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Abstract
The intensity relationship that holds between
scalar adjectives (e.g., nice < great < wonder-
ful) is highly relevant for natural language in-
ference and common-sense reasoning. Previ-
ous research on scalar adjective ranking has
focused on English, mainly due to the avail-
ability of datasets for evaluation. We intro-
duce a new multilingual dataset in order to pro-
mote research on scalar adjectives in new lan-
guages. We perform a series of experiments
and set performance baselines on this dataset,
using monolingual and multilingual contextual
language models. Additionally, we introduce
a new binary classification task for English
scalar adjective identification which examines
the models’ ability to distinguish scalar from
relational adjectives. We probe contextualised
representations and report baseline results for
future comparison on this task.

1 Introduction

Scalar adjectives relate the entities they modify to
specific positions on the evoked scale (e.g., GOOD-
NESS, TEMPERATURE, SIZE): A wonderful view
is nicer than a good view, and one would proba-
bly prefer a delicious to a tasty meal. But not all
adjectives express intensity or degree. Relational
adjectives are derived from nouns (e.g., wood→
wooden, chemistry→ chemical), have no antonyms
and serve to classify nouns (e.g., a wooden table, a
chemical substance) (McNally and Boleda, 2004).
The distinction between scalar and relational ad-
jectives is an important one. Identifying adjectives
that express intensity can serve to assess the emo-
tional tone of a given text, as opposed to words that
mostly contribute to its descriptive content. Addi-
tionally, estimating the intensity of a scalar adjec-
tive is useful for textual entailment (wonderful |=
good but good 6|= wonderful), product review anal-
ysis and recommendation systems, emotional chat-
bots and question answering (de Marneffe et al.,
2010).

DEMELO

EN dim < gloomy < dark < black
FR terne < sombre < foncé < noir
ES sombrío < tenebroso < oscuro < negro
EL αμυδρός || αχνός < μουντός < σκοτεινός< μαύρος

WILKINSON

EN bad < awful < terrible < horrible
FR mauvais < affreux < terrible < horrible
ES malo < terrible < horrible < horroroso
EL κακός < απαίσιος < τρομερός < φρικτός

Table 1: Example translations from each dataset. “||”
indicates adjectives at the same intensity level (ties).

Work on scalar adjectives has until now evolved
around pre-compiled datasets (de Melo and Bansal,
2013; Taboada et al., 2011; Wilkinson and Oates,
2016; Cocos et al., 2018). Reliance on external
resources has also restricted research to English,
and has led to the prevalence of pattern-based and
lexicon-based approaches. Recently, Garí Soler
and Apidianaki (2020) showed that BERT represen-
tations (Devlin et al., 2019) encode intensity rela-
tionships between English scalar adjectives, paving
the way for applying contextualised representations
to intensity detection in other languages.1

In our work, we explicitly address the scalar ad-
jective identification task, overlooked until now due
to the focus on pre-compiled resources. We further-
more propose to extend scalar adjective ranking
to new languages. We make available two new
benchmark datasets for scalar adjective identifica-
tion and multilingual ranking: (a) SCAL-REL, a
balanced dataset of relational and scalar adjectives
which can serve to probe model representations
for scalar adjective identification; and (b) MULTI-
SCALE, a scalar adjective dataset in French, Span-
ish and Greek. In order to test contextual models

1de Melo and Bansal (2013) discuss the possibility of a
pattern-based multilingual approach which would require the
translation of English patterns (e.g., “X but not Y”) into other
languages.
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on these two tasks, the adjectives need to be seen
in sentential context. We thus provide, alongside
the datasets, sets of sentences that can be used
to extract contextualised representations in order
to promote model comparability. We conduct ex-
periments and report results obtained with simple
baselines and state-of-the-art monolingual and mul-
tilingual models on these new benchmarks, opening
up avenues for research on sentiment analysis and
emotion detection in different languages.2

2 The Datasets

2.1 The MULTI-SCALE Dataset
We translate two English scalar adjective datasets
into French, Spanish and Greek: DEMELO con-
sists of 87 hand crafted half-scales3 (de Melo and
Bansal, 2013) and WILKINSON contains 12 full
scales (Wilkinson and Oates, 2016). We use the
partitioning of WILKINSON into 21 half-scales pro-
posed by Cocos et al. (2018). In what follows, we
use the term “scale” to refer to half-scales.

