train the correction model
leading to clear performance gains.

We make the following contributions: (1) We
present a scheme for representing SQL query Edits
that benefits both the modeling and the analysis
of the correction task, (2) we present NL-EDIT, an
edit-based model for interactive text-to-SQL with
natural language feedback. We show that NL-EDIT

outperforms baselines in (Elgohary et al., 2020) by
more than 16 points, (3) We demonstrate that we
can generate synthetic data through the edit-based
framing and that the model can effectively use this
data to improve its accuracy and (4) We present
a detailed analysis of the model performance in-
cluding studying the effect of different components,
generalization to errors of state-of-the-art parsers,
and outline directions for future research.

2 Background

In the task of text-to-SQL parsing, the objective
is given a database schema (tables, columns, and
primary-foreign key relations) and a natural lan-
guage question, generate a SQL query that answers
the question when executed against the database.
Several recent text-to-SQL models have been intro-
duced (Yu et al., 2018a; Zhang et al., 2019; Guo
et al., 2019; Wang et al., 2020, inter alia) as a result
of the availability of SPIDER (Yu et al., 2018b), a
large dataset of schema, questions and gold parses
spanning several databases in different domains.

The task of SQL parse correction with natural

language feedback (Elgohary et al., 2020) aims to
correct an erroneous parse based on natural lan-
guage feedback collected from the user. Given
a question, a database schema, an incorrect ini-
tial parse, natural language feedback on the initial
parse, the task is to generate a corrected parse.

To study this problem, Elgohary et al. (2020)
introduced the SPLASH dataset. SPLASH was cre-
ated by showing annotators questions and a natural
language explanation of incorrect parses and ask-
ing them to provide feedback, in natural language,
to correct the parse. The dataset contained 9,314
question-feedback pairs. Like the SPIDER dataset,
it was split into train-dev-test sets by database to
encourage the models to generalize to new unseen
databases. They contrast the task with conversa-
tional semantic parsing (Suhr et al., 2018; Yu et al.,
2019b,a; Andreas et al., 2020) and show that the
two tasks are distinct and are addressing different
aspects of utilizing context. They establish several
baseline models and show that the task is challeng-
ing for state-of-the-art semantic parsing models.
We use these as baselines for this work.

3 SQL Edits

We define a scheme for representing the edits re-
quired to transform one SQL query to another. We
use that scheme both in our model and analysis.
Our goal is to balance the granularity of the edits—
too fine-grained edits result in complex structures
that are challenging for models to learn, and too
coarse-grained edits result in less compact struc-
tures that are harder for models to generate.

We view a SQL query as a set of clauses (e.g,
SELECT, FROM, WHERE), each clause has a
sequence of arguments (Figure 2). We mir-
ror the SQL clauses SELECT, FROM, WHERE,
GROUP-BY, ORDER-BY, HAVING, and LIMIT.
For subqueries, we define a clause SUBS whose
arguments are recursively defined as sets of clauses.
Subqueries can be linked to the main query in
two ways: either through an IEU clause (mirrors
SQL INTERSECT/EXCEPT/UNION) whose first
argument is one of the keywords INTERSECT,
EXCEPT, UNION and its second argument is a
pointer to a subquery in SUBS. The second is
through nested queries where the arguments of
some of the clauses (e.g., WHERE) can point at sub-
queries in SUBS (e.g., “id NOT IN SUBS1”).

With such view of two queries Psource and
Ptarget, we define their edit Dsource→target as
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SELECT:     arg1:"id",  arg2:"MAX(grade)"
FROM:         arg1:"assignments"
GROUP-BY: arg1:"id"

SUBS:         arg1: 

WHERE:       arg1:"grade > 20", 
                   arg2: "id NOT IN SUBS1"

SELECT:   arg1: "id"
FROM:      arg1: "graduates"

SELECT:     arg1:"id",  arg2:"AVG(grade)"
FROM:         arg1:"assignments"
GROUP-BY: arg1:"id"

ORDER-BY: arg1:"id"
WHERE:        arg1:"grade > 20"

