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Abstract

When intelligent agents communicate to ac-
complish shared goals, how do these goals
shape the agents’ language? We study the
dynamics of learning in latent language poli-
cies (LLPs), in which instructor agents gener-
ate natural-language subgoal descriptions and
executor agents map these descriptions to low-
level actions. LLPs can solve challenging
long-horizon reinforcement learning problems
and provide a rich model for studying task-
oriented language use. But previous work has
found that LLP training is prone to seman-
tic drift (use of messages in ways inconsis-
tent with their original natural language mean-
ings). Here, we demonstrate theoretically and
empirically that multitask training is an effec-
tive counter to this problem: we prove that
multitask training eliminates semantic drift in
a well-studied family of signaling games, and
show that multitask training of neural LLPs
in a complex strategy game reduces drift and
while improving sample efficiency.

1 Introduction

A major goal in the study of artificial and natu-
ral intelligence is to understand how language can
scaffold more general problem-solving skills (e.g.
Spelke, 2017), and how these skills in turn shape
language itself (e.g. Gibson et al., 2017). In NLP
and machine learning, latent language policies
(LLPs; Andreas et al., 2018) provide a standard
framework for studying these questions. An LLP
consists of instructor and executor subpolicies: the
instructor generates natural language messages (e.g.
high-level commands or subgoals), and the execu-
tor maps these messages to sequences of low-level
actions (Fig. 1). LLPs have been used to construct
interactive agents capable of complex reasoning
(e.g. programming by demonstration) and planning
over long horizons (e.g. in strategy games; Hu et al.,
2019). They promise an effective and interpretable
interface between planning and control.
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Figure 1: In latent language policies, instructor agents
(a) send natural-language commands (b) to executor
agents (c), which execute them in an interactive envi-
ronment (d). Jointly trained instructor–executor pairs
learn to use messages in ways inconsistent with their
natural language meanings (top shows a real message–
action pair from a model described in Section 4). We
show that multitask training with a population of task-
specific instructors stabilizes message semantics and in
some cases improves model performance.

However, they present a number of challenges
for training. As LLPs employ a human-specified
space of high-level commands, they must be initial-
ized with human supervision, typically obtained by
pretraining the executor. On its own, this training
paradigm restricts the quality of the learned execu-
tor policy to that exhibited in (possibly suboptimal)
human supervision. For tasks like the real-time
strategy game depicted in Fig. 1, we would like
to study LLPs trained via reinforcement learning
(RL), jointly learning from a downstream reward
signal, and optimizing both instructors and execu-
tors for task success rather than fidelity to human
teachers.

Training LLPs via RL has proven difficult. Past
work has identified two main challenges: primar-
ily, the LLP-specific problem of semantic drift, in
which agents come to deploy messages in ways
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inconsistent with their original (natural language)
meanings (Lewis et al., 2017; Lee et al., 2019);
secondarily, the general problem of sample inef-
ficiency in RL algorithms (Kakade et al., 2003;
Brunskill and Li, 2013). Model-free deep RL is par-
ticularly notorious for requiring enormous amounts
of interaction with the environment (Munos et al.,
2016; Mnih et al., 2013b). For LLPs to meet their
promise as flexible, controllable, and understand-
able tools for deep learning, better approaches are
needed to limit semantic drift and perhaps improve
sample efficiency.

While semantic change is a constant and well-
documented feature of human languages (McMa-
hon and April, 1994), (human) word meanings are
on the whole remarkably stable relative to the rate
of change in the tasks for which words are deployed
(Karjus et al., 2020). In particular, disappearance
of lexical items is mitigated by increased popu-
lation size (Bromham et al., 2015) and increased
frequency of use (Pagel et al., 2007). Drawing
on these facts about stabilizing factors in human
language, we hypothesize that training of machine
learning models with latent language variables can
be made more robust by incorporating a population
of instructors with diverse communicative needs
that exercise different parts of the lexicon.

We describe a multitask LLP training scheme in
which task-specific instructors communicate with
a shared executor. We show that complex long-
horizon LLPs can be effectively tuned via joint
reinforcement learning of instructors and executors
using multitask training:

• Section 3 presents a formal analysis of LLP
training as an iterated Lewis signalling game
(Lewis, 1969). By modeling learning in this
game as a dynamical system, we completely
characterize a class of simple policies that are
subject to semantic drift. We show that a par-
ticular multitask training scheme eliminates
the set of initializations that undergo semantic
drift.
• Section 4 evaluates the empirical effectiveness

of multitask learning in a real-time strategy
game featuring rich language, complex com-
plex dynamics, and LLPs implemented with
deep neural networks. Again, we show that
multitask training reduces semantic drift (and
improves sample efficiency) of LLPs in multi-
ple game variants.

Together, these results show that diverse shared

goals and communicative needs can facilitate (and
specifically stabilize) learning of communication
strategies.

2 Background and Related Work

Deep reinforcement learning (DRL) has recently
made impressive progress on many challenging do-
mains such as games (Mnih et al., 2013a; Silver
et al., 2016), locomotion (Schulman et al., 2015)
and dexterous manipulation tasks (Gu et al., 2016;
Rajeswaran et al., 2017). However, even state-of-
the-art approaches to reinforcement struggle with
tasks involving complex goals, sparse rewards, and
long time horizons. A variety of models and algo-
rithms for hierarchical reinforcement learning have
been proposed to address this challenge (Dayan
and Hinton, 1993; Dietterich, 2000; Richard et al.,
1999; Bacon et al., 2017) via supervised or unsuper-
vised training of a fixed, discrete set of sub-policies.

