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Abstract

Modern summarization models generate
highly fluent but often factually unreliable
outputs. This motivated a surge of metrics
attempting to measure the factuality of auto-
matically generated summaries. Due to the
lack of common benchmarks, these metrics
cannot be compared. Moreover, all these
methods treat factuality as a binary concept
and fail to provide deeper insights on the
kinds of inconsistencies made by different
systems. To address these limitations, we
devise a typology of factual errors and use it to
collect human annotations of generated sum-
maries from state-of-the-art summarization
systems for the CNN/DM and XSum datasets.
Through these annotations we identify the
proportion of different categories of factual
errors in various summarization models and
benchmark factuality metrics, showing their
correlation with human judgement as well as
their specific strengths and weaknesses.1

1 Introduction

Factuality is defined as a measure of “whether even-
tualities are characterized as corresponding to facts,
possibilities, or situations that do not hold in the
world” (Sauri, 2008; Saurí and Pustejovsky, 2012).
In summarization, this “world” is the article, which
is taken as ground-truth, and the output summary
must be faithful to the article’s facts. Despite ad-
vancements in neural abstractive summarization
(Narayan et al., 2018; Liu and Lapata, 2019; Lewis
et al., 2020), ∼30% of summaries have factual in-
consistencies (Cao et al., 2018). With summariza-
tion being an integral component of information
consumption, this highlights a need for ensuring
summarization systems are factually consistent and
developing methods for evaluating them.

Common evaluation metrics for summarization
based on n-gram overlap – BLEU, ROUGE, and

1Code, data, and online leaderboard will be available at
https://github.com/artidoro/frank

METEOR (Papineni et al., 2002; Lin, 2004; Lavie
and Agarwal, 2007) – are insufficient to measure
the factual correctness of summaries and fail to
correlate with the human judgements of factual-
ity (Falke et al., 2019; Kryscinski et al., 2019).
More recent metrics proposed to improve the evalu-
ation of summarization factuality (Kryscinski et al.,
2020; Durmus et al., 2020; Wang et al., 2020;
Maynez et al., 2020) cannot be compared due to
the lack of common benchmarks. More critically,
while these approaches differ in the way they model
factuality, they all consider factuality as a binary
concept, labeling summaries of any length as fac-
tual or non-factual. They do not provide any fine-
grained understanding of the factual errors made by
different systems that could serve as an actionable
feedback on a system’s limitations.

The binary factuality of a text can be difficult to
determine. Falke et al. (2019) show relatively low
crowd–expert agreement, indicating the presence
of subjectivity in the annotation process. Moreover,
not all factual errors are equally important and the
number of errors can have a significant impact on
the perceived factuality of a text. This suggests
that non-factuality should be modeled as a multi-
dimensional construct and not a label.

In this work, we propose a linguistically moti-
vated typology of factual errors for fine-grained
analysis of factuality in summarization systems
(§2). Our typology is theoretically grounded in
frame semantics (Fillmore et al., 1976; Palmer
et al., 2005) and linguistic discourse theory (Brown
and Yule, 1983). It provides several benefits. First,
we find that decomposing the concept of factual-
ity in (relatively) well-defined and grounded cat-
egories makes the final binary decision more ob-
jective leading to near perfect agreement between
crowd and expert annotators (κ = 0.86). Second,
this approach provides some measure of the de-
gree of non-factuality both in terms of the quantity
and the category of factual violations that appear

https://github.com/artidoro/frank
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Figure 1: We propose a linguistically grounded typology of factual errors. We select crowd workers to annotate
summaries from two datasets according to this typology achieving near perfect agreement with experts. We collect
FRANK, the resulting dataset, to benchmark factuality metrics and state-of-art summarization systems.

in the text. This typology also provides us with
the means to categorize the types of errors made
by summarization systems, helping us gain deeper
insights than simply categorizing content as factual
or hallucinated.

We define an annotation protocol of factuality
based on our typology and collect a dataset of hu-
man judgements over a diverse set of model gener-
ated summaries on the CNN/DM (Hermann et al.,
2015) and XSum (Narayan et al., 2018) datasets
(§3). Through this dataset, we aim to both as-
sess the factuality of summarization systems and
benchmark recently proposed factuality metrics.
In §4 we discuss various state-of-art models and
show a detailed analysis of the factual errors they
make. Finally, in §5 we evaluate multiple summa-
rization metrics against our benchmark and show
their strengths and weaknesses in detecting specific
types of factual errors. Figure 1 shows an overview
of this work.

2 Typology of Factual Errors

Previous studies of factuality in summarization
only distinguish factual and hallucinated content
(Kryscinski et al., 2019; Maynez et al., 2020) and
provide limited insights on the fine-grained types
of factual errors. In the simplest case, factual
errors appear within a single proposition. How-
ever, as summaries include several sentences, dis-
course markers describe relations across proposi-
tions. These cross-sentence links, such as causality
or temporal ordering, can introduce inconsisten-
cies with the article. Furthermore, information in
the summary should be verifiable given the arti-
cle. This understanding outlines different levels
of linguistic structure where factual mistakes can
arise in summaries: at the semantic frame level,
at the discourse level, or because the content can-
not be verified. Below we define a typology of

factual errors further detailing these three levels.
This typology is theoretically grounded in frame
semantics (Fillmore et al., 1976; Baker et al., 1998;
Palmer et al., 2005) and linguistic discourse anal-
ysis (Brown and Yule, 1983). Examples for each
category are shown in Table 1.

