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Abstract

Petroni et al. (2019) demonstrated that it is
possible to retrieve world facts from a pre-
trained language model by expressing them as
cloze-style prompts and interpret the model’s
prediction accuracy as a lower bound on the
amount of factual information it encodes. Sub-
sequent work has attempted to tighten the es-
timate by searching for better prompts, using
a disjoint set of facts as training data. In this
work, we make two complementary contribu-
tions to better understand these factual probing
techniques. First, we propose OPTIPROMPT, a
novel and efficient method which directly op-
timizes in continuous embedding space. We
find this simple method is able to predict an
additional 6.4% of facts in the LAMA bench-
mark. Second, we raise a more important ques-
tion: Can we really interpret these probing re-
sults as a lower bound? Is it possible that these
prompt-search methods learn from the training
data too? We find, somewhat surprisingly, that
the training data used by these methods con-
tains certain regularities of the underlying fact
distribution, and all the existing prompt meth-
ods, including ours, are able to exploit them
for better fact prediction. We conduct a set of
control experiments to disentangle “learning”
from “learning to recall”, providing a more de-
tailed picture of what different prompts can re-
veal about pre-trained language models.1

1 Introduction
Pre-trained language models like BERT are op-

timized to predict the distribution of words in an
Internet corpus (Devlin et al., 2019). Naturally, this
distribution encodes information about world facts.
Recently, researchers have taken an interest in mea-
suring how much factual information language
models acquire from pre-training. Petroni et al.
(2019) formally define this project in the LAMA

*The first two authors contributed equally.
1The code is publicly available at https://github.

com/princeton-nlp/OptiPrompt.
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Figure 1: A linguistic probe is trained to predict linguis-
tic annotations given the representations returned by a
language model, and evaluated on a held-out set of sen-
tences. A factual probe is trained to predict an object
for a subject and a relation using a pre-trained language
model, and evaluated on a held-out set of subject-object
pairs that express the same relation.

benchmark, which consists of (subject, relation,
object) triples along with human-written templates
that express each relation. They show that BERT
can predict objects given cloze-style prompts—for
example, “Dante was born in [MASK]”—and they
present their result as a lower bound on the amount
of factual information BERT encodes. Subsequent
work has attempted to tighten this bound by finding
better prompts. Jiang et al. (2020) use text mining
and paraphrasing to find a set of candidates and
select the prompts that lead to the highest accuracy
on a training set. Shin et al. (2020) train a model
to generate prompts automatically by searching for
the sequence of tokens that maximizes expected
likelihood of the gold object label. Both of these
methods collect additional triples from Wikidata to
use for tuning their prompts.

In this paper, we first take a natural next step in
the search for better prompts: rather than confining
our search space to discrete input tokens, we di-

https://github.com/princeton-nlp/OptiPrompt
https://github.com/princeton-nlp/OptiPrompt
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rectly optimize in the input embedding space, find-
ing the real-valued input vectors that are most effec-
tive at eliciting facts. We also find that initializing
with manual prompts can provide a better starting
point for the search process. Our approach, OP-
TIPROMPT, is simple and compute-efficient, and
improves accuracy on the LAMA benchmark from
42.2% to 48.6%, compared to previous discrete
alternatives. On the more difficult LAMA-UHN
split (Poerner et al., 2019), which filters out easy-
to-guess entity names, OPTIPROMPT improves ac-
curacy from 31.3% to 38.4%.

At the same time, we observe that prompts that
are optimized on training data may exploit some
regularities in the underlying distribution of facts.
How can we make sure our prompts are recovering
information solely from the language model? An
analogous question has been explored recently in
linguistic probing, which aims to explore the lin-
guistic properties encoded in contextualized word
representations (Belinkov et al., 2017; Tenney et al.,
2019; Lin et al., 2019)—for example, by seeing if a
classifier can predict that “chef ” is the nominal sub-
ject of “made” given the representations returned
from a language model (Figure 1). Recent work has
attempted to disentangle the information encoded
in the representations from the information learned
by the probe (Hewitt and Liang, 2019; Pimentel
et al., 2020; Voita and Titov, 2020; Zhu and Rudz-
icz, 2020). However, this question has not been yet
explored in factual probing, in part because it is as-
sumed that there is no way to predict a knowledge
fact simply from observing a non-overlapping set
of facts about other entities.2 For example, learning
that Dante was born in Florence should tell you
nothing about the birthplace of John Donne.

We analyze our training data and find that this
assumption is not warranted. Even though the train-
ing data was collected independently of the LAMA
benchmark, there are sufficient regularities in the
underlying distribution of Wikidata relations that a
naive classifier fit to the training data can achieve
surprisingly good performance. Furthermore, our
experiments reveal that all the data-driven prompt-
search methods, including previous methods and
our proposed OPTIPROMPT, are able to exploit this

2In knowledge base completion or link prediction, re-
searchers study how to predict a fact (Barack Obama, na-
tionality, ?) from other triples such as (Barack Obama,
place_of_birth, Honolulu) and (Honolulu, city_of, USA). In
knowledge probing, the underlying assumption is that one
can’t predict facts from the other facts of the same relation.

information to achieve better prediction accuracy.
Given some training data, a good search algorithm
can find prompts that recover a non-trivial number
of “facts” from a neural network with randomly
initialized parameters, exploiting both simple class
statistics and higher order lexical regularities.

This finding makes it challenging to interpret
relative accuracy scores on the knowledge probing
task. We show how our control experiments allow
us to form a more detailed understanding of the
behavior of different probes. For example, by parti-
tioning the test set into “easy” examples, which can
be predicted by random controls, and “hard” exam-
ples, we can form some conclusions about which
facts are less likely to have been learned from train-
ing data. OPTIPROMPT outperforms prior methods
in both subsets, suggesting it is both better at learn-
ing from training data and better at eliciting facts
from a language model. We conclude with sugges-
tions for future work that might be less susceptible
to the confounding effect of training data.

2 Background: Prompting for Facts

2.1 LAMA

The factual probing setting was introduced by
the LAMA benchmark (Petroni et al., 2019), which
is designed to measure the amount of factual infor-
mation encoded in a pre-trained language model
(LM). In LAMA, a fact is defined as a triple
〈s, r, o〉, where s is a subject (e.g., Dante), r is a re-
lation from a fixed set of relationsR (e.g., place of
birth), and o is an object (Florence). LAMA facts
are drawn from a number of sources, including
Wikidata, ConceptNet (Speer and Havasi, 2012),
and SQuAD (Rajpurkar et al., 2016). We follow re-
cent factual probing work (Jiang et al., 2020; Shin
et al., 2020) in focusing on the T-REx split (Elsahar
et al., 2018), which contains up to 1000 〈s, r, o〉
triples for each of 41 Wikidata relation types. The
relation types are divided into three categories: 1-1
includes relations like capital of ; N-1 includes rela-
tions like place of birth; and N-M includes relations
like shares border with. In the LAMA evaluation,
each relation is associated with a human-written
prompt that contains a single [MASK] token—for
example, “[X] was born in [MASK].” To accom-
modate masked language models such as BERT,
LAMA is restricted to facts for which the object
label is a single token in a predefined vocabulary
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Method Prompt Data-driven?