Language can express arbitrary goals, and has
compositional structure that allows generalization
across commands. Building on this intuition, sev-
eral recent papers have explored hierarchical RL
in which natural language is used to parameterize
the space of high-level actions (Oh et al., 2017;
Andreas et al., 2017; Shu et al., 2018; Jiang et al.,
2019; Hu et al., 2019). While there are minor imple-
mentation differences between all these approaches,
we will refer to them collectively as latent lan-
guage policies (LLPs). Like other hierarchical
agents, an LLP consists of a pair of subpolicies: an
instructor I(m | o) and an executor E(a | m, o).
An LLP takes actions by first sampling a string-
valued message m ∼ I from the instructor, and
then an action a ∼ E from the executor. For these
messages to correspond to natural language, rather
than arbitrary strings, policies need some source
of information about what human language users
think they mean. This is typically accomplished
by pretraining executors via human demonstrations
or reinforcement learning; here we focus on the
ingredients of effective joint RL of instructors and
executors.

Reinforcement learning has been widely used to
improve supervised language generation policies,
particularly for dialogue (Li et al., 2016; Lewis
et al., 2017), translation (Ranzato et al., 2015; Wu
et al., 2016) and summarization (Stiennon et al.,
2020). Here, we instead focus on models where
language is a latent variable as part of a hierarchical
policy for a non-linguistic task.
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Figure 2: A signaling game with two possible observations, two possible messages, and two possible actions. The
instructor observes either a triangle or a square, then sends a message to a executor, who pushes either the red or
blue buttons. The players’ reward depends on the observation and the action but not the message. Two possible
reward functions, R and R′, are shown at right.

As noted in Section 1, an observed shortcoming
of reinforcement learning in all these settings is its
susceptibility to semantic drift. In the literature
on human language change (Blank, 1999), seman-
tic drift refers to a variety of phenomena, includ-
ing specific terms becoming more general, general
terms becoming specific, and parts coming to refer
to wholes. In machine learning, it refers broadly to
the use of messages inconsistent with their natural
language meanings in language-generation policies
(Lazaridou et al., 2020).

Lee et al. (2019) mitigate semantic drift in pivot-
based machine translation by using visual ground-
ing, whereas Lu et al. (2020) periodically update a
student model on data generated by an RL teacher.
Work in emergent communication has found that
reinforcement learning tends not to learn policies
with natural language-like properties (Kottur et al.,
2017), although population-based training has been
found to be helpful (Gupta et al., 2019). Most re-
latedly to our work, Lazaridou et al. (2020) train
speaker-listener agents jointly in a visual referential
communication task and introduce auxiliary loss
functions for stabilizing training. Our work focuses
on a more general setting where the interactions
are temporally extended, have large action spaces
and is partially observable. Agarwal et al. (2019)
use populations of agents to reduce semantic drift
in visual dialogue. We view the current paper’s
analysis of multitask learning as complementary to
these approaches from the emergent communica-
tion literature; future work might consider ways of
combining the two.

A great deal of recent work in both RL (e.g.
Jaderberg et al., 2016; Shelhamer et al., 2016) and
language processing (e.g. Clark et al., 2019; Gu-
rurangan et al., 2020) has observed that carefully
designed training objectives can serve as a source
of model-agnostic inductive bias. Our results bring
these two lines of work together: multitask train-

ing improves the faithfulness and adaptability of
learned language understanding models, even when
optimizing for a downstream reward.

3 Multitask Communication in Theory:
Lewis Signaling Games

We begin our analysis with the simple signaling
game depicted in Fig. 2. In this game, one agent
receives an observation, then sends a message to
another agent, which then performs an action. Sig-
naling games like this one are widely studied in
NLP as models of reference resolution and lan-
guage generation (Frank and Goodman, 2012). The
instructor–executor pair may together be viewed as
the simplest LLP of the kind described in Section 2.

Formally, a (2-observation, 2-message) Lewis
signalling game is defined by:

• a set of observations O = {o1, o2}
• a set of messages M = {m1,m2}
• a set of actions A = {a1, a2}
• a reward function R : O ×A→ R

The game is played between two agents: a instruc-
tor (with parameters θI ), which receives an obser-
vation and samples an observation-specific mes-
sage from a distribution I(m | o; θI); and a ex-
ecutor (with parameters θE), which receives the
instructor’s message and uses it to sample an ac-
tion from a distribution E(a | m; θE). The agents
then receive a reward R(o, a) that depends on the
observation and action but not on the message sent.
This policy’s expected reward is given by:∑
o∈O
m∈M
a∈A

p(o)I(m | o; θI)E(a | m; θE)R(o, a) . (1)

Gradient ascent on Eq. (1) with respect to θI and θE
(e.g. using a policy gradient algorithm; Williams,
1992) can be used to improve the expected reward
obtained by an LLP.
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As an example, the right portion of Fig. 2 shows
two reward functions R and R′. In both, each
observation is paired with a single action, and the
executor must take the action corresponding to the
observation to receive a positive reward. For R,
two strategies obtain the optimal expected reward
of 1: one in which I(m1 | N) = 1 and E(red |
m1) = 1, and one in which I(m1 | �) = 1 and
E(blue | m1) = 1. Almost every initialization
of θE and θI (excluding a set of pooling equilibria;
see e.g. Huttegger et al., 2010) converges to one of
these two strategies when agents are jointly trained
to optimize Eq. (1).