2.1 Semantic Frame Errors
A semantic frame is a schematic representation
of an event, relation, or state, which consists of a
predicate and a list of participants, called frame
elements (Baker et al., 1998). A semantic frame
has both core and non-core frame elements (FE).
Core frame elements are essential to the meaning
of the frame, while non-core (e.g. location, time)
provide additional descriptive information. Our
first three categories capture factual errors in each
of these components (frame, core and non-core FE)
respectively.

Predicate Error (PredE): Category PredE en-
compasses errors where the predicate in a sum-
mary statement is inconsistent with the source text.
More generally, this represents cases where the
frame from a summary statement does not align
with what is expressed in the source text.

Entity Error (EntE): Category EntE captures
errors where the primary arguments (like entities)
of the predicate are wrong or have the wrong at-
tributes, although the relation was expressed in the
original text. More generally, these account for
cases where the core frame elements in a frame
are wrong. This also captures directionality errors
where the elements are interchanged (similar to
agent-patient swap).

Circumstance Error (CircE): In additional to
the core arguments, predicates can be further speci-
fied using additional information or attributes that
describe the circumstance in which the arguments
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Category Description Example

PredE Relation Error The predicate in the summary statement
is inconsistent with the source article.

The Ebola vaccine was rejected by the FDA
in 2019.

EntE Entity Error The primary arguments (or their attributes)
of the predicate are wrong.

The COVID-19 vaccine was approved by
the FDA in 2019.

CircE Circumstance Error The additional information (like loca-
tion or time) specifying the circumstance
around a predicate is wrong.

The first vaccine for Ebola was approved by
the FDA in 2014.

CorefE Coreference Error A pronoun/reference with wrong or non-
existing antecedent.

The first vaccine for Ebola was approved in
2019. They say a vaccine for COVID-19 is
unlikely to be ready this year.

LinkE Discourse Link Er-
ror

Error in how multiple statements are
linked together in the discourse (for ex-
ample temporal ordering/causal link).

To produce the vaccine, scientists have to
show successful human trials, then sequence
the DNA of the virus.

OutE Out of Article Error The statement contains information not
present in the source article.

China has already started clinical trials of
the COVID-19 vaccine.

GramE Grammatical Error The grammar of the sentence is so wrong
that it becomes meaningless.

The Ebola vaccine accepted have already
started.

Table 1: Typology of factual errors. Original text for the examples: The first vaccine for Ebola was approved by
the FDA in 2019 in the US, five years after the initial outbreak in 2014. To produce the vaccine, scientists had to
sequence the DNA of Ebola, then identify possible vaccines, and finally show successful clinical trials. Scientists
say a vaccine for COVID-19 is unlikely to be ready this year, although clinical trials have already started.

and predicates interact (e.g. location, time, manner,
direction, modality). Category CircE captures er-
rors where one or more such attributes (non-core
frame elements within a frame) are wrong.

2.2 Discourse Errors

The communicative intent of an author is also ex-
pressed through relations that hold between parts of
the text. Factual errors in summarized text can of-
ten extend beyond a single semantic frame introduc-
ing erroneous links between discourse segments.
Below we outline such categories of errors which
are grounded in discourse analysis and rhetorical
structure theory (RST) (Brown and Yule, 1983;
Mann and Thompson, 1988). RST is an elaborate
system for annotating coherence relations in dis-
course. Some examples of such relations include:
“Elaboration”, “Background”, “Motivation”, and
“Volitional Cause”. Here we depart from semantic
frame terminology as its rooting in a single frame
does not allow us to represent such errors.

Coreference Error (CorefE): Category CorefE
accounts for errors where pronouns and other types
of references to previously mentioned entities ei-
ther are incorrect or have no clear antecedents, mak-
ing them ambiguous.

Discourse Link Error (LinkE): Category
LinkE encompasses errors involving a discourse
link between different statements. These include
errors of incorrect temporal ordering or incorrect

discourse links (e.g. RST relations, discourse
connectors) between statements.

2.3 Content Verifiability Errors

Often statements in a summary cannot be verified
against the source text due to difficulty in aligning
them to the source. Below we outline two cate-
gories of errors for such cases.

Out of Article Error (OutE): Since summaries
of a document should only contain information that
can be deduced from the original text, we include
a category for such errors OutE (prior work refers
to this as extrinsic hallucinations (Maynez et al.,
2020)).

Grammatical Error (GramE): We use GramE
to categorize statements that are not well formed.
When grammatical mistakes make the meaning
of a statement incomprehensible or ambiguous, it
cannot be verified against the source and is thus
considered trivially wrong. Minor grammatical
errors are acceptable.

Finally, for completeness in our annotation ex-
ercise, we add two additional categories Others
(OthE) for factually errors that do not correspond
to any of the above categories and Not an Error
(NE) for statements that do not contain any errors.

3 Dataset Creation

Beyond theoretical grounding, we empirically ver-
ify our typology through large scale human annota-
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tions of five abstractive summarization models on
the CNN/DM dataset and four on the XSum dataset.
Through our dataset, we aim to have a broad cov-
erage of different types of errors made by neural
summarization systems, with human judgements
on their fine-grained factuality errors.