SELECT:      remove: "MAX(grade)",  add: "AVG(grade)"  
WHERE:        remove: "id NOT IN SUBS1"
ORDER-BY:  add: "id"

Source Target Edit

<select> remove maximum grade </select> <select> add 
average grade </select> <where> remove id not one of 
</where> <orderby> add id </orderby>

Linearize

Figure 2: Edit for transforming the source query “SELECT id, MAX(grade) FROM assignments
WHERE grade > 20 AND id NOT IN (SELECT id from graduates) GROUP BY id” to the
target “SELECT id, AVG(grade) FROM assignment WHERE grade > 20 GROUP BY id
ORDER BY id”. The source and target are represented as sets of clauses (left and middle). The set of edits and
its linearized form (Section 4) are shown on the right. Removing the condition “id NOT IN SUBS1” makes
the subquery unreferenced, hence pruned from the edit.

the set of clause-level edits {Dc
source→target} for

all types of clauses c that appear in Psource or
Ptarget (Figure 2). To compare two clauses
of type c, we simply exact-match their argu-
ments: unmatched arguments in the source (e.g.,
MAX(grade) in SELECT) are added as to-
remove arguments to the corresponding edit clause,
and unmatched arguments in the target (e.g., “id”
in the ORDER-BY) are added as to-add arguments.

Our current implementation follows SPIDER’s
assumption that the number of subqueries is at
most one which implies that computing edits for
different clauses can be done independently even
for the clauses that reference a subquery (e.g.,
WHERE in Figure 2). The edit of the SUBS clause
is recursively computed as the edit between two
queries (any of them can be empty); the sub-
query of source and the subquery of target, i.e.,
DSUBS

source→target = Dsource:SUBS1→target:SUBS1 . We
keep track of the edits to the arguments that refer-
ence the subquery. After all edit clauses are com-
puted, we prune the edits of the SUBS clause if
the subquery will no longer be referenced (SUBS1
in Figure 2). We follow the SPIDER evaluation and
discard the values in WHERE/HAVING clauses.

Throughout this paper, we refer to the number of
add/remove operations in an edit as the Edit Size,
and we denote it as |Dsource→target|. For example,
the edit in Figure 2 is of size four.

4 Model

We follow the task description in Section 2: the
inputs to the model are the elements of the
interaction—question, schema, an initial parse P̃ ,
and feedback. The model predicts a corrected P̄ .
The gold parse P̂ is available for training. Our
model is based on integrating two key ideas in
an encoder-decoder architecture. We start with a
discussion of the intuitions behind the two ideas
followed by the model details.

4.1 Intuitions

Interpreting feedback in context: The feedback
is expected to link to all the other elements of the
interaction (Figure 1). The feedback is provided in
the context of the explanation of the initial parse,
as a proxy to the parse itself. As such, the feedback
tends to use the same terminology as the explana-
tion. For example, the SQL explanations of (El-
gohary et al., 2020) express “group by” in simple
language “for each vote_id, find ...”. As a result,
human-provided feedback never uses “group by”.
We also notice that in several SPLASH examples,
the feedback refers to particular steps in the ex-
planation as in the examples in Figure 1. Unlike
existing models (Elgohary et al., 2020), we replace
the initial parse with its natural language expla-
nation. Additionally, the feedback usually refers
to columns/tables in the schema, and could often
be ambiguous when examined in isolation. Such
ambiguities can be usually resolved by relying on
the context provided by the question. For example,
“find last name” in Figure 1 is interpreted as “find
last name besides first name” rather than “replace
first name with last name” because the question
asks for the “full name”. Our first key idea is based
on grounding the elements of the interaction by
combining self-learned relations by transformer
models (Vaswani et al., 2017) and hard-coded rela-
tions that we define according to the possible ways
different elements can link to each other.