Semantic drift Suppose, as shown in Fig. 2, the
messages m1 and m2 are not arbitrary symbols,
but correspond to the natural language expressions
m1 = push red and m2 = push blue. In this case,
only of the policies described above corresponds
to the semantics of natural language—namely, the
one in which E(a1 | m1) = E(red | push red) =
1. What is needed to ensure that a pair of agents
playing converge to the natural language strategy?

In the analysis that follows, we will consider
instructor and executor agents (each with a single
scalar parameter ∈ [0, 1]):

I(mj | oi; θI) =

{
θI i = j

1− θI otherwise
(2)

E(aj | mi) =

{
θE i = j

1− θE otherwise
(3)

For the game depicted in Fig. 2, we would like
to avoid any outcome in which, after training,
θE = E(red | push red) < 1

2 . More generally, let
us assume that we have an initial set of executor
parameters that are possibly suboptimal but corre-
spond to natural language semantics in the sense
that E(a | mi; θ

(0)
E ) > 1

2 if and only if the mean-
ing of m is do a. In this case, we will say that a
parameter initialization (θ

(0)
I , θ

(0)
E ) undergoes ex-

ecutor semantic drift if, after training, any such
E(a | mi; θE) = θE <

1
2 .

To analyze semantic drift in this game, we con-
sider the final values of the parameters (θI , θE)

when optimized from an initialization (θ
(0)
I , θ

(0)
E ).

For the reward function R depicted in Fig. 2, we
can perform gradient ascent on Eq. (1) with respect
to θI and θE in this model by observing that:

∂J

∂θI
= θE −

1

2

∂J

∂θE
= θI −

1

2
(4)

By considering the limiting behavior of gradient
ascent as step size goes to zero (a gradient flow;
see Appendix A), it is possible to give a closed-
form expression for the value of these parameters
as a function of time:

Proposition 1. Suppose θ(0)E + θ
(0)
I < 1. Then

two agents optimizing Eq. (1) via Eq. (4) undergo
semantic drift (converging to θE = 0).

Proof is given in Appendix A. Note in par-
ticular that semantic drift will occur whenever
θ
(0)
I < 1 − θ(0)E , which can occur even assuming

a well-initialized executor with θE > 1
2 . Fig. 5 in

the appendix provides a visualization of learning
dynamics and these drift-susceptible initializations.
However, we will next show that this drift can be
eliminated via multitask training.

Multitask signaling games Consider a multi-
task version of this game with the two reward func-
tions R and R′ depicted in Fig. 2. As discussed
in the introduction and depicted in Fig. 1, our ap-
proach to multitask training focuses on sharing a
single executor E(a | m; θE) between multiple
task-specific instructors, here I(m | o; θI1) and
I(m | o; θI2), both parameterized as in Eq. (2). As
above, we train (θI1, θI2, θE) jointly to optimize:∑
o,m,a

p(o)I(m|o; θI1)E(a|m; θE)R(o, a)

+
∑
o,m,a

p(o)I(m|o; θI2)E(a|m; θE)R
′(o, a) (5)

We assume that the two instructors share the same
initialization, with θ(0)I1 = θ

(0)
I2 = θ

(0)
I . In this case,

the following is true:

Proposition 2. Suppose θ(0)E > 1
2 and θ(0)I1 = θ

(0)
I2 .

Then three agents optimizing Eq. (5) via its gradient
flow do not undergo semantic drift. In fact, the
eventual executor parameter θ(t)E is independent of
the initial speaker parameters θ(0)I1 and θ(0)I2 .

Proof is again given in Appendix A. It is im-
portant to emphasize that these results concern the
simplest possible policies for the signaling games
considered here: agents with a single parameter
which already “bake in” the assumption that dif-
ferent signals should trigger different behaviors.
We leave generalization of this formal analysis to
general signaling games with more complex agents
and message spaces for future work, noting that—
at least in this simple case—we have succeeded
in constructing a concrete multitask objective that
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reduces (indeed eliminates) the set of initial model
parameters subject to semantic drift.

4 Multitask Communication in Practice:
The MiniRTS Environment

We next verify whether this result extends to the
complex LLP-learning tasks discussed in Section 2.
Our focus in this section is the MINIRTS environ-
ment of Hu et al. (2019) (depicted in Fig. 1), in
which agents must build and control an army of
units like archers, spearmen, swordman, cavalry,
and dragons, each with specialized abilities, with
the goal of destroying the opponent’s town center.
Using this game, Hu et al. (2019) crowdsourced a
dataset of high-level instructions (like attack with
dragon and send idle peasant to mine) paired with
low-level action sequences (Fig. 1). They showed
that an LLP trained on this supervised data via
behavior cloning significantly outperformed a flat
policy trained with imitation learning directly on
low-level action sequences.

Here we investigate (1) whether these policy-
cloned LLP can be further improved via reinforce-
ment learning directly on a sparse win–loss sig-
nal from the game, (2) whether we can improve
sample efficiency during reinforcement learning by
jointly training executor models on multiple game
variants simultaneously through multitask learn-
ing, and (3) whether semantic drift can be avoided
during multi-task training. Below, Section 4.1, Sec-
tion 4.2 and Section 4.3 provide more detail about
the task, model, and training procedure. Section 4.4
reports experimental results.