Annotation Data For the annotation, we in-
clude model summaries from CNN/DM and XSum
datasets as they present different characteristics.
CNN/DM summaries are longer, with three sen-
tences on average, while XSum has only single
sentence summaries. Having longer summaries
is crucial to identify discourse level errors. On
the other hand, XSum summaries are more ab-
stractive and include more factual errors on av-
erage (Maynez et al., 2020). For a diverse set
of model summaries, we collect publicly avail-
able model outputs from different summarization
models with differing factuality capabilities. For
the CNN/DM dataset, we use model outputs from
a LSTM Seq-to-Seq model (S2S) (Rush et al.,
2015), a Pointer-Generator Network (PGN) model
(See et al., 2017), a Bottom-Up Summarization
(BUS) model (Gehrmann et al., 2018), a Bert based
Extractive-Abstractive model (BertSum) (Liu and
Lapata, 2019) and a jointly pretrained transformer
based encoder-decoder model BART (Lewis et al.,
2020). For the XSum dataset, we collect model
outputs from a Topic-Aware CNN Model (Narayan
et al., 2018), a Pointer-Generator Network (PGN)
model, a randomly initialized (TransS2S) (Vaswani
et al., 2017) and one initialized with Bert-Base
(BertS2S) (Devlin et al., 2019).2 Details of the
models used are provided in §A.1.

Annotation Collection Using the above model
generated summaries, we collect human annota-
tions from three independent annotators for 250
articles from each dataset (with a total of 1250
model outputs on CNN/DM and 1000 on XSum).
We annotate each sentence of a summary to break
the judgement of factuality into smaller units. We
present sentences in the context of the entire sum-
mary to identify discourse errors spanning multi-
ple sentences. Annotations are a two step process:
for each sentence in the summary, the annotator
first selects whether the sentence is factual, and if
marked not factual, identifies the category of each

2As we use publicly available model outputs, the sum-
maries across different datasets are from different models
owing to their availability.

error based on our typology. 3 A sentence can be
annotated with more than one category of errors
to account for multiple errors within a sentence.
We conduct the annotation task on the Amazon
Mechanical Turk (MTurk) platform. To achieve
high quality crowd-sourced annotations, we build
an intuitive interface4 which combines:

1. Clear Instructions: We explain the anno-
tation scheme without assuming linguistic
knowledge and give several examples for each
category.

2. Training and Evaluation: We setup train-
ing tutorials for first time users to train and
provide feedback on the task. We also setup
a qualification test which tests their under-
standing of our annotation scheme and require
annotators to obtain >85% score to qualify.
Further, we continuously evaluate annotators
during the task against artificially generated
factual errors to ensure continued high quality.

3. Fair Pay and Bonus: All workers are paid
50% more than the average American mini-
mum wage. We offer bonuses for scores of
60% or above on the continuous evaluation,
and for completing sets of 10 annotations.

Further details on our interface are added in §A.6

Inter-Annotator Agreement: We report inter-
annotator agreement in terms of Fleiss Kappa κ
(Fleiss, 1971). Following Durmus et al. (2020), we
report the percentage p of annotators that agree
with the majority class. Each datapoint in our
dataset corresponds to a sentence in a summary.
We compute agreement on all 4942 annotated sen-
tences. On the annotation of whether a sentence is
factual or not we obtain κ = 0.58, with p = 91%
of annotators agreeing with the majority class.
As a comparison, Durmus et al. (2020) reports
p = 76.7% average agreement. When all three
annotators agree that a sentence is not factual, we
obtain κ = 0.39 with p = 73.9% of annotators
agreeing with the majority class on the eight cat-
egory annotation (seven categories of errors and
“other”) which indicate a moderate agreement.

Agreement with Domain Expert: We measure
agreement between the majority class of the three

3We experimented with Likert scale evaluation of full sum-
maries in a pilot study. Such an annotation would not provide
precise information about where in the summary an error ap-
pears and also resulted in lower agreement. Hence, we opted
for sentence level judgements.

4We make the interface available for future human annota-
tions that follow our typology
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Figure 2: Proportion of summaries with factual errors based on collected annotations, with breakdown of the
categories of errors within. Full specification of categories of errors in Table 1.

annotators and one expert annotator on 201 data-
points (10 summaries from CNN/DM and 10 sum-
maries from XSum). We find a Kohen Kappa of
κ = 0.86 indicating nearly perfect agreement. Pre-
vious work found agreement of κ = 0.65 between
three crowd annotators and expert annotations of
factuality (Falke et al., 2019). Even with more than
nine workers, they report agreement with expert an-
notations of at most κ = 0.74. This improvement
validates the robustness of our annotation interface
and protocol which achieves higher agreement with
fewer workers.

4 Summarization Model Analysis

We evaluate the performance of different summa-
rization models in terms of factuality. Figure 2 vi-
sualizes the percentage of summaries with factual
errors for each category model and dataset, with
a breakdown of proportion of different error types
within each. A summary is considered incorrect
if it contains at least one sentence with a factual
error. A sentence contains a factual error if the
majority of annotators indicate the presence of an
error (here we do not consider annotations where
all three annotators disagree on the category).