LAMA (Petroni et al., 2019) [X] is [MASK] citizen 7

LPAQA (Jiang et al., 2020) [X] is a citizen of [MASK] 3

AUTOPROMPT (Shin et al., 2020) [X] m3 badminton pieces internationally representing [MASK] 3

OPTIPROMPT [X] [V]1 [V]2 [V]3 [V]4 [V]5 [MASK] 3

OPTIPROMPT (manual) [X] [V]1 := is [MASK] [V]2 := citizen 3

Table 1: Comparison of prompts for the relation country of citizenship. [X] denotes the name of the subject and
[MASK] is single-token object label to be predicted. In our OPTIPROMPT approach, we optimize a sequence
of learned embeddings [V]i ∈ Rd for each relation type. [V]i := w indicates that the vector is learned but
initialized by the pre-trained embedding of word w and OPTIPROMPT (manual) indicates that we use a manual
prompt as initialization (see Section 3 for more details).

V .3 Given a subject s, a relation prompt tr, and a
masked language model, we can identify the word
ô ∈ V to which the LM assigns the highest prob-
ability of P ([MASK] = ô | tr(s)), where tr(s)
represents the prompt template with the subject
placeholder [X] replaced by s. If ô is the same as
the gold object o, we conclude that the LM encodes
information about the fact.

LAMA is an evaluation benchmark, so there is
no training data. It is constructed so that a pre-
trained language model can be evaluated “off-the-
shelf” with no additional fine-tuning. Petroni et al.
(2019) remark that their benchmark provides only
a lower-bound estimate of the amount of factual in-
formation stored in an LM, because their manually
written prompts might not be optimal for eliciting
facts. Accordingly, subsequent work has focused
on tightening this bound by using additional train-
ing data to find more optimal prompts.

2.2 LPAQA

Jiang et al. (2020) use a range of text-mining and
paraphrasing techniques to generate a set of candi-
date prompts for each relation. They collect a train-
ing dataset from Wikidata, ensuring that there is
no overlap with subject-object pairs in the LAMA
benchmark, and select prompts by measuring accu-
racy on this training data. They consider a number
of rules for selecting prompts, including top-K
baselines and an “optimized ensemble”, which con-
sists of multiple prompts per relation with weights
tuned on the training data. Their prompt dataset,
LPAQA, is available online.4

3Subject names are usually longer, with an average length
of 3.7 tokens using the BERT-base-cased vocabulary.

4https://github.com/jzbjyb/LPAQA

2.3 AUTOPROMPT

Shin et al. (2020) take prompt optimization one
step further by training a statistical model, AUTO-
PROMPT, to search over the space of input tokens
for prompts that elicit correct predictions. They col-
lect 1000 〈s, r, o〉 triples for each relation type, ei-
ther from the original T-REx dataset (Elsahar et al.,
2018) or from Wikidata, with no triples that appear
in the LAMA benchmark. They define a prompt
for a given relation r as the subject followed by a
fixed number of “trigger” tokens:

tr = [X][T]1[T]2 . . .[T]m[MASK],

where [X] is replaced by the subject, [T]i rep-
resents a “trigger” token which can be any token
in the vocabulary, and the number of [T] tokens
is set as a pre-defined number m. The tokens are
initialized as [MASK] tokens and then iteratively
updated, at each step using a gradient-based search-
ing algorithm (Wallace et al., 2019) to replace one
of the trigger tokens with the token that is estimated
to maximize the likelihood of the gold label on the
training set.

3 Our Approach: OPTIPROMPT

Our approach is motivated by the view that re-
stricting the search to the space of vocabulary to-
kens is a suboptimal and artificial constraint. In the
case of AUTOPROMPT, optimizing over a discrete
subspace is also inefficient: at each step we have
to enumerate a set of candidate tokens, replace the
selected trigger token, and re-run the model (Shin
et al., 2020). The examples in Table 1 also illus-
trate that optimized textual prompts can be opaque,
despite consisting of tokens from the English vo-
cabulary. This undermines one argument in favor
of natural language prompts, which is that they are

https://github.com/jzbjyb/LPAQA
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Method 1-1 N-1 N-M All UHN

Majority 1.8 23.9 22.0 22.0 23.8

LAMA (manual) 68.0 32.4 24.7 31.1 21.8
LPAQA (manual + paraphrased) 65.0 35.9 27.9 34.1 28.7
AUTOPROMPT (5 [T]s) 58.0 46.5 34.0 42.2 31.3

OPTIPROMPT (5 [V]s) 49.6 53.1 39.4 47.6 37.5
OPTIPROMPT (10 [V]s) 60.7 53.2 39.2 48.1 37.9
OPTIPROMPT (manual) 59.6 54.1 40.1 48.6 38.4

Table 2: Micro-averaged results (top-1) on the LAMA benchmark using the BERT-base-cased model, averaged
over relations. UHN stands for UnHelpfulNames (Poerner et al., 2019), which is a subset of LAMA where ques-
tions with helpful entity names were deleted. The LAMA results are broken down by relation category. Examples
from each category are capital of (1-1), place of birth (N-1), and shares border with (N-M).

human readable so might be easier to interpret.

OPTIPROMPT In this view, we propose OP-
TIPROMPT, a method for continuous prompt op-
timization. Rather than limiting the search to the
space of discrete tokens, OPTIPROMPT searches
for optimal prompts directly, composing prompts
using any vector in the embedding space. We first
follow AUTOPROMPT and define a prompt in the
following form:

tr = [X] [V]1 [V]2 . . . [V]m [MASK],

where each [V]i ∈ Rd is a dense vector with the
same dimension as the LM’s input embedding (e.g.,
768 for BERT-base) and the number of [V] vectors
is set to a pre-defined number m.

Treating prompts as dense vectors allows us to
search for optimal prompts much more efficiently.
Given some initial values for [V]i, we keep all
other model parameters fixed and use gradient-
descent to minimize the negative log-likelihood
of a training set:

Lr = −
1

|Dr|
∑

(s,o)∈Dr

logP ([MASK] = o | tr(s)),

where Dr is the set of (subject, object) pairs with
relation r and tr represents the prompt template for
relation r with subject tokens s substituted for the
placeholder [X].

In this basic form, we pick a fixed value for m
(treated as a hyperparameter) and randomly initial-
ize all the [V] tokens. We also consider a more
sophisticated form of using manual prompts (we
use the prompts provided in the LAMA benchmark)
to decide the number as well as the position of the
[V] tokens for each relation and initialize each

[V]i with the pre-trained input embedding for the
corresponding tokens in the manual prompt. As
shown in Table 1, we can convert a manual prompt
“[X] is [MASK] citizen” into

tr = [X][V]1[MASK][V]2,

and use the embeddings of is and citizen to initialize
[V]1 and [V]2 respectively. Our motivation is
that a good initialization is likely to be important in
this challenging non-convex optimization problem.

Setup We train OPTIPROMPT using the data col-
lected by Shin et al. (2020), which contains 800
training examples with 200 held out for develop-
ment. For our main experiments, we probe the
BERT-base-cased model and we compare other
pre-trained language models in Appendix C. We
report top-1 micro-averaged accuracy:

1

|R|
∑
r∈R

1

|Dr|
∑

(s,o)∈Dr

1[ô = o],

where R is the set of relations, Dr is the set of
(subject, object) pairs with relation r, and ô =
argmaxo P ([MASK] = o | tr(s)). More imple-
mentation details can be found in Appendix B.1.