4.1 Task and Training Data

MINIRTS is a partially-observable real-time strat-
egy game environment, in which the actions of a
large number of units must be coordinated on long
time scales to defeat an opposing player. In a typ-
ical episode, a player must use its initial units to
gather resources, use resources to build specialized
structures for producing other units, and finally
deploy these units to attack the opposing player’s
base. This involves challenging problems in both
low-level tactics (controlling the placement of in-
dividual units for resource-gathering and combat)
and high-level strategy (deciding which unit types
to build, and when to deploy them).

MINIRTS additionally features a dataset col-
lected from pairs of humans playing collaboratively
against rule-based opponents. One human, the in-

structor, designs high-level strategies and describes
them in natural language. The other human, the
executor observes the environment state as well as
the natural language strategy descriptions from the
instructor and selects appropriate low-level actions.
The dataset consists of 5,392 games, with a total of
76,045 (instruction, execution) pairs.

4.2 Model

Hu et al. (2019) use the labeled data to train an LLP
for the MINIRTS environment. Our experiments
use the same model architecture (Fig. 3), which we
briefly review here; see the original for details.

Observation encoder The instructor and execu-
tor models condition on a fixed-sized representa-
tion of the current game state which are constructed
using different encoders for various aspects of the
game state (Fig. 3):

• Spatial input encoder: The spatial information
of the map is encoded using a convolutional
neural network.
• Non-spatial input encoder: The non-spatial at-

tributes and internal state of game objects are
encoded using a simple MLP. These include
attributes like the number of enemy units, the
agent’s units, and resource locations.
• Instruction encoder: The current instruction

is encoded with a recurrent neural network.
• Auxiliary encoder: Global variables, such as

the total number of resources collected, are
additionally encoded with an MLP.

Instructor model The instructor takes in the
game state from the observation encoder and pro-
duces instructions. The 500 instructions appear-
ing most frequently in the training set are encoded
with an RNN into a fixed-sized vector. The score
for each instruction is proportional to its dot prod-
uct with the game state encoding. This instructor
model achieved the best performance on several
metrics in the original work (Hu et al., 2019). By
restricting the instructor to the most frequent 500
well-formed natural language strings, we are able
to focus our attention on semantic drift. A genera-
tive model free to generate arbitrary strings might
also be subject to syntactic drift.

Executor model The executor predicts an action
for every unit controlled by the agent based on of
the current observation as encoded by the various
encoders. The executor then predicts an action
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Figure 3: State representations for the MINIRTS environment. The model encodes the spatial observations, non-
spatial observations, instructions, and auxiliary information about environment state at each timestep. These fea-
tures are used by both the instructor and executor models. Reproduced with permission from Hu et al. (2019).

based on these features. In particular, for each unit,
it predicts one of the 7 action types (IDLE, CON-
TINUE, GATHER, ATTACK, TRAIN UNIT, BUILD

BUILDING, MOVE), an action target location (for
the MOVE, ATTACK, GATHER and BUILD BUILD-
ING actions) and a unit type (for the TRAIN UNIT

and BUILD BUILDING actions). Taking the prod-
uct of the factorized action and location arguments
across all units, the action space for the executor
can be enormous, with as many as 1024 distinct
actions available on a single turn.

4.3 Training

As mentioned above, the original work of Hu et al.
(2019) (and other work on learning LLPs) focused
on behavior cloning or independent supervision of
the instructor and executor. In the current paper,
we are interested in the the dynamics of joint rein-
forcement learning of LLPs in both single- and mul-
titask settings. Experiments in Section 4.4 make
use of models trained with all three strategies.

Rule-based opponent pool Agents are trained
against a similar pool of rule-based bots (see Hu
et al., 2019) used to collect the human data. These
bots follows a randomly selected, unit-specific
strategy, building a fixed number of SWORDMEN,
SPEARMEN, CAVALRY, ARCHERS or DRAGONS

and attacking as soon as they are constructed.

Behavior cloning Behavior-cloned models are
trained using the supervised MINIRTS dataset.
Given a collection of game observations o, each an-
notated with a high-level action m and a low-level
action a, we maximize:

max
θI ,θE

∑
o,m,a

[
log I(m | o; θI)

+ logE(a | m, o; θE)
]
. (6)

During training, one frame is taken from every K
frames to form the supervised learning dataset. To
preserve unit level actions for the executor training,
all actions that happen in [tK, (t + 1)K) frames
are stacked onto the tKth frame.

Reinforcement learning To train agents via re-
inforcement learning, we initialize them with the
behavior cloning objective in Eq. (6) to provide
an initial, human-meaningful grounding of mes-
sage semantics (analogous to the initialization of
the executor parameter θ(0)E in Section 3). We then
fine-tune them on game success, providing a sparse
reward of 1 when agents win the game, -1 when
they lose or draw the game.

As in Section 3, learned agents are trained on the
game reward, using a proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) objective to
optimize the expected reward:

E(s,a)∼(I,E)R(s, a) . (7)

Multi-task RL The original game of Hu et al.
(2019) is defined by a set of attack multipliers:
the aforementioned rock-paper-scissors dynamic
arises because spearmen are especially effective
against cavalry, archers against dragons, etc. To cre-
ate alternative “tasks” in the MiniRTS environment,
we create alternative versions of the game featuring
different multipliers: e.g. making dragons invulner-
able to archers or cavalry extra-effective against
swordsmen. Table 1 shows these multipliers for
the original rule, and a set of game variants with
different multipliers are described in Appendix D.
These variants are labeled B–J in the experiments
that follow. Multiplier changes have significant ef-
fects on the optimal high-level strategy, affecting
both which units are most effective overall, and
how players should respond to opponents’ choices.
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As in Section 3, we perform multitask LLP train-
ing in the MINIRTS environment by jointly op-
timizing expected reward across multiple game
variants at once, assigning each variant its own
set of instructor parameters θI (initialized to the
same value) but sharing a single set of executor
parameters θE across all contexts. The training
pseudo-code can be found in Appendix C.