Feedback describes a set of edits: The differ-
ence between the erroneous parse and the correct
one can mostly be described as a few edits that
need to be applied to the initial parse to correct
its errors (Section 7). Also, the feedback often
only describes the edits to be made (Elgohary et al.,
2020). As such, we can pose the task of correc-
tion with NL feedback as a semantic parsing task
where we convert a natural language deception of
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[CLS] Feedback [SEP] Explanation [SEP] Question [SEP] Schema
BERT

... ... ...

Relation-Aware Transformer

Token MatchingSchema Linking Same Step

... ... ...

Figure 3: The Encoder of NL-EDIT grounds the feed-
back into the explanation, the question, and the schema
by (1) passing the concatenation of their tokens through
BERT, then (2) combining self-learned and hard-coded
relations in a relation-aware transformer. Three types
of relations (Interaction Relations) link the individual
tokens of the inputs. Question-Schema and Schema-
Schema relations are not shown.

the edits to a canonical form that can be applied
deterministically to the initial parse to generate the
corrected one. We train our model to generate SQL
Edits (Section 3) rather than SQL queries.

4.2 Encoder
Our encoder (Figure 3) starts with passing the
concatenation of the feedback, explanation, ques-
tion, and schema through BERT (Devlin et al.,
2019). Following (Wang et al., 2020; Suhr et al.,
2018; Scholak et al., 2020), we tokenize the col-
umn/table names and concatenate them in one se-
quence (Schema) starting with the tokens of the
tables followed by the tokens of the columns. Then,
we average the BERT embeddings of the tokens
corresponding to each column (table) to obtain one
representation for the column (table).

Wang et al. (2020) study the text-to-SQL prob-
lem using the SPIDER dataset and show the benefit
of injecting preexisting relations within the schema
(column exists in a table, primary-foreign key),
and between the question and schema items (col-
umn and table names) by: (1) name linking: link
a question token to a column/table if the token
and the item name match and (2) value linking:
link a question token to a column if the token
appears as a value under that column. To incor-
porate such relations in their model, they use the
relation-aware self-attention formulation presented
in (Shaw et al., 2018). The relation-aware trans-
former (Shaw et al., 2018) assigns a learned em-
bedding for each relation type and combines such
embeddings with the self-attention of the original
transformer model (Vaswani et al., 2017): If a pre-
existing relation r holds between two tokens, the
embedding of r is added as a bias term to the self-

attention computation between the two tokens.
In addition to those relations, we define a new set

of relations that aim at contextualizing the feedback
with respect to the other elements of the interaction
in our setup: (1) [Feedback-Schema] We link the
feedback to the schema the same way the question
is linked to the schema via both name and value
linking, (2) [Explanation-Schema] Columns and
tables are mentioned with their exact names in the
explanation. We link the explanation to the schema
only through exact name matching, (3) [Feedback-
Question] We use partial (at the lemma level) and
exact matching to link tokens in the feedback and
the question, (4) [Feedback-Explanation] We link
tokens in the feedback to tokens in the explanation
through partial and exact token matching. Since the
feedback often refers to particular steps, we link the
feedback tokens to explanation tokens that occur in
steps that are referred to in the feedback with a sep-
arate relation type that indicates step reference in
the feedback, and (5) [Explanation-Explanation]
We link explanation tokens that occur within the
same step. We use the same formulation of relation-
aware self-attention as (Wang et al., 2020) and add
the relation-aware layers on top of BERT to inte-
grate all relations into the model (Figure 3).

4.3 Decoder

Using a standard teacher-forced cross-entropy loss,
we train our model to generate linearized SQL
Edits (Figure 2). At training time, we compute
the reference SQL Edit DP̃→P̂ of the initial
parse P̃ and the gold parse P̂ (Section 3). Then
we linearize DP̃→P̂ by listing the clause edits
in a fixed order (FROM, WHERE, GROUP-BY, ...
etc.). The argument of each clause—representing
one add or remove operation—is formatted as
<CLAUSE> ADD/REMOVE ARG </CLAUSE>.
We express SQL operators in ARG with natural
language explanation as in (Elgohary et al., 2020).
For example, the argument “AVG(grade)” is
expressed as “average grade”. At inference time,
we generate a corrected parse P̄ by applying the
produced edit to the initial parse P̃ .