LAMA results Our results are in Table 2. Over-
all, OPTIPROMPT outperforms the previous re-
ported results in terms of accuracy on the LAMA
benchmark. Compared to AUTOPROMPT5, our

5For AUTOPROMPT, we obtain a slightly different ac-
curacy 42.2% by evaluating their released prompts, instead
of 42.9% reported in their paper. We suspect that this is
due to a discrepancy in the vocabulary used in different
papers. We use the vocabulary provided in the LAMA
benchmark for all the evaluation: https://github.com/
facebookresearch/LAMA#unified-vocabulary.

https://github.com/facebookresearch/LAMA#unified-vocabulary
https://github.com/facebookresearch/LAMA#unified-vocabulary
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models perform 5.4%–6.4% higher on LAMA and
6.2%–7.1% on the more-difficult LAMA-UHN
benchmark. The improvement is consistent across
all categories, with the exception of the “1-1” cat-
egory, which contains two relations, capital and
its inverse, capital of. Interestingly, the prompt
that yields the best results in this category is the
manual prompt, with LPAQA and AUTOPROMPT

prompts performing steadily worse. We speculate
that there are very few prompts that elicit this re-
lation with high accuracy and they are difficult to
find via stochastic, non-convex optimization.

We also find that initializing the prompt vectors
using the manually written prompts improves per-
formance consistently. This confirms our intuition
that the manual initialization provides a good prior
for finding a good solution in the non-convex opti-
mization problem. The results are broken down by
relation in Table 8 in the Appendix.

4 Can We Trust Optimized Prompts?
Our factual probing results confirm that OP-

TIPROMPT is an effective approach, outperform-
ing the best previous method by 6.4% on the
LAMA benchmark. However, can we conclude
that BERT encodes 6.4% more facts than was pre-
viously known? Our prompts, like LPAQA and
AUTOPROMPT, are optimized on in-distribution
Wikidata relations, which raises the possibility that
they exploit some regularities in the underlying fact
distribution. In this section we aim to answer two
questions. First, are there patterns in the Wikidata
fact distribution that statistical model could theo-
retically exploit to predict unseen facts? Second,
are optimized prompts capable of exploiting these
patterns in practice?

4.1 Facts can be predicted from training data

We first examine whether it is possible to pre-
dict any facts by just looking at the training data.
The simplest pattern is the class prior P (o | r):
if one or two object labels dominate the relation
r, it is easier to guess them regardless of the sub-
ject entity. A more sophisticated pattern is to find
a correlation between subject tokens and object
labels—that is, to estimate P (o | r, w1, ..., w|s|),
where w1, . . . , w|s| ∈ V are the tokens of the sub-
ject name. To see whether such patterns exist, we
fit two simple probabilistic models to the Wikidata
training set collected by Shin et al. (2020). The first
model always predicts the majority class, with class
priors learned from the training data, and the sec-

Relation Class Prior Naive Bayes

All 17.3 24.6
1-1 0.2 0.3
N-1 23.2 28.6
N-M 11.0 21.8

member of 2.2 59.6
manufacturer 8.9 62.0

Table 3: Results for simple classifiers fit to the Wiki-
data training data and evaluated on the LAMA test set.
We highlight two relations for which object labels are
correlated with particular subject tokens: In the mem-
ber of category, the model appears to learn that any sub-
ject with “football” in its name, such as Ghana Football
Association, is likely to be a member of FIFA. In the
manufacturer category, the model learns to predict that
Chevrolet manufactures the Chevrolet Impala, BMW
manufactures the BMW M Coupe, and so on.

ond is a Naive Bayes classifier (bag-of-words) with
add-one smoothing (see details in Appendix B.2).
Table 3 shows the accuracy of these models on
the LAMA benchmark, averaged over relations.
The majority class model performs well because,
on some relations, well over half of the examples
are from the majority class.6 The Naive Bayes
baseline performs even better in all categories by
learning correlations between subject tokens and
object labels. This analysis complements an ob-
servation of Poerner et al. (2019), who point out
that BERT can exploit superficial information in a
cloze prompt to “guess” the correct answer—for ex-
ample, predicting that people with stereotypically
Italian names were likely born in Rome. Our results
show that it is possible to learn these correlations
even without prior information about entity names,
and there might be other, subtler patterns in the
Wikidata distribution.

4.2 Prompts can exploit training data

We have shown that the training data clearly
encodes certain regularities and simple statistical
models can learn to fit the training data. In the
following, we study whether a prompt optimization
method built with pre-trained language models, is
expressive enough to exploit these regularities in
practice. We attempt to answer this question by
means of two random controls, inspired by similar
proposals from linguistic probing. In our Random
Model (RM) baseline, we optimize prompts to elicit

6These include native language (60% French) and conti-
nent (72% Antarctica).
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Figure 2: Accuracy on LAMA obtained by prompting BERT-base-cased, either the pre-trained model, reinitializing
the input embeddings, or reinitializing all parameters. Each bar represents total accuracy micro-averaged over
relations and divided into two categories: accuracy obtained by predicting the training set majority class label, and
accuracy obtained by predicting other object labels. We also fine-tune BERT, which, in the random control settings,
can be thought of as a better lower bound on the entropy of the task distribution.

facts from a neural network with the same archi-
tecture as the pre-trained LM but with randomly
initialized parameters. This is analogous to a con-
trol function Pimentel et al. (2020), a function that
removes information from a linguistic representa-
tion. Any successful predictions in this setting must
be the result of optimizing on training data. We
also consider a Random Embeddings (RE) baseline,
where we reinitialize only the input embeddings.7

This is analogous to a control task (Hewitt and
Liang, 2019), a variant of the probing task in which
word types are associated with random labels.8

Our motivation is that the Random Model setting is
more difficult to optimize, so might underestimate
the ways a prompt model could exploit information
from the training data. Finally, we directly fine-
tune a reinitialized BERT model on the training
data with the goal of getting a better estimate of
the number of LAMA facts that could be predicted
from the training data.

The results are shown in Figure 2 (see implemen-
tation details and more results in Appendix B.1 and
Table 8). In the Random Embeddings setting, both
AUTOPROMPT and OPTIPROMPT are capable of
finding prompts that elicit some correct predictions.
In the Random Model setting, AUTOPROMPT gets

7In the RE setting, the classifier head of the model is also
reinitialized, as the output embeddings are tied to the input
embeddings.

8Hewitt and Liang (2019) consider tasks like part-of-
speech tagging, where each word type can be associated with
a randomly selected tag. We randomize the inputs rather than
the labels, which preserves most of the the statistical cor-
relations between subject token types and object labels but
removes lexical information from the embeddings.

0% of predictions correct, presumably because it is
more difficult to optimize, but OPTIPROMPT is still
capable of finding successful prompts. Most suc-
cessful predictions are obtained by finding a prompt
that elicits the majority class label, although OP-
TIPROMPT also makes a number of correct predic-
tions that cannot be attributed to this strategy. Our
qualitative analysis suggests that these prompts ex-
ploit both class statistics and correlations between
objects and subject tokens (Appendix A.2).