4.4 Experiments

Unlike in the signaling game considered in Sec-
tion 3, MINIRTS is complex, and we cannot take
for granted that reinforcement learning of LLPs
(with either ordinary or multitask objectives) will
converge to an improved good solution at all. We
thus begin with an analysis of policy performance
and sample efficiency, then conclude this section
with an analysis of semantic drift. (Model training
details can be found in Appendix B.)

4.4.1 Evaluating performance and sample
efficiency

To evaluate policy quality and sample complexity,
we compare the final win rate (against the fixed
pool of rule-based agents) for the policy-cloned
(BC), RL-tuned (RLjoint), and multitask-RL-tuned
(RLmulti) agents described above. We perform this
evaluation for multiple game configurations: origi-
nal, with the same rules used by Hu et al. (2019)
for human data collection and evaluation, and 3 al-
ternative variants (variant G, variant H, variant
J) , in which the relative strengths of various units
has been modified (see Appendix D). We train 4
separate (RLjoint) agents corresponding to each of
the environments and 2 (RLmulti) agents. Following
D’Eramo et al. (2019), we provide both training
strategies with a fixed budget of training experience
across environments: both RLjointand RLmultihave
been trained on the same number of game episodes
per training environment. We also present the win
rates for RLjointand RLmulti, when trained on 3×

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 1.0 1.5 0.5 1.0 0.0
SPEARMAN 0.5 1.0 1.5 1.0 0.0
CAVALRY 1.5 0.5 1.0 1.0 0.0
ARCHER 0.5 0.5 0.5 0.5 2.0
DRAGON 1.0 1.0 1.0 0.5 1.0

Table 1: Attack multipliers for the original game rules.
For example, cavalry are extra-effective against swords-
men (1.5 in Swordsman col.); only archers and drag-
ons can attack dragons (nonzero entries in Dragon col.).
See Appendix D for other game variants’ multipliers.

more episodes per environment.
Results are shown in Table 2. Both RL fine-

tuning strategies allow the policy to significantly
improve over the behavior-cloned initializer, show-
ing that effective reinforcement learning of LLPs is
possible in MINIRTS. In most environments, per-
formance of the model fine-tuned with the multi-
task training is higher than ordinary joint RL train-
ing. When RLjoint is provided extra training budget,
it sometimes surpasses the performance of RLmulti

model with standard number of episodes. However,
when RLmulti is also given the extra training budget,
it performs better in all but one environment. At
a high level, these results indicate that multitask
training of LLPs can be applied at small (and in
some cases no) cost in accuracy and significantly
less per-environment training cost.

4.4.2 Evaluating semantic drift
Next, we consider the second question from the
introduction: outside of performance effects, does
multitask training with populations of instructors
reduce semantic drift in executors? We present two

Training Evaluation Win rate
strategy environment (standard) (3× training)

BC
original

30.3 -
RLjoint[orig.] 65.7 86.9
RLmulti[orig., B, C] 76.5 90.6

BC
variant G

11.6 -
RLjoint[G] 73.0 74.1
RLmulti[G, H, J] 75.7 77.6

BC
variant H

26.2 -
RLjoint[H] 82.2 91.4
RLmulti[G, H, J] 79.4 83.5

BC 14.6 -
RLjoint[J] variant J 87.2 93.0
RLmulti[G, H, J] 91.2 93.7

Table 2: Evaluation of policy quality in MINIRTS. Poli-
cies are evaluated against a rule-based opponent pool
in four environments: MINIRTS with original rules,
and three rule variants described in Appendix D. We
compare the original behavior-cloned LLP of Hu et al.
(2019) (BC) with one fine-tuned directly on the evalua-
tion environment (RLjoint[env]) and one with multitask
tuning on the evalution environment and two others
(RLmulti[env1, env2, env3]). Both RL fine-tuning strate-
gies significantly outperform their behavior-cloned ini-
tializer. When using the same number of game
episodes per training environment, RLmultiis generally
best but when RLjointis provided additional budget, it
sometimes beats RLmulti. Differences between mod-
els in environments original, G and J are significant
(p < 0.05 under a permutation test).
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different quantitative evaluations that provide dif-
ferent perspectives on the answer to this question.

Semantic drift In MINIRTS, executor semantic
drift occurs when the executor performs actions
that are not consistent with the instruction produced
by the instructor. ( i.e., create spearman instruction
produced by the instructor leads to the executor
producing swordman instead). In particular, this
occurs in RLjointbecause the instructor and executor
can co-adapt to new semantics during exploration
as they are only trained to win the game.