We use a standard transformer decoder that ei-
ther generates tokens from the output vocab or
copies columns and tables from the encoder out-
put. Since all editing operations should be directed
by the feedback, we tried splitting the attention
to the encoder into two phases: First, we attend
to the feedback only and update the decoder state
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Replace-Select-Column:
- replace {NEW-COL} with {OLD-COL}
- you should find {OLD-COL} instead

Add-Where-Condition:
- delete {COL} {OPERATOR} {VALUE}

Remove-Limit:
- only top {LIMIT-VALUE} rows are needed

Table 1: Example SQL Editors with corresponding
feedback templates. The synthesized feedback is re-
versing the edit applied to a correct SQL as our syn-
thesis process starts with the gold SQL and reaches an
initial SQL after applying the edit.

accordingly. Then, we use the updated decoder
state to attend to the other inputs. With that, we
only observed a marginal improvement of 0.5%
in the accuracy. We conduct all our experiments
with standard decoder-encoder attention and plan
to investigate other attention patterns in the future.

5 Synthetic Feedback

In this section, we describe our process for automat-
ically synthesizing additional examples for training
the correction model. Recall that each example
consists of a question about a given schema paired
with a gold parse, an initial erroneous parse, and
feedback. Starting with a seed of questions and
their corresponding gold parses from SPIDER’s
training set (8,099 pairs)1, our synthesis process
applies a sequence of SQL editing operations to the
gold parse to reach an altered parse that we use as
the initial parse (Algorithm 1).

By manually inspecting the edits (Section 3) we
induce for the initial and gold parses in SPLASH

training set, we define 26 SQL editors and pair
each editor with their most frequent corresponding
feedback template(s) (Examples in Table 1). We
also associate each editor with a set of constraints
that determines whether it can be applied to a given
SQL query (e.g., the “Remove-Limit” editor can
only be applied to a query that has a limit clause).

Algorithm 1 summarizes the synthesis process.
We start by creating N (controls the size of the
dataset) clones of each seed example. Elgohary
et al. (2020)’s analysis of SPLASH shows that mul-
tiple mistakes might be present in the initial SQL,
hence we allow our synthesis process to introduce
up to four edits (randomly decided in line:4) to
each clone p. For each editing step, we sample a
feasible edit for the current parse (line:5) with man-

1We ensure there is no overlap between examples in the
seed and the dev set of SPLASH.

Algorithm 1 Training Data Synthesis
1: for seed in SPIDER training set do
2: for p in CLONE(seed, N ) do
3: feedback = []
4: for i = 1 : RAND-NUM-EDITS() do
5: e← RAND-FEASIBLE-EDIT(p)
6: p.APPLY-EDIT(e)
7: feedback.ADD(e.FEEDBACK())
8: output: seed.DB, seed.Question, p,
9: feedback, seed.Gold-SQL

ually set probabilities for each edit to balance the
number of times each editor is applied in the final
dataset. Applying an edit (line:6) involves sam-
pling columns/tables from the current parse and/or
the schema, sampling operators and values for alter-
ing conditions, and populating the corresponding
feedback template. We combine the feedback of
all the applied editors into one string and use it as
the feedback of the synthesized example.

6 Experiments

Setup: We conduct our experiments using SPLASH

(Elgohary et al., 2020) (Section 2) whose train, dev,
and test sets are of sizes 7481, 871, and 962, respec-
tively. Using our feedback synthesis process (Sec-
tion 5), we generate 50,000 additional synthetic
training examples. In our preliminary experiments,
We found that training the model on the synthetic
dataset first then continuing on SPLASH outper-
forms mixing the synthetic and real examples and
training on both of them simultaneously. We train
the model on the synthetic examples for 20,000
steps and continue training on the real examples
until reaching 100,000 steps in total. We choose the
best checkpoint based on the development set ac-
curacy. We varied the number of training steps on
the synthetic examples and 20,000 steps achieved
the highest accuracy on the dev set.