The two translators have (near-)native profi-
ciency in each language. They were shown the
adjectives in the context of a scale. This context
narrows down the possible translations for polyse-
mous adjectives to the ones that express the mean-
ing described inside the scale. For example, the
Spanish translations proposed for the adjective hot
in the scales {warm < hot} and {flavorful < zesty <
hot || spicy} are caliente and picante, respectively.
Additionally, the translators were instructed to pre-
serve the number of words in the original scales
when possible. In some cases, however, they pro-
posed alternative translations for English words, or
none if an adequate translation could not be found.
As a result, the translated datasets have a different
number of words and ties. Table 1 shows examples
of original English scales and their French, Spanish
and Greek translations. Table 2 contains statistics
on the composition of the translated datasets.

In order to test contextual models on the ranking
task, we collect sentences containing the adjectives
from OSCAR (Suárez et al., 2019), a multilingual
corpus derived from CommonCrawl. French, Span-
ish and Greek are morphologically rich languages
where adjectives need to agree with the noun they

2Our code and data are available at https://github.
com/ainagari/scalar_adjs.

3A full scale (e.g., {hideous > ugly, pretty < beautiful <
gorgeous} can be split into two half scales which contain
antonyms, often expressing different polarity {hideous > ugly}
and {pretty < beautiful < gorgeous}.

# unordered pairs # adjectives

D
E

M
E

L
O EN 548 (524) 339 (293)

FR 590 (567) 350 (303)
ES 448 (431) 313 (275)
EL 557 (535) 342 (295)

W
IL

K
IN

S
O

N EN 61 (61) 59 (58)
FR 67 (67) 61 (60)
ES 59 (59) 58 (56)
EL 68 (68) 61 (58)

Table 2: Composition of the translated datasets. In
parentheses, we give the number of unique adjectives
and pairs.

modify. In order to keep the method resource-light,
we gather sentences that contain the adjectives in
their unmarked form.

For each scale s, we randomly select ten sen-
tences from OSCAR where adjectives from s occur.
Then, we generate additional sentences through lex-
ical substitution. Specifically, for every sentence
(context) c that contains an adjective ai from scale
s, we replace ai with ∀ aj ∈ s where j = 1...|s|
and j 6= i. This process results in a total of |s| *
10 sentences per scale and ensures that ∀ a ∈ s is
seen in the same ten contexts. For English, we use
the ukWaC-Random set of sentences compiled by
Garí Soler and Apidianaki (2020) which contains
sentences randomly collected from the ukWaC cor-
pus (Baroni et al., 2009).

2.2 The SCAL-REL Dataset

SCAL-REL contains scalar adjectives from the
DEMELO, WILKINSON and CROWD (Cocos et al.,
2018) datasets (i.e. 79 additional half-scales com-
pared to MULTI-SCALE). We use all unique scalar
adjectives in the datasets (443 in total), and sub-
sample the same number of relational adjectives,
which are labelled with the pertainym relationship
in WordNet (Fellbaum, 1998). There are 4,316
unique such adjectives in WordNet, including many
rare or highly technical terms (e.g., birefringent,
anaphylactic).4 Scalar adjectives in our datasets
are much more frequent than these relational adjec-
tives; their average frequency in Google Ngrams
(Brants and Franz, 2006) is 27M and 1.6M, respec-
tively. We balance the relational adjectives set by
frequency, by subsampling 222 frequent and 221
rare adjectives. We use the mean frequency of the

4Note that the WordNet annotation does not cover all per-
tainyms in English (for example, frequent words such as ironic
or seasonal are not marked with this relation).

https://github.com/ainagari/scalar_adjs
https://github.com/ainagari/scalar_adjs
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4,316 relational adjectives in Google Ngrams as a
threshold.5 We propose a train/dev/test split of the
SCAL-REL dataset (65/10/25%), observing a bal-
ance between the two classes (scalar and relational)
in each set. To obtain contextualised representa-
tions, we collect for each relational adjective ten
random sentences from ukWaC. For scalar adjec-
tives, we use the ukWaC-Random set of sentences
(cf. Section 2.1).