How factual are generated summaries across
different datasets? From our annotations, we
observe that 60% of the summaries that were an-
notated contain at least one factual error. From
Figure 2, we see that the XSum dataset has more
factually incorrect model summaries (92%) than
CNN/DM (43%). It poses more significant chal-
lenges in terms of factuality as all models produce
> 80% summaries with factual errors, with the best
model (BertS2S) producing 83% wrong summaries.
On the CNN/DM dataset, while state-of-the-art pre-
trained models like BERTSum and BART have
better factuality numbers, the percentage of fac-
tually incorrect summaries is still high (23% for

BERTSum and 27% for BART). The proportion of
errors across different categories vary widely be-
tween the two datasets. For the CNN/DM dataset,
the most frequent classes of errors are Entity Er-
ror (EntE) and Coreference Error (CorefE). For the
XSum dataset they are Out of Article Error (OutE)
and Entity Error (EntE). Note that there are no dis-
course errors (CorefE, LinkE) in the XSum dataset
because the data only contains single sentence sum-
maries. Additionally, we observe that OthE makes
up a very small percentage (∼ 1%) of errors overall
showing that our typology is complete with most
errors being mapped to one of our existing cate-
gories.

How factual are generated summaries across
different models? From Figure 2, we observe
that LSTM based models like S2S and BUS gener-
ate many incorrect summaries. Interestingly, PGN
on CNN/DM has fewer summaries with factual
errors (26%) compared to S2S (74%) and BUS
(62%) potentially due to the extractive nature of
CNN/DM and the copy based objective in PGN.
PGN has been previously shown to produce highly
extractive summaries on CNN/DM copying large
portions of text (often entire sentences) (Gehrmann
et al., 2018; Balachandran et al., 2021). On the
more abstractive dataset XSum, PGN produces
> 96% factually incorrect summaries. We also
observe that large-scale pretrained models improve
factuality on both datasets, as also noted by Dur-
mus et al. (2020), with more significant gains on
CNN/DM. On CNN/DM, BERTSum and BART
display half the error rate of BUS. In contrast, on
XSum, BertS2S improves over non-pretrained mod-
els by∼ 10% only, showing that XSum poses a sig-
nificant challenge for factuality even in pretrained
models.

Different models also exhibit different distribu-
tions in the error categories. LSTM based mod-
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els have higher proportion of Grammatical Errors
(GramE) while transformer and CNN based models
have a lower proportion. For pretrained transformer
models, we observe that the improved error-rate on
the CNN/DM dataset can be attributed to improve-
ments at the frame level (PredE, EntE, CircE) while
the discourse level errors still remain a challenge.
Errors CorefE, LinkE account for a higher propor-
tion of errors in BERTSum and BART compared
to the other models.

5 Factuality Metric Evaluation

We propose the FRANK dataset resulting from the
human annotation study as a common benchmark
to assess different factuality metrics. We provide
an evaluation protocol of factuality metrics, which
controls for dataset biases, and a fine grained anal-
ysis of the strengths of each metric.

5.1 Benchmark

The FRANK benchmark provides a diverse dataset
for evaluating various metrics on their ability to
capture factual errors. Notably, our benchmark has
factual error diversity, as it covers all types of er-
rors described in the typology in §2, and data diver-
sity as it combines 2250 summaries from different
systems and datasets. Our annotations go beyond
binary labels of factuality on a summary by provid-
ing fine-grained category annotations for every sen-
tence. This allows us to determine how well each
metric can capture each type of error. Furthermore,
through averaging of sentence level judgements,
we can also obtain a factuality scores (0 to 1 range)
for a summary. To measure the degree that auto-
mated metrics capture a certain characteristic, we
compute their correlation with human judgements
and report Pearson correlation and Spearman rank
correlation along with their p-values.

We evaluate different classes of metrics against
the FRANK benchmark. We select four general
summarization metrics. ROUGE, BLEU, and Me-
teor are n-gram based metrics and computed with
respect to the reference summary. BERTScore
(Zhang et al., 2020) computes BERT (Devlin et al.,
2019) contextual embeddings on summary and
source article and measures distances between
matched embeddings. We select five metrics fo-
cused on factuality. As Goodrich et al. (2019), we
use a simple OpenIE (Banko et al., 2007) baseline.
This involves extracting OpenIE triples and match-
ing them through sentence embeddings (Reimers
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Figure 3: Correlation between metrics and human
judgement on subsets of data. The x and y axis rep-
resent the human judgement the metric scores respec-
tively. The red line is a linear regression fitted on full
data. Each dotted line is a linear regression fitted on
a model-dataset subset. Each colored point has coordi-
nates equal to average factuality judgement, and metric
score for its corresponding partition.

and Gurevych, 2019). FactCC (Kryscinski et al.,
2020) and DAE (Goyal and Durrett, 2020) are
entailment based metrics. FactCC operates with
sentences as claims, while DAE uses dependency
level entailment. FEQA (Durmus et al., 2020) and
QAGS (Wang et al., 2020) are two question answer-
ing and generation metrics (QGA). More details on
the differences between these metrics is in §A.2.