Fine-tuning BERT results in even higher accu-
racy, indicating that there are patterns that prompts
fail to exploit. The random controls represent a
challenging setting for prompt optimization, and
it is possible that the prompts are better exploiting
the training data when they have access to full pre-
trained BERT model. We find evidence that this is
the case by calculating how often each prompt elic-
its the training class majority label on LAMA, plot-
ting the results in Figure 3. Both AUTOPROMPT

and OPTIPROMPT are prone to over-predicting the
majority class label. For example, although AU-
TOPROMPT gets 0% accuracy in the RM setting, it
finds a prompt that elicits the majority label more
than 95% of the time for six relations when opti-
mized on the pre-trained BERT model.9

LPAQA prompts predict the majority class less
often, possibly because they are less effective at

9Shin et al. (2020) attempt to prevent the model from using
this strategy by filtering out prompts that contain proper nouns
or gold object labels, but this evidently is not enough. For
example, the prompt for the position held relation is “[X]
explorers voting municipal → consecrated [MASK].”, which
elicits bishop for 100% of LAMA examples.
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Figure 3: The percentage of LAMA examples for which a prompt elicits the training set majority label, compared
with the percentage of training and test facts with that label. Optimized prompts show a strong tendency to over-
predict the majority class relative to manual prompts and the ground truth. “Train (oracle)” is calculated from the
set of Wikidata facts collected by Shin et al. (2020), which is used to train AUTOPROMPT and OPTIPROMPT.

Method All Easy Hard
(34,039) (10,546) (23,493)

Manual 31.1 41.5 24.3
LPAQA 34.1 47.0 25.6
AUTOPROMPT 42.2 68.2 26.7
OPTIPROMPT 48.6 75.6 33.0

Table 4: Accuracy on LAMA partitioned into easy ex-
amples or hard examples, micro-averaged over rela-
tions. Easy facts are the facts that can be predicted by
fine-tuning a BERT model with either randomly initial-
ized parameters or randomly initialized token embed-
dings, or by the Naive Bayes model described in Sec-
tion 4. Hard examples are everything else. The num-
bers in parentheses denote the size of each subset.

fitting the training distribution. However, it is still
clear that LPAQA prompts also encode distribu-
tion of the training data. For instance, the highest
ranked occupation prompts discovered by LPAQA
include prompts such as “[MASK] and actors [X]”
and “[MASK] and player [X].”,10 which reflect
several of the most common occupations in Wiki-
data. We also discuss examples in Appendix A.2
of cases where LPAQA finds subtle changes to the
prompt template that leads the model to predict the
majority label more often than the manual prompt
and the true test distribution. All the above evi-
dence shows that optimized prompts can learn new
facts to some extent.

5 How to Interpret Probing Results?
Our analysis in Section 4.2 shows that optimized

prompts can predict new facts from training data.
How can we interpret our factual probing results in

10https://github.com/jzbjyb/LPAQA/blob/
master/prompt/paraphrase/P106.jsonl

this light? In order to get another perspective of the
relative improvement, we partition LAMA into an
easy subset and a hard subset (examples from each
subset can be found in Table 5). The easy subset
consists of the facts that can be correctly predicted
by any of three models fit to the training data: the
Naive Bayes model described in Section 4.2 and a
fine-tuned BERT model with either token embed-
dings reinitialized or all parameters reinitialized.
The easy subset serves as an estimate of the set of
facts that can be predicted from training data. The
hard subset consists of the remain facts. Table 4
shows the results of each prompt on these two sub-
sets of LAMA (the per-relation results are given
in Table 9). First, we observe that all the probing
methods achieve a much higher accuracy on the
easy subset. Using more sophisticated prompt opti-
mization techniques tends to result in big improve-
ments on the easy subset of LAMA and smaller
improvements on the hard subset. OPTIPROMPT

outperforms AUTOPROMPT by 7.4% on the easy
examples; while on the hard examples, where we
filtered out facts that we know can be predicted
from the training data, OPTIPROMPT also yields a
big improvement (+6.3%). This suggests that OP-
TIPROMPT is both better at learning from training
data and better at eliciting facts from an LM.

For a more qualitative analysis, we randomly
sample ten facts from each subset, keeping only
facts that are predicted correctly by at least one
model and exclude examples that have the majority
class label. The examples, shown in Table 5, give
a better idea of the types of predictions elicited
by different prompts. For example, both AUTO-
PROMPT and OPTIPROMPT appear to be exploiting
the training data in some cases. In the easy subset,
they elicit more accurate predictions on cases when

https://github.com/jzbjyb/LPAQA/blob/master/prompt/paraphrase/P106.jsonl
https://github.com/jzbjyb/LPAQA/blob/master/prompt/paraphrase/P106.jsonl
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Rel. Fact (manual template) NB Manual LPAQA Auto Opti

P103 The native language of Jan van Krimpen is Dutch . Dutch Dutch Dutch Dutch Dutch
P279 edible mushroom is a subclass of mushroom . protein mushroom category mushroom mushroom
P1001 Governor of Tasmania is a legal term in Tasmania . Canada Australia Australia Tasmania Tasmania
P106 Dude Harlino is a actor by profession . actor lawyer wrestler politician actor
P27 Jens Evensen is Norway citizen . Norway Danish Sweden Norway Norway
P176 Porsche Cayenne is produced by Porsche . Honda Porsche Porsche Porsche Porsche
P279 United States H-class submarine is a subclass of submarine . protein submarines submarine submarine submarine
P138 Milwaukee Mitchell International Airport is named after Milwaukee . Peter Mitchell Mitchell Milwaukee Milwaukee
P176 BMW E9 is produced by BMW . BMW BMW BMW BMW BMW
P1412 Tom Mann used to communicate in English . French English English English English

P937 Francis Hagerup used to work in Oslo . London London London Copenhagen Oslo
P127 Apple Store Online is owned by Apple . Germany Apple Apple Apple Apple
P1412 Berengaria of Castile used to communicate in Spanish . French Spanish Latin Spanish Spanish
P176 SNES-CD is produced by Sony . Honda Sega Sony IBM IBM
P47 Honduras shares border with Guatemala . Lyon Guatemala Guatemala Guatemala Guatemala
P937 David Ben-Gurion used to work in Jerusalem . London Jerusalem Jerusalem Jerusalem Jerusalem
P19 Peter I of Serbia was born in Belgrade . Paris Belgrade Belgrade Belgrade Belgrade
P31 Dally M Medal is a award . album prize prize award award
P30 Snowdon is located in Europe . Antarctica Wales Europe Antarctica Antarctica
P937 William Lyon Mackenzie King used to work in Ottawa . London Canada London Montreal Ottawa

Table 5: Randomly sampling 10 examples each from LAMA-easy (the first block) and LAMA-hard (the second
block), only keeping examples that are predicted correctly by at least one model and that do not have the ma-
jority label. NB: the Naive Bayes model (Section 4.2), Auto: AUTOPROMPT, Opti: OPTIPROMPT. The correct
predictions are underlined.

the answer is a token in the subject name. In the
hard subset, they show signs of having over-fit to
the training distribution, incorrectly predicting the
most common object labels for continent (Antarc-
tica) and manufacturer (IBM). OPTIPROMPT per-
forms better than the other prompts on some facts
in both categories. On an easy profession exam-
ple, while AUTOPROMPT incorrectly predicts the
majority label (politician), OPTIPROMPT—along
with our Naive Bayes model—apparently encodes
a lexical correlation between some aspect of the
subject’s name and the correct label, actor. On the
other hand, OPTIPROMPT out-performs the other
prompts on two more difficult examples: “Fran-
cis Hagerup used to work in Oslo” and “William
Lyon Mackenzie Kingused to work in Ottawa.” In
both cases, LPAQA predicts the training major-
ity label (London), AUTOPROMPT gets geographi-
cally closer (Copenhagen and Montreal), and OP-
TIPROMPT predicts the correct city.