3 Multilingual Scalar Adjective Ranking

3.1 Methodology

Models We conduct experiments with state-of-
the-art contextual language models and several
baselines on the MULTI-SCALE dataset. We use
the pre-trained cased and uncased multilin-
gual BERT model (Devlin et al., 2019) and re-
port results of the best variant for each language.
We also report results obtained with four mono-
lingual models: bert-base-uncased (De-
vlin et al., 2019), flaubert_base_uncased
(Le et al., 2020), bert-base-spanish-wwm-
uncased (Cañete et al., 2020), and bert-base-
greek-uncased-v1 (Koutsikakis et al., 2020).
We compare to results obtained using fastText static
embeddings in each language (Grave et al., 2018).

For a scale s, we feed the corresponding set of
sentences to a model and extract the contextualised
representations for ∀ a ∈ s from every layer. When
an adjective is split into multiple BPE units, we av-
erage the representations of all wordpieces (we call
this approach “WP”) or all pieces but the last one
(“WP-1”). The intuition behind excluding the last
WP is that the ending of a word often corresponds
to a suffix with morphological information.

The DIFFVEC method We apply the adjective rank-
ing method proposed by Garí Soler and Apidianaki
(2020) to our dataset, which relies on an intensity
vector (called

−−−→
dV ec) built from BERT representa-

tions. The method yields state-of-the art results
with very little data; this makes it easily adaptable
to new languages. We build a sentence specific
intensity representation (

−−−→
dV ec) by subtracting the

vector of a mild intensity adjective, amild (e.g.,
smart), from that of aext, an extreme adjective on
the same scale (e.g., brilliant) in the same context.

5Nine scalar adjectives from our datasets are also annotated
as pertainyms in WordNet (e.g., skinny, microscopic) because
they are denominal. We consider these adjectives to be scalar
for our purposes since they clearly belong to intensity scales.

We create a dV ec representation from every sen-
tence available for these two reference adjectives,
and average them to obtain the global

−−−→
dV ec for

that pair. Garí Soler and Apidianaki (2020) showed
that a single positive adjective pair (DIFFVEC-1
(+)) is enough for obtaining highly competitive
results in English. We apply this method to the
other languages using the translations of a positive
English (amild, aext) pair from the CROWD dataset:
perfect-good.6

Additionally, we learn two dataset specific rep-
resentations: one by averaging the

−−−→
dV ec’s of all

(aext, amild) pairs in WILKINSON that do not ap-
pear in DEMELO (DIFFVEC-WK), and another one
from pairs in DEMELO that are not in WILKINSON

(DIFFVEC-DM). We rank adjectives in a scale by
their cosine similarity to each

−−−→
dV ec: The higher

the similarity, the more intense the adjective is.

Baselines We compare our results to a frequency
and a polysemy baseline (FREQ and SENSE). These
baselines rely on the assumption that low inten-
sity words (e.g., nice, old) are more frequent and
polysemous than their extreme counterparts (e.g.,
awesome, ancient). Extreme adjectives often limit
the denotation of a noun to a smaller class of refer-
ents than mild intensity adjectives (Geurts, 2010).
For example, an “awesome view” is more rare than
a “nice view”. This assumption has been confirmed
for English in Garí Soler and Apidianaki (2020).
FREQ orders words in a scale according to their fre-
quency: Words with higher frequency have lower
intensity. Given the strong correlation between
word frequency and number of senses (Zipf, 1945),
we also expect highly polysemous words (which
are generally more frequent) to have lower intensity.
This is captured by the SENSE baseline which or-
ders the words according to their number of senses:
Words with more senses have lower intensity.