5.2 Controlling for Dataset Biases

Since our benchmark contains diverse summaries
from different datasets and models, dataset biases
can hamper accurate reporting. In Figure 3, we
visually show correlations between two factuality
metrics (FEQA and FactCC) and human judgement
on the entire data and on partitions of the data. For
both metrics, we notice that the slope (an unscaled
measure of correlation) of the line fitted through
the entire data (red line) is significantly larger. In
FEQA, the dotted lines (fitted on subsets of the data
of each model and dataset) are almost horizontal.
This likely indicates the presence of a confound-
ing variable associated with the properties of each
system and dataset. This can lead to false mea-
sures of high correlation if not accounted for. To
address this, we suggest to control for confounding
variables using partial correlations. We include de-
tails on partial correlations in the Appendix. In this
case, both the system and the dataset are taken to
be confounding variables.

5.3 Results

In Table 2, we report the partial Pearson correlation
and Spearman rank correlation coefficients with
human judgements for each metric, along with their
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All data CNN/DM XSum

Metrics
Pearson Spearman Pearson Spearman Pearson Spearman
ρ p-val r p-val ρ p-val r p-val ρ p-val r p-val

BLEU 0.10 0.00 0.07 0.00 0.08 0.01 0.08 0.01 0.14 0.00 0.20 0.00
METEOR 0.14 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.15 0.00 0.10 0.00
Rouge-1 0.14 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.15 0.00 0.09 0.01
Rouge-2 0.12 0.00 0.08 0.00 0.08 0.00 0.07 0.01 0.17 0.00 0.14 0.00
Rouge-L 0.13 0.00 0.09 0.00 0.11 0.00 0.09 0.00 0.16 0.00 0.10 0.00

OpenIE 0.11 0.00 0.02 0.36 0.16 0.00 0.15 0.00 0.00 0.93 -0.45 0.00
BERTS P -0.02 0.35 -0.01 0.69 0.00 0.95 -0.01 0.65 -0.04 0.25 0.02 0.57
BERTS R -0.03 0.14 -0.05 0.03 -0.04 0.18 -0.06 0.04 -0.03 0.34 0.02 0.58
BERTS F1 -0.03 0.16 -0.03 0.13 -0.02 0.43 -0.05 0.10 -0.04 0.26 0.02 0.53
FEQA 0.00 0.83 0.01 0.60 -0.01 0.76 -0.01 0.72 0.02 0.45 0.07 0.04
QAGS 0.06 0.00 0.08 0.00 0.13 0.00 0.09 0.00 -0.02 0.48 0.01 0.65
DAE 0.16 0.00 0.14 0.00 0.25 0.00 0.24 0.00 0.04 0.16 0.28 0.00
FactCC 0.20 0.00 0.30 0.00 0.36 0.00 0.33 0.00 0.07 0.02 0.25 0.00

Table 2: Partial Pearson correlation and Spearman rank correlation coefficients and p-values between human judge-
ments and metrics scores. Comparisons should be made along with the pairwise Williams test found in Table 4.

p-values indicating statistical significance.

How do different metrics correlate with human
judgements? From Table 2 we observe that all
metrics exhibit low correlations with human judge-
ments of factuality. The best metric overall is
FactCC with 0.20 Pearson and 0.30 Spearman cor-
relation. Interestingly, we observe that general
summarization metrics BLEU, Rouge, and ME-
TEOR, and the OpenIE baseline have statistically
significant correlations with factuality, close to
FactCC (ρ = 0.14 for Rouge-1 and METEOR ver-
sus ρ = 0.20 for FactCC). The entailment metrics
(FactCC and DAE) have the two highest correla-
tions and are statistically significant. The two QGA
metrics have lower overall correlation. FEQA’s cor-
relation is not statistically significant. QAGS has
low, but significant correlation of ρ = 0.06.

How well do different metrics capture errors in
different datasets? In Figure 4, we observe that
entailment metrics have significantly higher par-
tial Pearson correlation on the CNN/DM dataset
than XSum where their correlation is reduced by
a factor of four. QAGS and the OpenIE baseline
have similar behavior. This suggests that these met-
rics capture the error types from CNN/DM better
that those from XSum. Specifically, XSum has
uniquely high Out of Article (OutE) errors which
they might not capture well. This also highlights
the importance of data diversity in building and
benchmarking factuality metrics to avoid overfit-

ting to certain types of errors.

How well do different metrics capture errors
from pretrained and non-pretrained models?
On the CNN/DM dataset we observe that entail-
ment metrics and QAGS perform significantly bet-
ter on non-pretrained models. This indicates that
the artificial factual errors on which entailment met-
rics are trained on are closest to the mistakes that
non-pretrained models make. This also suggests
that the errors made by pretrained models might be
more difficult to capture by these metrics. These
trends are less clear on the XSum dataset which we
again attribute to high Out of Article (OutE) errors
in the pretrained and non-pretrained models (ref
Figure 2)

5.4 Error Analysis

Figure 4 shows partial Pearson correlation on six
subsets of the data. To understand capabilities of
metrics across the broad categories of errors (se-
mantic frame errors, discourse errors, and content
verifiability errors) we perform an ablation study.
For each category, we compute the variation in
partial correlation with errors from that category
omitted. In Figure 5, we visualize the influence of
a given type of error using the variation for each
metric and category. A higher positive bar indicates
that the error type was a significant contributer to
the overall correlation (or metric highly correlates
with error) causing the correlation without it to
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Figure 4: Partial Pearson correlation on different partitions of the data. Entailment metrics have highest correlation
on pretrained models in the CNN/DM dataset. Their performance degrades significantly on XSum.
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Figure 5: Variation in partial Pearson correlation when
omitting error types. Higher variation indicates greater
influence of an error type in the overall correlation.

drop.