We note that we cannot conclude that there is no
way to predict these “hard” facts from training data.
A more general limitation of this analysis is that
it does not allow us to say which strategy a model
uses to make a particular prediction. Many facts
can be predicted either by learning the class prior;
by learning a lexical correlation between subject
tokens and objects; by exploiting lexical informa-
tion from the LM; or because the LM genuinely
encodes information about a particular entity. Still,

the qualitative examples reveal interesting patterns
in the behavior of the different prompt models that
could not be observed from the summary accuracy
results on the LAMA benchmark, and looking at
specific predictions across a number of prompts
gives us more evidence for deciding what kind of
information the LM encodes about a particular fact.

6 Discussion
Our experiments show that OPTIPROMPT is an

effective optimization algorithm, outperforming
prior work at the task of eliciting facts from a pre-
trained language model. However, our results are
complicated by the fact that any data-driven opti-
mization can find prompts that encode new infor-
mation from the training data. This leaves open the
question of which method we should select if we
are interested in factual probing.

Continuous vs. discrete prompts We find that
both continuous and discrete optimization are ca-
pable of finding prompts that exploit the training
data. Even when the prompt is discrete, it is rarely
clear why a prompt elicits a particular prediction.11

Hence, we believe that continuous prompting is
more preferable, because it is easier and more ef-
ficient to optimize, and makes better predictions
(in both easy and hard subsets). On the other hand,

11For an illustration, see Appendix A.2 for a list of the
AUTOPROMPT templates that elicit the majority class label
more than 95% of the time.
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one drawback of OPTIPROMPT (which is shared
by AUTOPROMPT) is that we need white-box ac-
cess to the LM to compute the gradients. Discrete
prompts will still be necessary in cases where the
model parameters are not available, for example
in the case of very large language models that are
provided over an API.

Learning vs. learning to recall Regardless of
how we choose to optimize prompts, it remains
difficult to say why a model made a particular
prediction—whether it was learned from training
data or encoded in the LM. Some avenues for future
work might be to consider techniques for attributing
predictions to specific training instances, with the
goal of developing a causal understanding of how
facts are acquired during pre-training or prompt
optimization. More generally, our real goal is to
understand how pre-trained language models learn
and represent information. Prompt-based probing
might provide some insight into this question, but
we hope that future research will eventually be able
to provide more mechanistic explanations for neu-
ral network behavior. For example, it would be
interesting to understand how information about
entities is laid out in neural network parameters
and later retrieved in response to an input prompt.

7 Related Work
Our work follows from the line of factual prob-

ing experiments initiated by Petroni et al. (2019),
who introduced the LAMA benchmark for cloze-
style factual probing. Subsequent work on LAMA
has introduced data-driven methods for optimiz-
ing prompts (Jiang et al., 2020; Shin et al., 2020).
Poerner et al. (2019) point out that many facts in
LAMA can be predicted using lexical clues, and
they introduce a new benchmark, LAMA-UHN,
that is less susceptible to these heuristics. Our work
follows these projects by introducing (a) more ef-
fective techniques for optimizing prompts, and (b)
a more comprehensive approach for accounting for
the role of train/test overlap. Concurrently with this
work, other authors explore continuous prompt opti-
mization: Haviv et al. (2021) use an encoder to map
a manually written prompt to a sequence of con-
tinuous vectors, which are then replaced with the
discrete tokens that are nearby in embedding space;
Li and Liang (2021) propose Prefix-Tuning, which
fine-tunes the left-most hidden representations in
auto-regressive language models; Liu et al. (2021)
use an LSTM to generate a sequence of prompt

vectors. Prompting has been explored more gener-
ally as a method for achieving “few-shot” learning
with language models (Brown et al., 2020; Schick
and Schütze, 2020; Gao et al., 2020).

Linguistic probing is an extensive area of re-
search that we do not attempt to summarize here
(see Rogers et al., 2020 for an overview). Our
work is most related to recent proposals about how
to measure whether a probe is extracting informa-
tion from a representation or learning to predict
the annotation from probe training data. These in-
clude random baselines (Hewitt and Liang, 2019)
and information-theoretic measurements (Voita and
Titov, 2020). We adopt the notion of control func-
tions from Pimentel et al. (2020). Our study also re-
lates to a larger category of work diagnosing “short-
cut learning” (Geirhos et al., 2020) in neural NLP
models. McCoy et al. (2019) discover that models
like BERT are often “right for the wrong reason”,
exploiting shallow heuristics rather than underlying
linguistic structure, and similar effects have been
discovered in many other tasks (Sugawara et al.,
2018; Wallace et al., 2019).

8 Conclusion
We introduce OPTIPROMPT, an effective con-

tinuous method for optimizing prompts. Applied
to factual probing, OPTIPROMPT outperforms the
best previous prompt method by 6.4% on the
LAMA benchmark. We find that the typical train-
ing data used for prompt optimization reveals use-
ful information about the underlying task distribu-
tion, to the point that search algorithms can find
prompts that recover “facts” even from a randomly
initialized model. By comparing the predictions of
different prompt methods across our different con-
trols we can form a more detailed understanding of
how different prompts behave and what they can
reveal about pre-trained language models.
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Ethical Considerations
Our experiments illustrate that the “facts” re-

covered from a pre-trained language model should
not be considered real facts. Optimizing any kind
of statistical model for factual prediction is likely
to devolve into stereotype-learning as the model
learns lexical correlations between entity names
and object labels. This problem is more pro-
nounced if our training distribution comes from
a source like Wikidata, which we find to be im-
balanced. More generally, language models that
are trained on the Internet will model the toxic
and harmful language that is found there, a well-
documented finding for pre-trained language mod-
els like BERT (e.g., Gehman et al., 2020; Nadeem
et al., 2020). Using such models for factual predic-
tion is liable to amplify those biases. OPTIPROMPT

is intended to be a diagnostic tool and general-
purpose optimization method, not a way to use
BERT as a knowledge base.
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A Detailed Results

A.1 Breakdown Accuracy for LAMA

Table 7 shows the per-relation accuracy for each
prompting method. In many cases, we can better
understand the probing results by examining the
specific predictions each method makes.

A.2 Exploiting Training Data

Majority class baseline Figure 3 shows that
all optimized prompts have a tendency to over-
predict the majority class label. This behavior is
most pronounced in the gradient-based methods
(AUTOPROMPT and OPTIPROMPT). It is not al-
ways clear why a particular prompt elicits these
predictions. For example, Shin et al. (2020) at-
tempt to prevent AUTOPROMPT from “cheating”
by filtering out prompts that contain proper nouns
or gold object labels, but there are still six relations
for which AUTOPROMPT elicits the majority label
more than 95% of the time. The AUTOPROMPT

prompts for these relations are:

• genre = jazz: “[X] freaking genre orchestra
fiction acid [MASK].”

• position played = midfielder: “[X] played
colors skier \u2194 defensive [MASK].”

• occupation = politician: “[X] supporters
studied politicians musician turned [MASK].”

• employer = IBM: “[X] 1987adeNBC comput-
ing succeeded [MASK].”

• instrument = piano: “[X] playingdrum con-
certoative electric [MASK].”

• position held = bishop: “[X] explorers voting
municipal \u2192 consecrated [MASK].”

This illustrates that even discrete prompts are ca-
pable of finding prompts that elicit a specific label
from an LM, and the mechanism by which these
prompts elicit the prediction is often obscure.