We use BERT-base-uncased (Devlin et al., 2019)
in all our experiments. We set the number of layers
in the relational-aware transformer to eight (Wang
et al., 2020) and the number of decoder layers to
two. We train with batches of size 24. We use
the Adam optimizer (Kingma and Ba, 2015) for
training. We freeze BERT parameters during the
first 5,000 warm-up steps and update the rest of the
parameters with a linearly increasing learning rate
from zero to 5× 10−4. Then, we linearly decrease
the learning rates from 5 × 10−5 for BERT and
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Correction Acc. (%) Edit ↓ (%) Edit ↑ (%) Progress (%)
Rule-based Re-ranking 16.63 38.35 32.81 -15.67
EditSQL+Feedback 25.16 47.44 23.51 7.71
NL-EDIT (Ours) 41.17 72.41 16.93 36.99

Oracle Re-ranking 36.38 34.69 1.04 31.22

Table 2: Comparing NL-EDIT to baselines in (Elgohary et al., 2020): Rule-based Re-ranking and Edit-
SQL+Feedback and to the beam re-ranking upper-bound. Edit ↓ (Edit ↑) is the percentage of examples on which
the number of edits/errors strictly decreased (increased). Progress is the average relative reduction in the number
of edits (Section 6). Elgohary et al. (2020) estimate the upper-bound on the correction accuracy as 81.5%.

5× 10−4 for the other parameters to zero.2 We use
beam search with a beam of size 20 and take the
top-ranked beam that results in a valid SQL after
applying the inferred edit.

Evaluation: We follow (Elgohary et al., 2020)
and use the correction accuracy as our main eval-
uation measure: each example in SPLASH test set
contains an initial parse P̃ and a gold parse P̂ .
With a predicted (corrected) parse by a correction
model P̄ , they compute the correction accuracy
using the exact-set-match (Yu et al., 2018b) be-
tween P̄ and P̂ averaged over all test examples.
While useful, correction accuracy also has limita-
tions. It expects models to be able to fully correct
an erroneous parse with only one utterance of feed-
back as such, it is defined in terms of the exact
match between the corrected and the gold parse.
We find (Table 2) that in several cases, models
were still able to make progress by reducing the
number of errors as measured by the edit size (Sec-
tion 3) after correction. As such, we define another
set of metrics to measure partial progress. We re-
port (Edit ↓ and Edit ↑ in Table 2) the percentage of
examples on which the size of the edit set strictly
decreased/increased. To combine Edit ↓ and Edit ↑
in one measure and account for the relative reduc-
tion (increase) in the number of edits, we define

Progress(S) = 1

|S|
∑︂

P̃,P̄,P̂∈S

|DP̃→P̂ | − |DP̄→P̂ |
|DP̃→P̂ |

.

Given a test set S, the Progress of a correction
model is computed as the average relative edit re-
duction between the initial parse P̃ and the gold
parse P̂ by predicting a correction P̄ of P̃ . A per-
fect model that can fully correct all errors in the
initial parse would achieve a 100% progress. A

2The learning rate schedule is only dependent on the step
number regardless of whether we are training on the synthetic
data or SPLASH. We tried resetting the learning rates back to
their maximum values after switching to SPLASH, but did not
observe any improvement in accuracy.

model can have a negative progress (e.g., Rule-
based re-ranking in Table 2) when it frequently
predicts corrections with more errors than those
in the initial parse. Unlike correction accuracy,
Progress is more aligned with user experience in
an interactive environment (Su et al., 2018) as it as-
signs partial credit for fixing a subset of the errors
and also, it penalizes models that predict an even
more erroneous parse after receiving feedback.

Results: We compare (Table 2) NL-EDIT to the
two top-performing baselines in (Elgohary et al.,
2020) and also to the beam re-ranking upper-bound
they report. NL-EDIT significantly increases the
correction accuracy over the top baseline (Edit-
SQL+Feedback) by more than 16% and it also out-
performs oracle re-ranking by around 5%. We also
note that in 72.4% of the test examples, NL-EDIT

was able to strictly reduce the number of errors
in the initial parse (Edit ↓) which potentially indi-
cates a more positive user experience than the other
models. NL-EDIT achieves 37% Progress which
indicates faster convergence to the fully corrected
parse than all the other models.