Agent interoperability First, we evaluate the ro-
bustness of executor policies to alternative choices
of instructors. Specifically, we pair each RL-
trained executor with an instructor trained either
via behavior cloning (and thus guaranteed to im-
plement the human annotators’ semantics) or fine-
tuning (RLinstr) on a different game variant from
the executor (and thus not co-adapted with it). In-
tuitively, to succeed at this task, executors must fol-
low messages produced by the instructors trained
in that domain. Executors that have undergone less
semantic drift should perform better when paired
with these different instructors. Results are shown
in Table 3; here, it can be seen that multitask learn-
ing matches or exceeds the performance of single-
task training on this evaluation of semantic drift in
all rule variants studied, even when RLjoint is pro-
vided additional training budget. As evidence that
performance comes from instructor–executor pairs,

Instructor Executor Eval. Win rate
env. (standard) (3× training)

BC
RLjoint[orig.]

original
48.4 59.2

RLmulti[orig., B, C] 60.7 67.2

RLinstr[D]
RLjoint[orig.]

variant D
74.8 85.9

RLmulti[orig., B, C] 88.3 89.1

RLinstr[E]
RLjoint[orig.]

variant E
57.5 68.7

RLmulti[orig., B, C] 72.9 76.6

RLinstr[F]
RLjoint[orig.]

variant F
73.2 83.8

RLmulti[orig., B, C] 87.3 92.3

Table 3: Evaluation of semantic drift in MINIRTS.
Here, reinforcement-learned executor models are
paired with instructors different from those they are
trained with: either the original behavior-cloned in-
structor, or a instructor fine-tuned in an entirely dif-
ferent environment. The multitask executor RLmulti

performs better than RLjoint when paired with new in-
structors, even when RLjoint is given additional training
budget. Differences in all environments are significant
(p < 0.05 under a permutation test).

rather than executors alone, using a random coach
paired with RLmulti[orig., B, C] on variant D gives
33.2% accuracy. Additionally, when RLmulti[orig.,
B, C] is paired with a coach from a different variant,
we get an accuracy of just 41% on variant D.

Low-level action semantics As an alternative
means of gaining insight into learned behaviors, we
can directly inspect the correspondence between
instructor messages and executor actions. We do
this by uniformly sampling messages from a ran-
dom instructor, then feeding them to the RLmulti

and RLjoint executors and observing their choice of
low-level actions a. We then restrict these these
(m, a) pairs to those in which (1) the text of m
includes one of the words create, build, train or
make and the name of a unit (peasant, spearman,
etc.) and (2) a is a TRAIN UNIT action for any
unit. We then compute the empirical probability
P (unit1 ∈ a | unit2 ∈ m) as shown in Fig. 4. If
there is semantic drift, we expect to observe non-
zero probability on the off-diagonal entries (the
executor is building units different from those it
is instructed to build). RLmulti places less proba-
bility mass on the off-diagonal entries compared
to RLjoint, consistent with less semantic drift. In
Fig. 4, one can also note that some word meanings
change more than others. We hypothesize that, this
is because like in natural languages, environmental
pressures cause the meanings of some words to
change at a greater rate than others. In this case,
the dynamics of the game makes the spearman unit
slightly stronger than the swordman unit overall.
This results in unexpectedly good performance for
players who accidentally misinterpret swordman as
spearman. Therefore, this creates pressure for the
conventional meaning of swordman to shift more
than other units.

Taken together, these two evaluation results show
that, when fine-tuning a policy initialized via imi-
tation learning on the same objective, ordinary RL
can be quite effective: the resulting executor model
performs well even when paired with other instruc-
tors. But as in Section 3, multitask training is even
more helpful, especially by reducing semantic drift
in both familiar and new environments.

5 Conclusions

We have presented a theoretical and empirical anal-
ysis of semantic drift and sample efficiency in mul-
titask reinforcement learning of latent language
policies (LLPs). In a Lewis signaling game, we
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Figure 4: Message–action drift in MINIRTS. Unit X
on the x-axis indicates that a message m of the form
build unit X was sampled. Unit Y on the y-axis shows
the low-level TRAIN UNIT Y action a sampled by the
executor. Matrix entries show the empirical probability
P (a | m) computed using the relative frequencies of
the sampled instructor messages and the corresponding
executor actions. The total sum of off-diagonal entries
is 2.98 for RLjoint[orig.] and 1.98 for RLmulti, indicating
less semantic drift for RLmulti[orig., B, C].

proved that multitask training can completely elim-
inate semantic drift. In a two-player real-time strat-
egy game, we showed that multitask training is
effective at mitigating semantic drift, improves the
quality of learned policies and is sample efficient.
Future work might integrate these results with other
forms of population-based training (like those pro-
posed by Gupta et al. (2019) for reference games)
and explore other environmental factors affecting
dynamics of language change in populations of
learned agents.
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A Lewis signaling games: details

This appendix provides details of the formal analysis of the signaling game discussed in Section 3.

Single-task learning: Proof of Proposition 1 In the single-task case, we wish to train the policy given
in Eq. (2) (with parameters (θI , θE)). For the reward function R in Fig. 2, this policy has expected reward:

J(θE , θI) =
∑
o∈O
m∈M
a∈A

p(o)I(m | o; θI)E(a | m; θE)R(o, a) .