Perhaps more surprisingly, even LPAQA occa-
sionally finds prompts that are more likely to elicit
the majority label compared to the manual prompt.
The changes in these cases are often very subtle.
For example, the manual prompt for the position
of relation is “[X] has the position of [MASK]”
and the LPAQA prompt is “[X] has the position
of a [MASK]”. Simply inserting the determiner
“a” into the prompt leads BERT to predict the ma-
jority label, bishop, more than five times as often

compared to the manual prompt (50.9% vs. 9.5%),
and almost twice as often relative to the true dis-
tribution in the LAMA benchmark (27.3%). This
suggests that even simple data-driven methods can
find prompts that encode some regularities in the
training data and result in over-estimates of the
number of facts in the language model.

Control result details Table 8 shows the accu-
racy of optimized prompts under our random con-
trols (Section 4.2) and also shows how much accu-
racy can be attributed to predict the majority class
label. AUTOPROMPT cannot predict any facts in
the Random Model setting but performs decently
on several relations in the Random Embeddings set-
ting by predicting the majority class. For reasons
we cannot entirely explain, there is one relation, oc-
cupation, for which AUTOPROMPT’s performance
cannot be attributed to the class prior. The correct
predictions in this category are all a result of pre-
dicting actor, which AUTOPROMPT predicts 23.3%
of the time. (The most frequent label in the training
data is politician.) Other high frequency predic-
tions for this relation include jet, wool, and smart.
Notably, even when AUTOPROMPT finds a prompt
that can draw out the class prior, it typically does
not elicit the class prior 100% of the time.

OPTIPROMPT is more successful at exploiting
the training data. In the Random Model setting, vir-
tually all correct predictions can be attributed to the
majority class, which OPTIPROMPT can frequently
elicit for all inputs. One noteworthy exception is
languages spoken, where OPTIPROMPT is able to
successfully classify subjects as speaking either
English or French in some cases. It is not immedi-
ately clear what decision rule the model learns for
these predictions—for example, it could be that the
model predicts either English or French at random,
in rough proportion to the training distribution; or
the model is able to use the correlations between
names and spoken languages. In any case, the re-
sults illustrate that optimized prompts can learn
more sophisticated strategies than simply predict-
ing the majority class, even given a Transformer
that contains no prior information at all.

A.3 LAMA-easy and LAMA-hard

Table 9 shows the accuracy of different prompts
on the easy and hard subset of LAMA described
in Section 5. All of the optimized models tend
to perform better on LAMA-easy compared to
LAMA-hard, and OPTIPROMPT out-performs AU-
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BERT (110M) BERT (330M) RoBERTa (330M) ALBERT (235M)†
Method Pre-T. Rand M. Pre-T. Rand M. Pre-T. Rand M. Pre-T. Rand M.

Manual 30.6 - 32.2 - 23.6 - 27.4 -
LPAQA 35.6 - 36.2 - 29.3 - 29.8 -
AUTOPROMPT 44.6 0.0 44.5 0.1 38.6 0.0 33.2 0.0
OPTIPROMPT 50.8 19.9 52.7 19.3 47.8 19.6 44.6 16.9
Fine-tuning 51.9 19.8 54.9 19.6 52.3 21.4 52.8 21.1

Table 6: Comparison of different pre-trained LMs. We downsample the LAMA test set to make sure that in each
sample, the object is a single token for all the models. †: there is parameter sharing in ALBERT models so the
actual models are much bigger. Pre-T.: pre-trained language models. Rand M.: randomly initialized models.

TOPROMPT in both categories. For example, on the
shares border relation, OPTIPROMPT achieves an
improvement on both easy questions (Campagnano
di Roma, Rome) and hard ones (Chiapas, Veracruz).
But note that high accuracy on LAMA-easy does
not necessarily mean that a prompt encodes infor-
mation about the fact distribution. For example, all
prompts, including the manually written prompts,
perform well on the easy examples in the capital
relation. This category includes such facts as “The
capital of Sarajevo Canton is Sarajevo,” which evi-
dently do not require very much tuning to predict.

B Implementation Details

B.1 Prompt Optimization

We implement OPTIPROMPT based on the Hug-
gingFace’s Transformers (Wolf et al., 2020) library.
During trianing, we use an Adam optimizer and
a scheduler with a warmup ratio of 0.1. We use
an Adam optimizer and a linear scheduler with a
warmup ratio of 0.1. We train our OPTIPROMPT

model for 10 epochs with a learning rate of 3e-3
and a batch size of 16. For fine-tuning, we use
an Adam optimizer and a linear scheduler with a
warmup ratio of 0.1. We fine-tune the language
models for 10 epochs with a learning rate of 2e-6
and a batch size of 2.

We report AUTOPROMPT’s performance based
on the prompts released by Shin et al. (2020).
When we apply AUTOPROMPT to a control task
(e.g., the Random Embeddings model), or compare
AUTOPROMPT with different language models on
a different dataset (see Appendix C), we run AU-
TOPROMPT for 1000 iterations for each model to
search for the prompt of a relation.

B.2 LAMA Classifiers

In Section 4.2 we fit two simple probabilistic
models to the Wikidata training data collected

by (Shin et al., 2020). Given a relation r and a sub-
ject s consisting of tokens w1, . . . , w|s| ∈ V , the
Class Prior model predicts ô = argmaxo P (o | r),
the object label that is most frequently associated
with relation r in the training data. The Naive
Bayes model predicts ô = argmaxo P (o | s, r),
with

P (o | s, r) = P (o | r)
|s|∏
i=1

P (o | wi).

The probabilities are estimated from the corpus
with add-one smoothing:

P (o | wi) =
count(o, wi) + 1∑

w∈V (count(o, w) + 1) .

C Comparing Pre-trained Language
Models

We compare different pre-trained language mod-
els (BERT, RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2019)) with different probing
methods. We collect at most 1000 training samples
for each relation from the TRE-x dataset and con-
strain the object of each sample to be a token for
all the models12. During testing, we downsample
the LAMA test set to make sure that the object in
each sample is a single token for all the models. In
Table 6 shows the results of different probing meth-
ods applied to four pre-trained language models,
along with our Random Model baseline. We make
the following observations:

• Base vs. Large: The larger version of BERT
performs better on LAMA than BERT base

12The original data collected by Shin et al. (2020) is not ap-
plicable when we compare different language models, because
some object tokens are not in the vocabulary of RoBERTa or
ALBERT.
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in the OPTIPROMPT probe. We might hy-
pothesize that BERT-large is simply more ca-
pable of finding patterns in the training data,
but our baseline result does not indicate that
this is the case—on the contrary, BERT-large
performs marginally worse on the Random
Model baseline. This could lead us to believe
that BERT-large truly does store information
about 1 or 2% more LAMA facts compared
to BERT-base.

• BERT vs. RoBERTa vs. ALBERT: Shin
et al. (2020) find that RoBERTa performs sig-
nificantly worse on LAMA than BERT. We
find this is true for our prompts as well (com-
paring with BERT-large), but the magnitude of
the difference decreases in the fine-tuning set-
ting. Our baseline result gives a possible hint
as to why: RoBERTa performs better in the
RM setting with fine-tuning, indicating that
part of the difference between OPTIPROMPT

and fine-tuning might be due to better exploita-
tion of training data. This change is even
more dramatic in ALBERT. Perhaps these
models store less factual information due to
pre-training on a wider variety of genres.