General Summarization metrics Unsurpris-
ingly, we observe that Rouge L is best correlated
with content verifiability errors (which contains
Out of Article Errors) as n-gram matches detect
them. Rouge L has negative correlation with se-
mantic frame errors and low correlation with dis-
course level errors indicating that n-gram matching
fails to capture them. We observe that OpenIE is
more correlated with semantic frame errors. The
metric matches entities and verifies the predicate
that relates them and hence is able to capture se-
mantic frame errors. BertScore has low correla-
tion overall, being more correlated with content
verifiability errors and negatively correlated with
discourse errors.

QGA metrics Both QGA metrics have negative
correlation with discourse errors suggesting that
QGA metrics are not able to capture coreference
errors or discourse link errors potentially due to
the entity oriented questions in their training data.
FEQA additionally is also negatively correlated
with semantic frame errors and has low positive
correlation with content verifiability errors. In con-
trast QAGS is best correlated with semantic frame
errors.

Entailment metrics Both entailment metrics
correlate well with semantic frame and content
verifiability errors. DAE has the highest correla-

tion of all metrics with discourse errors suggest-
ing that entailment at the dependency level can
help model discourse errors (CorefE and LinkE).
FactCC is nearly uncorrelated in this category, indi-
cating that artificially generated factual errors need
to go beyond simple pronoun swaps to train mod-
els to capture discourse errors. FactCC had best
overall partial correlation which can be attributed
to FactCC being able to capture semantic frame
and content verifiability errors well.

6 Related Work

Kryscinski et al. (2019) and Fabbri et al. (2020) find
that standard n-gram based metrics have low cor-
relation with human judgements of factuality. Mo-
tivated by this, several automated metrics falling
in two paradigms were proposed to improve the
evaluation of factuality.

Entailment Classification Goodrich et al.
(2019); Kryscinski et al. (2020); Maynez et al.
(2020); Goyal and Durrett (2020) model factuality
as entailment classification breaking down the
summary into smaller units, such as sentences,
which are verified against the original article. How-
ever, modeling factuality as a classification task
requires supervision on factual and hallucinated
data. FactCC (Kryscinski et al., 2020) is trained on
the CNN/DM dataset augmented with four types
of artificial mistakes as supervision.

Question Generation and Answering (QGA)
FEQA (Durmus et al., 2020) and QAGS (Wang
et al., 2020) are two metrics which reduce factual-
ity evaluation to question generation and answering.
These methods use a question generation model to
obtain questions from the output summary and a
question answering model to answer them, sepa-
rately using the article and the output summary.

Prior Efforts on Factuality Annotations of Sum-
maries Fabbri et al. (2020) and Maynez et al.
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(2020) have collected annotations on the CNN/DM
and XSum dataset respectively. In this work we
cover both datasets to ensure greater data diversity.
Other efforts (Kryscinski et al., 2020; Wang et al.,
2020; Durmus et al., 2020) were smaller in scale
Durmus et al. (2020) and Kryscinski et al. (2020)
annotated 200 and 503 sentences while Wang et al.
(2020) annotated 470 summaries (we collect judge-
ments on 2250 summaries). Crucially, all previous
efforts portray factuality as a binary label without
variations in degree or type of factual errors.

7 Conclusion

In this work we provide a linguistically grounded
typology of factual errors which we use to collect
FRANK, a dataset of human annotations of 2250
summaries covering both CNN/DM and XSum
datasets. We use FRANK to assess the factual-
ity of summarization systems and benchmark re-
cently proposed factuality metrics highlighting the
types of errors they can capture. With the FRANK
benchmark we have started moving away from a
summary-level binary understanding of factuality.

8 Ethical Considerations

We have collected crowd annotations using the
Amazon Mechanical Turk platform. Workers were
paid 50% more than the average American mini-
mum wage and offered additional bonuses as an
incentive to maintain high quality work. No in-
formation about the workers will be released and
worker IDs will be anonymized.
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A Appendices

A.1 Model details

We provide details of the models used in the human
evaluation task to construct FRANK.

A.1.1 CNN/DM datset

On the CNN/DM (Hermann et al., 2015) dataset we
use five different models. We use the preprocessed
model outputs provided by Fabbri et al. (2020).
S2S an LSTM based Sequence-to-Sequence with
attention model (Rush et al., 2015)
PGN an LSTM based Pointer-Generator Network
with Copy Mechanism (See et al., 2017)
BUS Bottom-Up Summarization (Gehrmann
et al., 2018) - a Pointer-Generator model with a
data-efficient content selector to over-determine
phrases in a source document that should be part
of the summary.
BERTSum summarization with pretrained en-
coders (Liu and Lapata, 2019)
BART (Lewis et al., 2020)

A.1.2 XSum dataset

On the XSum dataset (Narayan et al., 2018) we
use four different models. All model outputs for
this dataset are taken from (Maynez et al., 2020)
PGN pointer-generator network from above (See
et al., 2017)
TConvS2S Topic-Aware Convolution Sequence-
to-Sequence (Narayan et al., 2018)
TranS2S A randomly initialized Transformer
(Vaswani et al., 2017) encoder-decoder model
fine-tuned on the XSum dataset
BERTS2S Transformer encoder-decoder model
with parameter sharing (Rothe et al., 2020) where
both encoder and decoder are initialized with the
BERT-Base checkpoints (Devlin et al., 2019) and
fine-tuned on XSum

A.2 Metrics

In this work we compare the following five metrics.