Frequency is taken from Google Ngrams for En-
glish, and from OSCAR for the other three lan-
guages. The number of senses is retrieved from
WordNet for English, and from BabelNet (Nav-
igli and Ponzetto, 2012) for Spanish and French.7

For adjectives that are not present in BabelNet, we
use a default value which corresponds to the aver-
age number of senses for adjectives in the dataset
(DEMELO or WILKINSON) for which this informa-
tion is available. We omit the SENSE baseline for

6FR: parfait-bon, ES: perfecto-bueno, EL: τέλειος-καλός.
7We omit Named Entities from BabelNet entries (e.g.,

names of TV shows or locations).
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EN FR ES EL

Mono WP-1 Mono WP-1 Mono WP-1 Mono WP-1
P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg

D
M DV-1 (+) .6519 .4359 .4969 .6103 .3693 .3963 .6589 .3819 .4079 .5642 .2381 .2712

DV-WK .5866 .2676 .3006 .5151 .1671 .1667 .6707 .4047 .4077 .5892 .2942 .3252

W
K DV-1 (+) .8521 .7051 .8021 .6126 .2576 .2156 .8147 .6277 .8039 .6188 .2828 .2568

DV-DM .91810 .83610 .85910 .6427 .3222 .3922 .7806 .5596 .6846 .75010 .56410 .58610
Multi WP-1 Multi WP Multi WP Multi (unc) WP

D
M DV-1 (+) .6094 .3464 .3894 .5597 .2607 .3117 .6143 .2913 .2685 .5179 .1399 .1639

DV-WK .5443 .2083 .2414 .51710 .17010 .17910 .61812 .30112 .30312 .5399 .1819 .2079

W
K DV-1 (+) .8366 .6726 .7176 .6723 .3823 .3803 .7973 .5933 .6393 .66210 .3889 .4239

DV-DM .8367 .6727 .7667 .7016 .4416 .4762 .69510 .39010 .51110 .6915 .4475 .5025

Static models and baselines

D
M

DV-1 (+) .637 .407 .458 .573 .288 .275 .656 .383 .421 .575 .266 .273
DV-WK .599 .330 .406 .454 .033 -.006 .616 .298 .315 .549 .205 .217
FREQ .575 .271 .283 .602 .346 .345 .585 .227 .239 .596 .306 .334

SENSE .493 .163 .165 .512 .229 .185 .516 .139 .151 - - -

W
K

DV-1 (+) .787 .574 .663 .582 .197 .152 .695 .390 .603 .706 .464 .566
DV-DM .852 .705 .783 .642 .325 .280 .712 .424 .547 .691 .447 .451
FREQ .754 .508 .517 .567 .167 .148 .576 .153 .382 .676 .417 .427

SENSE .721 .586 .575 .567 .255 .340 .644 .411 .456 - - -

Table 3: Results of the DIFFVEC (DV) method with monolingual (Mono) and multilingual (Multi) contextual
models. Comparison to static embeddings and baselines per language. Subscripts denote the best layer. The
best result obtained for each dataset in each language is indicated in boldface. For all languages but Greek, the
multilingual model is cased.

Greek due to low coverage.8

3.2 Evaluation

We use evaluation metrics traditionally used for
ranking evaluation (de Melo and Bansal, 2013;
Cocos et al., 2018): Pairwise accuracy (P-ACC),
Kendall’s τ and Spearman’s ρ. Results on this task
are given in Table 3. Monolingual models perform
consistently better than the multilingual model, ex-
cept for French. We report the best wordpiece
approach for each model: WP-1 works better with
all monolingual models and the multilingual model
for English. Using all wordpieces (WP) is a bet-
ter choice for the multilingual model in other lan-
guages. We believe the lower performance of WP-1
in these settings to be due to the fact that the multi-
lingual BPE vocabulary is mostly English-driven;
this naturally results in highly arbitrary partition-
ings in these languages (e.g., ES: fantástico→ fant-
ástico; EL: γιγάντιος (gigantic)→γ-ι-γ-άν-τιος).
Tokenisers of the monolingual models instead tend
to split words in a way that more closely reflects the
morphology of the language (e.g., ES: fantástico→
fantás-tico; EL: γιγάντιος→γιγά-ντι-ος. Detailed
results are found in Appendix A.