7 Analysis

7.1 Ablations
Following the same experimental setup in Sec-
tion 6, we compare NL-EDIT to other variants with
one ablated component at a time (Table 3). We ab-
late the feedback, the explanation, and the ques-
tion from the encoder input. We also ablate the
interaction relations (Section 4.2) that we incor-
porate in the relation-aware transformer module.
We only ablate the new relations we introduce to
model the interaction (shown in Figure 3), but we
keep the Question-Schema and Schema-Schema
relations introduced in (Wang et al., 2020). For
each such variant, we train for 20,000 steps on the
synthetic dataset then continue training on SPLASH

until step 100,000. We also train an ablated variant
that does not use the synthetic feedback where we
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Figure 4: a-c: Breakdown of the correction accuracy on SPLASH test set by (a) feedback length, (b) explanation
length, and (c) size of the reference edit (number of add or remove operations). The number of examples in each
group is shown on top of the bars. d: Transitions in edit size after correction. For each edit size of the initial parse
(rows), we show the distribution of the edit size after correction.

NL-EDIT 41.17
− Feedback 19.81
− Explanation 26.80
− Question 38.27
− Interaction Relations 35.35
− Synthetic Feedback 35.01

Table 3: Correction accuracy on SPLASH Test of NL-
EDIT versus variants with one ablated component each.

train for 100,000 steps only on SPLASH. For all
variants, we choose the checkpoint with the largest
correction accuracy on the dev set and report the
accuracy on the SPLASH test set.

The results in Table 3 confirm the effectiveness
of each component in our model. We find that the
model is able to correct 19.8% of the examples
without the feedback. We noticed that the ablated-
feedback model almost reaches that accuracy only
after training on the synthetic data with very mi-
nor improvement (< 1%) after training on SPLASH.
Only using the question and the explanation, the
model is able to learn about a set of systematic
errors that parsers make and how they can be cor-
rected (Gupta et al., 2017; Yin and Neubig, 2019).

7.2 Error Analysis

In Figure 4, we breakdown the correction accuracy
by the feedback and explanation lengths (in number
of tokens) and by the reference edit size (number
of required edit operations to fully correct the ini-
tial parse). The accuracy drops significantly when
the reference edit size exceeds two (Figure 4c),
while it declines more gradually as the feedback
and explanation increase in length. We manually
(Examples in Table 4) inspected the examples with
longer feedback than 24, and found that 8% of
them the feedback is long because it describes how
to rewrite the whole query rather than being lim-

Long Feedback Not Describing an Edit:
“you should determine the major record format from the
orchestra table and make sure it is arranged in ascending
order of number of rows that appear for each major
record format.”

Long Feedback Describing an Edit:
“replace course id (both) with degree program id, first
courses with student enrolment, course description with
degree summary name, second courses with degree pro-
grams.”

Table 4: Example long feedback that NL-EDIT strug-
gles with. Top: The feedback describes a rewriting of
the query rather than how to edit it. Bottom: The initial
query has several errors and the feedback enumerates
how to edit all of them.

ited to only the edits to be made. In the remaining
92%, the initial query had several errors (edit size
of 5.5 on average) with the corresponding feedback
enumerating all of them.

Figure 4d shows how the number of errors (mea-
sured in edit size) changes after correction. The
figure shows that even for examples with a large
number of errors (four and five), the model is still
able to reduce the number of errors in most cases.
We manually inspected the examples with only one
error that the model failed to correct. We found
15% of them have either wrong or non-editing feed-
back and in 29% the model produced the correct
edit but with additional irrelevant ones. The domi-
nant source of error in the remaining examples is
because of failures with linking the feedback to the
schema (Examples in Table 5).