BERTScore (Zhang et al., 2020): We report
BERTScore Precision, Recall, and F1 between the
model output and the reference summary. Our ex-
periments show that recall and F1 do not correlate
as well with the human judgement of factuality for
BERTScore.

OpenIE : We use a simple baseline based on
OpenIE (Banko et al., 2007) and Sentence-BERT
(Reimers and Gurevych, 2019). We use OpenIE
(Banko et al., 2007) to extract subject-relation-
object triplets from the article, reference summary,
and model generated summary. We consider binary
relations only and thus use the first two arguments
of the relation.5 After replacing corefering entity
mentions with the main mention of the cluster6,
we use BERT base Sentence-BERT (Reimers and
Gurevych, 2019) to obtain embeddings of each
element of the subject-relation-object triplets ex-
tracted by OpenIE. Two relation triplets are con-
sidered to be equivalent if their embeddings have
cosine similarity higher than a threshold for all
three elements of the triplet (we use 0.6 as thresh-
old after a grid search between 0.5 and 0.9 on data
from our pilot study).

FEQA (Durmus et al., 2020): FEQA is a ques-
tion generation and answering (QGA) factuality
metric. We relied on the original implementation
of the authors for this metric as well as their pre-
trained model weights. We used the full summary
to generate questions and we answer them both
using the summary and article text.

QAGS (Wang et al., 2020): QAGS is another
QGA metric. The authors kindly provided outputs
on the FRANK benchmark generating 10 questions
for each summary.

DAE (Goyal and Durrett, 2020): DAE is an en-
tailment classification metric that operates on de-
pendencies. The authors kindly provided outputs
on the FRANK benchmark. We note that the model
was trained with a max length of 128 after concate-
nating both article and summary. The CNN/DM
articles can be significantly longer, thus the results
reported for this metric involve truncating parts of
the article.

FactCC (Kryscinski et al., 2020): FactCC is an
entailment classification metric. We use the sen-
tences of the model generated summary as input
claims to the entailment classifier FactCC. For each
sentence we obatain a binary factuality label. We
take the average of these labels as the factuality
score for the summary.

5We use the model and implementation from (Stanovsky
et al., 2018) for OpenIE extraction.

6https://github.com/huggingface/
neuralcoref

https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref
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A.3 Summarization System Analysis Details

See Table 1 for more details.

A.4 Hotelling Williams Test

The correlation numbers in Table 2 should be
read in combination with the pairwise Hotelling-
Williams test Graham (2015) results in Table 4.
The highlighted numbers indicate pairs of models
for which the difference in correlation is statisti-
cally significant. We use partial correlations to run
the test and compute metric-metric correlations.

A.5 Mutual Exclusiveness of typology:

To understand if our annotations are mutually ex-
clusive, we study cases where two annotators agree
on the error category (majority class) and one dis-
agrees (minority class). In Figure 6, we report the
confusion between majority and minority classes.
For each category as majority, we report the distri-
bution of other categories as minority.

We observe that all categories with the exception
of OutE are frequently confused with NE which
stands for no factual error. This primarily due to
the noise in the annotations collected by crowd
workers. However, for category CorefE (corefer-
ence errors) the confusion is significantly higher
with 69.7%. We have noticed the same trend in
practice tutorials: crowd annotators easily overlook
situations where the correct pronoun is used (in
terms of number and gender) but no antecedent ap-
pears in the summary. Intuitively after reading the
article, unless paying particular attention, it is easy
to subconsciously associate referring expressions
with entities in the article without noticing their
absence in the summary. The error persists despite
stating the scenario explicitly in the instructions.
This indicates an issue with annotators rather than
annotation scheme.

The other trend that we observe is that categories
PredE (wrong relation) and CircE (wrong modi-
fier) are often confused with OutE (outside infor-
mation). In our definition of OutE, outside infor-
mation corresponds to the presence of entities not
mentioned in the article or relations that cannot be
verified based on the article. The confusion with
PredE indicates that annotators can have differ-
ent judgements on whether a relation is verifiable
based on the article. Similarly, but to a lesser de-
gree, wrong circumstantial information might be
considered unverifiable given the article.

Finally, there were relatively few discourse con-
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Figure 6: Confusion matrix of different types of errors.
Entry at row i, column j corresponds to the frequency
of annotations that have Fi as the majority class and for
which disagreeing annotator selected Fj.

text errors LinkE, so the analysis is less statisti-
cally significant. Discourse context errors corre-
spond to using a wrong connectors between differ-
ent facts, for example different logical links. These
were confused with PredE and EntE (wrong rela-
tion). The distinction between the two errors lies
in the confusion between what an entity and a fact
are, since PredE occurs at the frame level while
LinkE at the discourse level. Note, that there was
no confusion in the other direction (PredE being
confused with LinkE).

A.6 Annotation Setup Details

Below are more details on the annotation set up.

Clear Instructions We explain the annotation
scheme without assuming linguistic knowledge and
give several examples for each category. We also
provide a practival ste-by-step to determine the
category of the errors.