=
1

2
θIθE +

1

2
(1− θI)(1− θE) (8)

As noted in Eq. (4), the gradient of this expected reward with respect to agent parameters is

∂J

∂θI
= θE −

1

2
(9)

∂J

∂θE
= θI −

1

2
(10)

Performing gradient ascent will thus give a series of parameters updates with

θ
(t)
I = θ

(t−1)
E + α(t)

(
θ
(t−1)
E − 1

2

)
(11)

θ
(t)
E = θ

(t−1)
I + α(t)

(
θ
(t−1)
I − 1

2

)
(12)

The exact sequence of iterates will depend on the choice of optimization algorithm, step size, and other
hyperparameters. In order to provide the most general characterization of learning in this signaling game,
we consider optimization of θI and θE in continuous time. (This can be viewed as the limiting case of
ordinary SGD as the step size goes to zero; for more discussion of relationships between gradient descent
and continuous gradient flows see Scieur et al., 2017.) Taking θ(t)I and θ(t)E to now be functions of a
real-valued variable t, optimization corresponds to the system of ordinary differential equations:

dθ
(t)
I

dt
= θE −

1

2
(13)

dθ
(t)
E

dt
= θI −

1

2
(14)

It can be verified that solutions to this system of equations have the following general form:

θ
(t)
I = (c1 + c2)e

t + (c1 − c2)e−t +
1

2
(15)

θ
(t)
E = (c1 + c2)e

t + (c2 − c1)e−t +
1

2
(16)

They are visualized in Fig. 5 (left). By setting t = 0, we can solve for c1 = 1
2θ

(0)
I −

1
4 and c2 = 1

2θ
(0)
E −

1
4 .

Thus, if (and only if) θ(0)E + θ
(0)
I > 1, θI and θE will both tend towards 1, and any θ(0)I < 1

2 is susceptible
to semantic drift (Fig. 5, right).

One minor complication is that probabilities must be between 0 and 1; these equations only govern
θE , θI ∈ [0, 1]. If we clip these values by defining:

dθ
(t)
E

dt
=


0 if θE = 0

0 if θE = 1

θI − 1
2 otherwise

(17)
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Figure 5: Dynamics of learning in the signaling game. Left: flow field for a single-task pair. Right: parameter
initializations that are susceptible to semantic drift (shaded).

defining θI analogously, and assuming that θ(0)E , θ
(0)
I ∈ (0, 1), a small amount of additional work suffices

to prove that convergence behavior is the same as the unconstrained case presented above. First observe
that once one parameter has reached a value of 1 or 0, the other parameter will converge to the same value:
e.g. with 0 < θI < 1,

dθI
dt

=

{
−1

2 if θE = 0
1
2 if θE = 1

(18)

Parameters will evolve as in the unconstrained case until either θE or θI reaches the boundary of the
feasible set. This can happen in one of four ways:

Case 1: θ
(t)
E = 0, 0 < θ

(1)
I ≤ 1. Case 2: θ

(t)
E = 1, 0 < θ

(1)
I ≤ 1.

Case 3: θ
(t)
I = 0, 0 ≤ θ(1)E < 1. Case 4: θ

(t)
I = 1, 0 ≤ θ(1)E < 1.

Semantic drift occurs in Case 1 and Case 3 and is avoided in Case 2 and Case 4. By setting Eq. (15) and
Eq. (16) to 1 and solving for t, it can be verified that solutions to θ(t) = 1 exist for positive t only when
c1 + c2 = 1

2θ
(0)
E + 1

2θ
(0)
I −

1
2 > 0. Thus Case 2 and Case 4 occur (and semantic drift is avoided) only

when θ(0)E + θ
(0)
I > 1.

Multitask learning: Proof of Proposition 2 Now suppose we train models for both R and R′ simulta-
neously, with a shared executor and reward-specific instructors with parameters θI1 and θI2. The expected
reward is now:

J(θI1, θI2, θE) =
1

4

(
θI1θE + (1− θI1)(1− θE) + θI2(1− θE) + (1− θI2)θE

)
(19)

Then,

dθ
(t)
I1

dt
=

1

2
θ
(t)
E −

1

4
(20)

dθ
(t)
I2

dt
= −1

2
θ
(t)
E +

1

4
(21)

dθ
(t)
E

dt
=

1

2
θ
(t)
I1 −

1

2
θ
(t)
I2 (22)
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Restricting solutions to those satisfying the initial conditions θ(0)I1 = θ
(0)
I2 , it can again be verified that

θ
(t)
I1 =

1

4
e−t/

√
2(4c1e

t/
√
2 +
√
2c2e

√
2t −
√
2c2) (23)

θ
(t)
I2 = −1

4
e−t/

√
2(−4c1et/

√
2 +
√
2c2e

√
2t −
√
2c2) (24)

θ
(t)
E =

1

2

(
θ
(0)
E −

1

2

)(
e
(
√
2− 1√

2
)t
+ e
− 1√

2
t
)
+

1

2
(25)

As noted in the body of the paper, the question of whether θE → 1 (no semantic drift) is independent of
S(0) and S′(0), and happens whenever θ(0)E > 1

2 .
Now consider the clipped version of this objective described in Eq. (17). With the initial conditions

θ
(0)
I1 = θ

(0)
I2 and θ(0)E > 1

2 , θI1 must increase monotonically, θI2 must decrease monotonically, and θE
must increase monotonically within the interior of the unit cube until one of the following conditions
holds:

Case 1: θI1 = 1. Thereafter, θE > 1
2 , 0 ≥ θI2 < 1, so

dθE
dt

> 0.

Case 2: θI2 = 0. Thereafter, θE > 1
2 , 0 < θI1 ≤ 1, so

dθE
dt

> 0.

Case 3: θE = 1 and will remain fixed by definition.

Thus, semantic drift is avoided globally.