7.3 Cross-Parser Generalization

So far, we have been using SPLASH for both train-
ing and testing. The erroneous parses (and corre-
sponding feedback) in SPLASH are based on the
Seq2Struct parser (Shin, 2019). Recent progress
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Adding extra edits:
Ques.: Which city and country is the Alton airport at?
Initial: SELECT City, Country FROM
airports WHERE AirportName = ’Alton’
AND Country = ’USA’
Feedback: remove “and country equals USA” phrase.
Predicted: <where> remove AirportName
equals </where> <where> remove
Country equals </where>
Gold: <where> remove AirportName
equals </where>

Failing to link feedback and schema:
Ques.: What are the full names of all left handed players,
in order of birth date?
Initial: SELECT first_name, last_name
FROM players ORDER BY birth_date Asc
Feedback: make sure that player are left handed.
Predicted: <where> add birth_date equals
</where>
Gold: <where> add hand equals </where>

Table 5: Example failure cases of NL-EDIT.
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Figure 5: Distribution of Edit Size per example in
SPLASH compared to the generalization test sets con-
structed based on EditSQL, TaBERT, and RAT-SQL.

in model architectures (Wang et al., 2020) and pre-
training (Yin et al., 2020; Yu et al., 2021a) has led
to parsers that already outperform Seq2Struct by
more than 30% in parsing accuracy.3 Here, we ask
whether NL-EDIT that we train on SPLASH (and syn-
thetic feedback) can generalize to parsing errors
made by more recent parsers without additional
parser-specific training data.

We follow the same crowdsourcing process
used to construct SPLASH (Section 2) to collect
three new test sets based on three recent text-
to-SQL parsers: EditSQL (Zhang et al., 2019),
TaBERT (Yin et al., 2020) and RAT-SQL (Wang
et al., 2020). Following Elgohary et al. (2020), we
run each parser on SPIDER dev set and only collect
feedback for the examples with incorrect parses
that can be explained using their SQL explanation

3https://yale-lily.github.io/spider

framework. Table 6 (Top) summarizes the three
new test sets and compares them to SPLASH test
set. We note that the four datasets are based on the
same set of questions and databases (SPIDER dev).

Table 6 (Bottom) compares the parsing accuracy
(measure by exact query match (Yu et al., 2018b))
of each parser when used by itself (No Interaction)
to integrating it with NL-EDIT. We report both the
accuracy on the examples provided to NL-EDIT

(Error Correction) and the End-to-End accuracy
on the full SPIDER dev set. NL-EDIT significantly
boosts the accuracy of all parsers, but with a no-
table drop in the gains as the accuracy of the parser
improves. To explain that, in Figure 5 we compare
the distribution of reference edit size across the
four datasets. The figure does not show any signifi-
cant differences in the distributions that would lead
to such a drop in accuracy gain. Likewise, the dis-
tributions of the feedback lengths are very similar
(the mean is shown in Table 6). As parsers improve
in accuracy, they tend to make most of their errors
on complex SQL queries. Although the number
of errors with each query does not significantly
change (Figure 5), we hypothesize that localizing
the errors in a complex initial parse, with a long
explanation (Table 6), is the main generalization
bottleneck that future work needs to address.

8 Related Work and Discussion

Natural language to SQL: Natural language in-
terfaces to databases have been an active field of
study for many years (Woods et al., 1972; Warren
and Pereira, 1982; Popescu et al., 2003; Li and Ja-
gadish, 2014). The development of new large scale
datasets, such as WikiSQL (Zhong et al., 2017)
and SPIDER (Yu et al., 2018b), has reignited the
interest in this area with several new models in-
troduced recently (Choi et al., 2020; Wang et al.,
2020; Scholak et al., 2020). Another related line of
work has focused on conversation semantic parsing,
e.g. SParC (Yu et al., 2019b), CoSQL (Yu et al.,
2019a), and SMCalFlow (Andreas et al., 2020),
where parsers aim at modeling utterance sequen-
tially and in context of previous utterances.