8Only 47% of the Greek adjectives have a BabelNet entry,
compared to 95.7% and 88.9% for Spanish and French. All
English adjectives are present in WordNet.

We observe that DIFFVEC-1 (+) yields compara-
ble and sometimes better results than DIFFVEC-DM

and DIFFVEC-WK, which are built from multiple
pairs. This is important especially in the multilin-
gual setting, since it shows that just one pair of
adjectives is enough for obtaining good results in
a new language. The best layer varies across mod-
els and configurations. The monolingual French
and Greek models generally obtain best results in
earlier layers. A similar behaviour is observed
for the multilingual model for English to some ex-
tent, whereas for the other models performance
improves in the upper half of the Transformer net-
work (layers 6-12). This shows that the semantic
information relevant for adjective ranking is not
situated at the same level of the Transformer in dif-
ferent languages. We plan to investigate this finding
further in future work. The lower results in French
can be due to the higher amount of ties present in
the datasets compared to other languages.9 The
baselines obtain competitive results showing that
the underlying linguistic intuitions hold across lan-
guages. The best models beat the baselines in all
configurations except for Greek on the DEMELO

dataset, where FREQ and static embeddings obtain
higher results. Overall, results are lower than those

958% of the French DEMELO scales contain a tie, com-
pared to 45% in English.
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Figure 1: Illustration of two scalar adjectives that are
close to

−−−→
dV ec and to its opposite (which represents low

intensity). The red vector describes a relational adjec-
tive that is perpendicular to

−−−→
dV ec.

reported for English, which shows that there is
room for improvement in new languages.

4 Scalar Adjective Identification

For each English adjective in the SCAL-REL

dataset, we generate a representation from the
available ten sentences (cf. Section 2.2) using
the bert-base-uncased model (with WP and
WP-1). We experiment with a simple logistic re-
gression classifier that uses the averaged represen-
tation for an adjective (ADJ-REP) as input and pre-
dicts whether it is scalar or relational. We also
apply the DIFFVEC-1 (+) method to this task and
measure how intense an adjective is by calculating
its cosine with

−−−→
dV ec. The absolute value of the

cosine indicates how clearly an adjective encodes
the notion of intensity. In Figure 1, we show two
scalar adjective vectors with negative and positive
cosine similarity to

−−−→
dV ec, and another vector that is

perpendicular to
−−−→
dV ec, i.e. describing a relational

adjective for which the notion of intensity does not
apply.10 We train a logistic regression model to
find a cosine threshold separating scalar from rela-
tional adjectives (DV-1 (+)). Finally, we also use
as a feature the cosine similarity of the adjective
representation to the vector of “good”, which we
consider as a prototypical scalar adjective (PROTO-
SIM).

The best BERT layer is selected based on the ac-
curacy obtained on the development set. We report
accuracy on the test set. The baseline classifiers
only use frequency (FREQ) and polysemy (SENSE)
as features. We use these baselines on SCAL-REL

because the WordNet pertainyms included in the
dataset are rarer than the scalar adjectives. The
intuition behind the SENSE baseline explained in
Section 3.1 also applies here.

10To draw a parallel with gender debiasing, this value would
reveal words’ bias in the gender direction (Bolukbasi et al.,
2016), regardless of the gender (male or female).

Method
Accuracy

WP WP-1
ADJ-REP (BERT) 0.9469 0.9429
PROTO-SIM 0.88811 0.90210
DV-1 (+) 0.5492 0.5452
ADJ-REP (fastText) 0.929
FREQ 0.669
SENSE 0.714

Table 4: Classification results on the SCAL-REL
dataset.