B Implementation and hyperparameter details

We use the same executor and instructor architecture and model hyperparameters as used in (Hu et al.,
2019). As described in section 4.2, we use a PPO objective to trainRLjoint,RLmulti andRLinstr agents. For
all the models, we set the PPO batch size to 32 and the PPO update epochs to 4. We do not use an entropy
term as it led to instability during training. We used the Adam optimizer (Kingma and Ba, 2014) and used
the learning rate of 6e-6 for RLjoint, RLmulti and 3e-6 for RLinstr. We sweeped through the following
learning rates: [1e−7, 1e−6, 2e−6, 3e−6, 4e−6, 5e−6, 6e−6, 7e−6, 8e−6, 9e−6, 1e−5, 1e−4]
to pick the best learning rates (during evaluations) for each of the models.

Each of the agents in section 4.4 were trained with several random seeds and played 15000 game
episodes per training environment. And the model checkpoints used in the experiments were picked by
evaluating those agents on 100 games. 2000 game episodes were used to compute the win rates in tables
2, 3.
RLjoint and RLmulti models takes approximately 70 hours to train on Intel Xeon Gold 6248 and Nvidia

Volta V100, while, RLinstr takes 35 hours to train on 45000 game episodes. Each instructor in the models
presented in the paper have 2.8M parameter, while the executors have 2.4M parameters. Models were
implemented in Pytorch(Paszke et al., 2019).
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C Multitask RL LLP training pseudo-code

The training pseudo-code for Multitask RL LLP described in Section 4.3 is presented in Algorithm 1.

Algorithm 1: Multitask LLP RL Training

N Environments M1, M2, ... , MN ;
N Instructors πI1, πI2, ... , πIN ;
5 Opponents O1, O2, ..., O5;
Shared Executor πE ;
for epoch i = 1, 2, . . . do

for iteration j = 1, . . . , N do
Sample environment Mk;
Select policy π(ij) = f(πIk , πE)
Begin T games g1, . . . , gT where game g` uses opponent O`%5

Reset Buffer B
while g1, . . . , gT are not terminated do

Simulate gameplay between π(ij) and O`%5

Add each game state, value and actions: (sgj(t), vgj(t), agj(t)) to buffer Bij .
end
Compute rewards R1, . . . , RT for g1, . . . , gT .
Optimize the PPO objective w.r.t. θIk and θE using buffer B for K epochs.

end
end

D Game variants

Tables 4–11 below enumerate the attack multipliers of the units under the various multi-task rule sets.

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 1.0 1.0 1.0 0.5 1.0
SPEARMAN 1.5 0.5 1.0 1.0 0.0
CAVALRY 0.5 1.0 1.5 1.0 0.0
ARCHER 0.5 0.5 0.5 0.5 2.0
DRAGON 1.0 1.5 0.5 1.0 0.0

Table 4: Rule B attack modifier

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 0.5 1.0 1.5 1.0 0.0
SPEARMAN 1.0 1.5 0.5 1.0 0.0
CAVALRY 1.5 0.5 1.0 1.0 0.0
ARCHER 1.0 1.0 1.0 0.5 1.0
DRAGON 0.5 0.5 0.5 0.5 2.0

Table 5: Rule C attack multipliers
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Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 0.5 0.5 0.5 0.5 2.0
SPEARMAN 1.0 1.0 1.0 0.5 1.0
CAVALRY 0.5 1.0 1.5 1.0 0.0
ARCHER 1.5 0.5 1.0 1.0 0.0
DRAGON 1.0 1.5 0.5 1.0 0.0

Table 6: Rule D attack multipliers

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 1.5 0.5 1.0 1.0 0.0
SPEARMAN 0.5 1.0 1.5 1.0 0.0
CAVALRY 1.0 1.5 0.5 1.0 0.0
ARCHER 1.0 1.0 1.0 0.5 1.0
DRAGON 0.5 0.5 0.5 0.5 2.0

Table 7: Rule E attack multipliers

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 1.0 1.5 0.5 1.0 0.0
SPEARMAN 1.0 1.0 1.0 0.5 1.0
CAVALRY 1.5 0.5 1.0 1.0 0.0
ARCHER 0.5 0.5 0.5 0.5 2.0
DRAGON 0.5 1.0 1.5 1.0 0.0

Table 8: Rule F attack multipliers

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 0.5 1.0 1.5 1.0 0.0
SPEARMAN 1.5 0.5 1.0 1.0 0.0
CAVALRY 0.5 0.5 0.5 0.5 2.0
ARCHER 1.0 1.0 1.0 0.5 1.0
DRAGON 1.0 1.5 0.5 1.0 0.0

Table 9: Rule G attack multipliers

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 0.5 1.0 1.5 1.0 0.0
SPEARMAN 1.5 0.5 1.0 1.0 0.0
CAVALRY 1.0 1.5 0.5 1.0 0.0
ARCHER 0.5 0.5 0.5 0.5 2.0
DRAGON 1.0 1.0 1.0 0.5 1.0

Table 10: Rule H attack multipliers

Attack multiplier
Unit name Swordman Spearman Cavalry Archer Dragon
SWORDMAN 0.5 1.0 1.5 1.0 0.0
SPEARMAN 1.0 1.0 1.0 0.5 1.0
CAVALRY 1.0 1.5 0.5 1.0 0.0
ARCHER 0.5 0.5 0.5 0.5 2.0
DRAGON 1.5 0.5 1.0 1.0 0.0

Table 11: Rule J attack multipliers