We believe that further comparisons along these
lines are a promising area of future work—for ex-
ample, if we could show that probing results are
correlated with downstream task performance and
use probes to guide model selection.
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Relation Type Name # Manual LPAQA Auto Opti

P1376 1-1 capital of 233 73.8 67.8 56.2 56.7
P36 1-1 capital 702 62.1 62.1 59.7 61.3
P103 N-1 native language 977 72.2 72.2 79.7 86.8
P127 N-1 owned by 687 34.8 32.5 44.3 49.6
P131 N-1 located in the administrative territorial entity 881 23.3 22.8 28.9 41.4
P136 N-1 genre 931 0.8 16.8 55.3 63.6
P138 N-1 named after 642 61.4 59.5 70.7 73.4
P140 N-1 religion 473 0.6 59.8 60.5 76.5
P159 N-1 headquarters location 967 32.4 35.6 35.7 37.4
P17 N-1 country 930 31.3 39.8 51.0 57.8
P176 N-1 manufacturer 973 85.5 81.5 87.5 87.3
P19 N-1 place of birth 944 21.1 21.1 19.5 20.6
P20 N-1 place of death 953 27.9 27.9 29.8 33.8
P264 N-1 record label 429 9.6 6.3 4.2 45.5
P276 N-1 location 958 41.5 41.5 43.0 47.1
P279 N-1 subclass of 964 30.7 14.7 54.9 64.7
P30 N-1 continent 975 25.4 16.9 78.6 86.3
P361 N-1 part of 932 23.6 31.4 37.0 46.4
P364 N-1 original language of film or TV show 856 44.5 43.9 45.0 51.3
P37 N-1 official language 966 54.6 56.8 52.7 58.6
P407 N-1 language of work or name 877 64.2 65.2 68.4 71.0
P413 N-1 position played on team / speciality 952 0.5 23.7 41.7 44.0
P449 N-1 original network 880 20.9 9.1 33.1 36.0
P495 N-1 country of origin 909 28.7 32.2 35.8 40.8
P740 N-1 location of formation 936 8.9 13.7 13.1 15.0
P1001 N-M applies to jurisdiction 701 70.5 72.8 80.5 85.2
P101 N-M field of work 696 9.9 5.3 12.1 14.1
P106 N-M occupation 958 0.6 0.0 13.6 35.7
P108 N-M employer 383 6.8 5.7 7.8 11.2
P1303 N-M instrument 949 7.6 18.0 23.1 23.6
P1412 N-M languages spoken, written or signed 969 65.0 64.7 71.5 76.1
P178 N-M developer 591 62.9 59.4 64.3 67.9
P190 N-M twinned administrative body 992 2.2 1.7 2.4 3.1
P27 N-M country of citizenship 966 0.0 41.5 45.8 47.1
P31 N-M instance of 922 36.7 36.7 53.6 64.9
P39 N-M position held 892 8.0 16.1 27.2 42.8
P463 N-M member of 225 67.1 57.3 64.0 64.0
P47 N-M shares border with 920 13.7 13.7 19.2 22.2
P527 N-M has part 976 11.2 10.6 22.1 34.8
P530 N-M diplomatic relation 996 2.8 3.9 2.8 3.3
P937 N-M work location 954 29.8 39.1 34.4 43.3

Table 7: The accuracy of different prompts on LAMA for each relation using BERT-base-cased. Manual: the
manually written prompts included in LAMA; LPAQA: manually written + paraphrased prompts from Jiang et al.
(2020); Auto: the five-token AUTOPROMPT prompts released by Shin et al. (2020). Opti: OPTIPROMPT initialized
using the manually written templates.
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Relation Type Name Random Embeddings Random Model
Auto Opti FT Auto Opti FT

P1376 1-1 capital of 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
P36 1-1 capital 0.0/0.1 0.0/11.8 0.0/0.1 0.0/0.0 0.0/0.0 0.0/0.0
P103 N-1 native language 26.5/26.5 60.1/60.1 57.6/63.5 0.0/0.0 60.1/60.1 60.1/60.5
P127 N-1 owned by 0.0/0.0 6.8/7.0 6.7/17.2 0.0/0.0 6.8/6.8 6.4/12.4
P131 N-1 located in... 0.0/0.0 0.0/2.3 0.2/1.5 0.0/0.0 0.2/0.2 0.6/0.6
P136 N-1 genre 27.6/27.6 55.4/55.4 54.7/56.1 0.0/0.0 55.3/55.3 55.4/55.4
P138 N-1 named after 0.0/0.0 1.2/3.9 0.8/50.8 0.0/0.0 1.6/1.6 1.6/1.6
P140 N-1 religion 0.0/0.0 53.7/53.7 53.7/53.7 0.0/0.0 53.7/53.7 53.7/53.7
P159 N-1 headquarters location 0.0/0.0 9.0/9.0 7.7/7.7 0.0/0.0 9.0/9.0 9.0/9.0
P17 N-1 country 0.0/0.1 2.8/2.8 1.6/7.7 0.0/0.0 0.5/1.9 2.6/2.6
P176 N-1 manufacturer 0.2/0.2 8.9/8.9 8.8/80.0 0.0/0.0 8.9/8.9 8.8/70.2
P19 N-1 place of birth 0.0/0.0 2.9/3.2 5.3/5.4 0.0/0.0 0.0/0.3 6.0/6.4
P20 N-1 place of death 0.0/0.0 7.3/11.4 7.8/12.7 0.0/0.0 10.2/10.2 9.7/11.6
P264 N-1 record label 0.0/0.0 37.5/37.5 37.5/37.5 0.0/0.0 37.5/37.5 37.5/37.5
P276 N-1 location 0.2/0.2 2.7/2.7 3.8/5.6 0.0/0.0 0.7/0.9 4.2/4.4
P279 N-1 subclass of 0.0/0.1 15.7/26.2 14.4/36.9 0.0/0.0 15.9/15.9 16.0/16.0
P30 N-1 continent 57.5/57.5 72.3/72.3 72.3/72.3 0.0/0.0 72.3/72.3 72.3/72.3
P361 N-1 part of 4.9/4.9 6.0/6.0 6.0/7.6 0.0/0.0 6.0/6.0 6.0/6.0
P364 N-1 original language... 0.0/0.0 21.1/25.1 23.5/27.8 0.0/0.0 24.1/25.5 22.4/25.5
P37 N-1 official language 0.0/0.0 17.0/17.0 14.7/16.0 0.0/0.0 17.0/17.0 17.0/17.0
P407 N-1 language of work... 0.7/0.9 46.4/46.4 45.8/46.4 0.0/0.0 46.4/46.4 46.4/46.4
P413 N-1 position played... 30.3/30.3 41.6/41.6 41.7/41.7 0.0/0.0 41.7/41.7 41.7/41.7
P449 N-1 original network 3.2/3.2 25.9/31.0 23.9/32.2 0.0/0.0 28.9/31.9 21.5/29.8
P495 N-1 country of origin 1.9/1.9 8.9/10.8 9.6/12.3 0.0/0.0 10.9/10.9 8.6/13.1
P740 N-1 location of formation 0.0/0.0 7.4/7.4 6.8/7.6 0.0/0.0 4.5/5.6 7.4/7.4
P1001 N-M applies to jurisdiction 0.1/0.1 8.0/42.8 7.4/54.9 0.0/0.0 9.6/9.6 9.6/9.7
P101 N-M field of work 0.0/0.0 9.6/10.1 10.3/10.8 0.0/0.0 10.5/10.5 10.5/10.8
P106 N-M occupation 0.0/8.9 6.2/27.5 5.2/30.8 0.0/0.0 14.3/14.3 6.8/26.4
P108 N-M employer 0.0/0.0 7.6/8.9 3.4/9.1 0.0/0.0 4.2/6.3 5.7/9.4
P1303 N-M instrument 0.0/0.0 22.8/22.8 21.9/22.7 0.0/0.0 10.6/10.6 22.8/22.8
P1412 N-M languages spoken... 0.0/0.0 13.9/27.7 10.5/28.0 0.0/0.0 7.3/25.3 12.0/28.2
P178 N-M developer 0.0/0.0 2.7/11.3 4.2/29.4 0.0/0.0 4.7/5.4 4.6/8.8
P190 N-M twinned admin... 0.0/0.0 0.0/1.1 1.7/2.1 0.0/0.0 1.4/2.1 0.3/2.4
P27 N-M country of citizenship 1.3/1.3 9.7/9.9 8.8/13.4 0.0/0.0 10.0/10.0 9.9/10.1
P31 N-M instance of 0.3/0.3 8.0/11.2 8.4/24.9 0.0/0.0 8.8/8.8 8.9/8.9
P39 N-M position held 0.0/0.0 20.9/28.7 23.8/32.4 0.0/0.0 27.2/27.2 18.5/30.4
P463 N-M member of 1.3/1.3 2.2/45.8 2.2/60.4 0.0/0.0 2.2/2.2 2.2/56.4
P47 N-M shares border with 0.0/0.0 0.0/0.1 0.2/0.9 0.0/0.0 0.0/0.0 0.0/1.1
P527 N-M has part 0.0/0.0 17.3/17.3 12.0/18.0 0.0/0.0 14.4/14.4 17.4/17.4
P530 N-M diplomatic relation 0.0/0.0 0.3/0.5 0.0/1.2 0.0/0.0 0.9/0.9 0.0/0.6
P937 N-M work location 0.0/0.0 14.6/14.6 12.1/16.8 0.0/0.0 13.2/13.2 14.8/14.8