Interactive Semantic Parsing: Several previ-
ous studies have looked at the problem of improv-
ing semantic parser with feedback or human inter-
actions (Clarke et al., 2010; Artzi and Zettlemoyer,
2013). Interactions are supported in multiple ways
including binary correct/incorrect signal (Iyer et al.,
2017), answers to a yes/no or a multiple-choice
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Seq2Struct (SPLASH) EditSQL TaBERT RAT-SQL
Correction Test Sets Summary

Number of Examples 962 330 267 208
Average Feedback Length 13.1 13.5 12.9 12.2
Average Explanation Length 26.4 28.3 32.2.9 34.0

Semantic Parsing Accuracy (%)

Error Correction 41.1 28.0 22.7 21.3
No Interaction 41.3 57.6 65.2 69.7
End-to-End 61.6 66.6 71.1 74.0
∆ w/ Interaction +20.3 +8.9 +5.9 +4.3

Table 6: Evaluating the zero-shot generalization of NL-EDIT to different parsers (EditSQL, TaBERT, and RAT-
SQL) after training on SPLASH that is constructed based on the Seq2Struct parser. Top: Summary of the dataset
constructed based on each parser. Feedback and explanation length is the number of tokens. Bottom: The Error
Correction accuracy on each test set and the end-to-end accuracy of each parser on the full SPIDER dev set with
and without interaction. ∆ w/ Interaction is the gain in end-to-end accuracy with the interaction added.

question posed by the system (Yao et al., 2019;
Gur et al., 2018) or suggestions of edits that can be
applied to the parse (Su et al., 2018).

Yao et al. (2019) and Gur et al. (2018) ask
yes/no and multiple-choice questions and use the
answers in generating the pars. Elgohary et al.
(2020) introduce SPLASH (Section 2), a dataset
for correcting semantic parsing with natural lan-
guage feedback. Using language as a medium for
providing feedback enables the human to provide
rich open-form feedback in their natural way of
communication giving them control and flexibil-
ity specifying what is wrong and how it should be
corrected. Our work uses SPLASH and proposes to
pose the problem of semantic parse correction as a
parser editing problem with natural language feed-
back input. This is also related to recent work on
casting text generation (e.g. summarization, gram-
matical error correction, sentence splitting, etc.) as
a text editing task (Malmi et al., 2019; Panthap-
lackel et al., 2020; Stahlberg and Kumar, 2020)
where target texts are reconstructed from inputs
using several edit operations.

Semantic Parsing with Synthetic Data: Se-
mantic parsing systems have frequently used syn-
thesized data to alleviate the challenge of labeled
data scarcity. In their semantic parser overnight
work, Wang et al. (2015) proposed a method for
training semantic parsers quickly in a new domain
using synthetic data. They generate logical forms
and canonical utterances and then paraphrase the
canonical utterances via crowd-sourcing. Several
other approaches have demonstrated the benefit of
adopting this approach to train semantic parsers
in low-resource settings (Su et al., 2017; Zhong

et al., 2017; Cheng et al., 2018; Xu et al., 2020).
Most recently, synthetic data was used to continue
to pre-train language models for semantic parsing
tasks (Herzig et al., 2020; Yu et al., 2021a,b). We
build on this line work by showing that we can gen-
erate synthetic data automatically without human
involvement to simulate edits between an erroneous
parse and a correct one.

9 Conclusions and Future Work

We introduced a model, a data augmentation
method, and analysis tools for correcting seman-
tic parse errors in text-to-SQL through natural lan-
guage feedback. Compared to previous models, our
model improves the correction accuracy by 16%
and boosts the end-to-end parsing accuracy by up
to 20% with only one turn of feedback. Our work
creates several avenues for future work: (1) improv-
ing the model by better modeling the interaction
between the inputs and exploring different patterns
for decoder-encoder attention, (2) evaluating exist-
ing methods for training with synthetic data (e.g.,
curriculum learning (Bengio et al., 2009)), (3)
optimizing the correction model for better user ex-
perience using the progress measure we introduce,
and (4) using the SQL edits scheme in other related
tasks such as conversational text-to-SQL parsing.
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