Training Every first-time user has to go through
a tutorial which exercises the comprehension of
the annotation scheme. The tutorial presents an
article and several hand-crafted summaries of the
article that need to be annotated. It is designed to
be very similar to the actual annotation task and to
contain at least one occurrence of each category of
error. Feedback is provided when a user selects the
wrong category of error. This tutorial is not used
to evaluate users, only to help them understand the
different categories in a practical setting.
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Incorrect F1 F2 F3 F4 F5 F6 F7 F8
Seq2Seq 74.8% 11% 46% 13% 15% 5% 14% 24% 0%
PGN 26.5% 4% 46% 0% 39% 0% 4% 21% 0%
Bottom Up 62.6% 6% 56% 6% 17% 9% 6% 21% 4%
BERTSum 27.2% 10% 37% 10% 23% 3% 13% 10% 0%
BART 23.8% 4% 25% 8% 33% 4% 17% 17% 4%
PGN 96.9% 16% 28% 11% 1% 1% 34% 13% 0%
TConvS2s 89.8% 10% 24% 18% 1% 0% 45% 1% 0%
TranS2S 96.9% 10% 32% 15% 0% 0% 44% 1% 0%
BERTS2S 83.7% 10% 25% 23% 0% 0% 38% 3% 0%
All models 60.0% 10% 36% 13% 10% 3% 27% 12% 1%

Table 3: Proportion of summaries that include factual errors, with breakdown of the categories of errors according
to our human study. F8 corresponds to errors that are not captured by our typology. Full specification of categories
of errors in Table 1.

B MET R-1 R-L BS-P OpIE FEQA QAGS DAE FCC

BLEU - 0.83 0.77 0.85 0.04 0.26 0.03 -0.01 0.05 0.06
METEOR 0.83 - 0.87 0.85 0.04 0.28 0.02 -0.02 0.08 0.07
Rouge-1 0.77 0.87 - 0.89 0.04 0.21 0.01 -0.03 0.09 0.07
Rouge-L 0.85 0.85 0.89 - 0.03 0.21 0.01 -0.04 0.08 0.07
BERTS P 0.04 0.04 0.04 0.03 - 0.00 0.00 0.02 -0.02 -0.04
OpenIE 0.26 0.28 0.21 0.21 0.00 - -0.01 0.09 0.10 0.15
FEQA 0.03 0.02 0.01 0.01 0.00 -0.01 - -0.01 0.03 0.04
QAGS -0.01 -0.02 -0.03 -0.04 0.02 0.09 -0.01 - 0.08 0.09
DAE 0.05 0.08 0.09 0.08 -0.02 0.10 0.03 0.08 - 0.10
FactCC 0.06 0.07 0.07 0.07 -0.04 0.15 0.04 0.09 0.10 -

Table 4: Pearson correlation between metrics. If value is in green, the metrics are not the same significant to the
0.05 threshold with the Hotelling Williams test.
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Qualification test To participate in the annota-
tion, users have to obtain a minimum score of 85%
on a qualification test. The test comprehends an
article and several summaries to be annotated. It
contains at least one instance of each category of
error. We use this test to verify that users can ef-
fectively recognize error categories. This ensures
that users are able to perform the task correctly,
but does not enforce that high standards of work
quality are maintained throughout the annotation
task.

Continuous evaluation We continuously evalu-
ate a user by verifying that they read the text. For
every article that is annotated, we ask to identify
one of three entities that was not present in the
article. We also monitor the annotations on artifi-
cially altered sentences that are randomly inserted
at the end of summaries. Wrong sentences contain
one of the following errors: negation of declarative
sentences (PredE), pronoun swap (CorefE), sample
sentence from another article (OutE), word scram-
bling (GramE). We immediately block users that
fail the entity test or perform poorly on these sen-
tences (less than 50% of correct answers on altered
sentences) to ensure high quality annotations.

Bonuses All workers are paid 50% more than
the average American minimum wage but we offer
bonuses for scores of 60% or above on the continu-
ous evaluation, and for completion a sequences of
10 annotations. We observe that bonuses increase
the percentage of users with high continuous eval-
uation scores (<10% blocked users with bonuses
versus 30% without bonuses).

A.7 Correlation with Confounding Variables
Partial correlation measures the degree of associa-
tion between two random variables, with the effect
of a set of controlling random variables removed.
Although we are unaware of the exact confound-
ing variable, we use the categorical variable C of
which system and dataset the summary was gener-
ated from.

Let Mk represent the output of metric k on the
summaries. To compute partial correlation between
Mk and human judgements H which we treat as
random variables, we solve the two regression prob-
lems Mk|C = c ∼ wMk

c and H|C = c ∼ wHc
and get the residuals:

∆Mk = Mk − ŵMk
C

∆H = Mk − ŵHC

And then calculate the correlation between these
residuals ρ(∆Mk,∆H) instead of the original ran-
dom variables. Since partial correlations are proper
correlations between random variables, we can ap-
ply statistical significance tests without any modifi-
cation.

A.8 Annotation Interface
We include screenshots of the annotation interface
which we will make available.
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Figure 7: Instructions can be toggled.

Figure 8: The sentences being annotated is highlighted in yellow. Relevant text is underlined in the article plain
text.
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Figure 9: After selecting that the sentence is not factual annotators choose the category of error.

Figure 10: Articles web pages are provided.
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Figure 11: Entity question to ensure annotators read the text.