Table 8: Control result details. The value in each cell is Maj./Acc., where Acc. is the percentage of facts of relation
r that the model predicts correctly and Maj. is the percentage of facts 〈s, r, o〉 such that (a) the model predicts o
correctly, and (b) o is the most frequent object for relation r in the training data. We probe the BERT-base-cased
model, reinitializing either the token embeddings or all of the parameters.
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Relation Type Name LAMA-easy LAMA-hard
# Man. LPAQA Auto Opti # Man. LPAQA Auto Opti

P1376 1-1 capital of 1 100.0 0.0 100.0 0.0 232 73.7 68.1 56.0 56.9
P36 1-1 capital 2 50.0 50.0 50.0 50.0 700 62.1 62.1 59.7 61.3
P103 N-1 native language 668 75.7 75.7 94.0 95.7 309 64.4 64.4 48.9 67.6
P127 N-1 owned by 131 53.4 87.0 89.3 90.8 556 30.4 19.6 33.6 39.9
P131 N-1 located in... 72 16.7 23.6 56.9 63.9 809 23.9 22.7 26.5 39.4
P136 N-1 genre 535 1.1 15.7 96.1 92.9 396 0.3 18.2 0.3 24.0
P138 N-1 named after 341 84.2 85.0 94.7 95.3 301 35.5 30.6 43.5 48.5
P140 N-1 religion 254 0.0 80.7 100.0 96.9 219 1.4 35.6 14.6 53.0
P159 N-1 headquarters location 97 45.4 57.7 82.5 75.3 870 30.9 33.1 30.5 33.2
P17 N-1 country 131 44.3 52.7 71.8 86.3 799 29.2 37.7 47.6 53.2
P176 N-1 manufacturer 791 94.7 90.8 95.6 95.8 182 45.6 41.2 52.2 50.0
P19 N-1 place of birth 101 77.2 77.2 77.2 75.2 843 14.4 14.4 12.6 14.0
P20 N-1 place of death 183 78.7 78.7 78.7 74.9 770 15.8 15.8 18.2 24.0
P264 N-1 record label 195 6.2 6.7 2.6 81.5 234 12.4 6.0 5.6 15.4
P276 N-1 location 90 60.0 60.0 68.9 81.1 868 39.6 39.6 40.3 43.5
P279 N-1 subclass of 374 32.9 28.3 79.1 92.2 590 29.3 6.1 39.5 47.3
P30 N-1 continent 705 34.0 19.1 98.0 99.9 270 3.0 11.1 27.8 50.7
P361 N-1 part of 73 1.4 11.0 16.4 98.6 859 25.5 33.2 38.8 41.9
P364 N-1 original language... 373 69.4 71.8 76.9 82.3 483 25.3 22.4 20.3 27.3
P37 N-1 official language 197 43.7 53.8 88.8 87.3 769 57.3 57.6 43.4 51.2
P407 N-1 language of work... 460 84.6 85.9 92.8 91.3 417 41.7 42.4 41.5 48.7
P413 N-1 position played... 397 1.3 56.7 100.0 99.5 555 0.0 0.2 0.0 4.3
P449 N-1 original network 428 26.4 11.9 54.7 64.5 452 15.7 6.4 12.6 9.1
P495 N-1 country of origin 187 41.2 44.9 51.9 80.2 722 25.5 28.9 31.6 30.6
P740 N-1 location of formation 79 43.0 57.0 74.7 86.1 857 5.7 9.7 7.5 8.4
P1001 N-M applies to jurisdiction 408 79.9 84.1 90.7 95.1 293 57.3 57.0 66.2 71.3
P101 N-M field of work 104 9.6 12.5 38.5 36.5 592 10.0 4.1 7.4 10.1
P106 N-M occupation 386 0.0 0.0 29.8 74.1 572 1.0 0.0 2.6 9.8
P108 N-M employer 54 27.8 22.2 53.7 72.2 329 3.3 3.0 0.3 1.2
P1303 N-M instrument 243 7.8 37.9 87.7 88.1 706 7.5 11.2 0.8 1.4
P1412 N-M languages spoken... 473 86.7 81.8 89.4 90.7 496 44.4 48.4 54.4 62.1
P178 N-M developer 259 79.5 81.1 90.3 95.4 332 50.0 42.5 44.0 46.4
P190 N-M twinned admin... 44 2.3 2.3 18.2 11.4 948 2.2 1.7 1.7 2.7
P27 N-M country of citizenship 217 0.0 74.7 54.8 75.1 749 0.0 31.9 43.1 39.0
P31 N-M instance of 316 48.1 48.1 79.7 94.0 606 30.7 30.7 39.9 49.7
P39 N-M position held 421 11.2 28.5 55.3 63.2 471 5.1 5.1 2.1 24.6
P463 N-M member of 139 87.1 71.9 91.4 95.0 86 34.9 33.7 19.8 14.0
P47 N-M shares border with 35 5.7 5.7 14.3 22.9 885 14.0 14.0 19.4 22.1
P527 N-M has part 296 9.1 3.7 29.1 61.8 680 12.1 13.5 19.1 23.1
P530 N-M diplomatic relation 18 5.6 5.6 5.6 0.0 978 2.8 3.9 2.8 3.4
P937 N-M work location 258 77.1 86.4 75.6 88.0 696 12.2 21.6 19.1 26.7

Table 9: The accuracy by relation on LAMA-easy and LAMA-hard. LAMA-easy consists of the facts that are
predicted correctly by any of three models: the Naive Bayes model described in Section 4; BERT-base-cased
with randomly initialized token embeddings; and BERT-base-cased with all parameters reinitialized. LAMA-hard
contains all the remaining facts.