Results on this task are given in Table 4. The
classifier that relies on ADJ-REP BERT represen-
tations can distinguish the two types of adjectives
with very high accuracy (0.946), closely followed
by fastText embeddings (0.929). The DV-1 (+)
method does not perform as well as the classifier
based on ADJ-REP, which is not surprising since
it relies on a single feature (the absolute value of
the cosine between

−−−→
dV ec and ADJ-REP). Compar-

ing ADJ-REP to a typical scalar word (PROTO-SIM)
yields better results than DV-1 (+). The SENSE and
FREQ baselines can capture the distinction to some
extent. Relational adjectives in our training set
are less frequent and have fewer senses on average
(2.59) than scalar adjectives (5.30). A closer look
at the errors of the best model reveals that these
concern tricky cases: One of the four misclassified
scalar adjectives is derived from a noun (micro-
scopic), whilst five out of eight wrongly classified
relational adjectives can have a scalar interpretation
(e.g., sympathetic, imperative). Overall, supervised
models obtain very good results on this task. SCAL-
REL will enable research on unsupervised methods
that could be used in other languages.

5 Conclusion

We propose a new multilingual benchmark for
scalar adjective ranking, and set performance base-
lines on it using monolingual and multilingual con-
textual language model representations. Our results
show that adjective intensity information is present
in the contextualised representations in the studied
languages. We also propose a new classification
task and a dataset that can serve as a benchmark to
estimate the models’ capability to identify scalar
adjectives when relevant datasets are not available.
We make our datasets and sentence contexts avail-
able to promote future research on scalar adjectives
detection and analysis in different languages.
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A Comparison of Wordpiece Selection
Methods

Table 3 of the main paper contains results of the
DIFFVEC method with the best approach for select-
ing wordpieces (WPs) for each model. In Table
5, we present results obtained using the alternative
approach for each model and language:

• for all monolingual models and the multilin-
gual model for English, Table 5 contains re-
sults obtained with the WP approach;

• for the multilingual models in the other lan-
guages, we show results with WP-1.

The best approach was determined by comparing
their average scores across the different methods.
Some configurations improve, but they yield over-
all worse results per model, especially in Spanish.
Differences between WP and WP-1 are generally
more pronounced in the multilingual models than
in the monolingual models.
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EN FR ES EL

Mono WP Mono WP Mono WP Mono WP
P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg

D
M DV-1 (+) .6649 .4639 .5319 .6173 .3843 .4063 .6529 .3679 .3909 .5468 .2018 .2158

DV-WK .5579 .2469 .2846 .5171 .1701 .1401 .64510 .35310 .31310 .5572 .2262 .2402

W
K DV-1 (+) .8527 .7057 .7661 .6127 .2621 .2156 .7638 .5258 .7556 .6328 .3128 .2568

DV-DM .9186 .8366 .8396 .6272 .2922 .3922 .7466 .4926 .6586 .77911 .61711 .66311
Multi WP Multi WP-1 Multi WP-1 Multi (unc) WP-1

D
M DV-1 (+) .5884 .3014 .3124 .5497 .2397 .2767 .5893 .2293 .2341 .5249 .1539 .1719

DV-WK .5165 .15311 .1985 .4902 .1132 .1347 .60312 .26812 .28712 .5216 .1466 .1866

W
K DV-1 (+) .8207 .6397 .6673 .6123 .2623 .3623 .7464 .4924 .6084 .6479 .3589 .3699

DV-DM .8857 .7707 .8347 .6877 .4127 .4353 .66110 .32210 .4476 .6626 .3886 .4446

Table 5: Results of DIFFVEC (DV) methods with contextualised representations derived from monolingual and
multilingual models for each language, using an alternative approach to selecting wordpieces (WP, WP-1) than the
one used for the results reported in Table 3. For all languages but Greek, the multilingual model is cased.


