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Abstract

Current commonsense reasoning research fo-
cuses on developing models that use common-
sense knowledge to answer multiple-choice
questions. However, systems designed to an-
swer multiple-choice questions may not be
useful in applications that do not provide a
small list of candidate answers to choose from.
As a step towards making commonsense rea-
soning research more realistic and useful, we
propose to study open-ended commonsense
reasoning (OpenCSR) — the task of answer-
ing a commonsense question without any pre-
defined choices — using as a resource only a
knowledge corpus of commonsense facts writ-
ten in natural language. OpenCSR is challeng-
ing due to a large decision space, and because
many questions require implicit multi-hop rea-
soning. As an approach to OpenCSR, we
propose DRFACT, an efficient Differentiable
model for multi-hop Reasoning over knowl-
edge Facts. To evaluate OpenCSR meth-
ods, we adapt three popular multiple-choice
datasets, and collect multiple new answers to
each test question via crowd-sourcing. Exper-
iments show that DRFACT outperforms strong
baseline methods by a large margin.1

1 Introduction

The conventional task setting for most current
commonsense reasoning research is multiple-
choice question answering (QA) — i.e., given
a question and a small set of pre-defined an-
swer choices, models are required to determine
which of the candidate choices best answers the
question. Existing commonsense reasoning mod-
els usually work by scoring a question-candidate
pair (Lin et al., 2019; Lv et al., 2020; Feng et al.,
2020). Hence, even an accurate multiple-choice

∗ The work was mainly done during Bill Yuchen Lin’s
internship at Google Research.

1Our code and data are available at the project website —
https://open-csr.github.io/. The human anno-
tations were collected by the USC-INK group.

carbon dioxide is the major greenhouse
gas contributing to global warming .

trees remove carbon dioxide from the 
atmosphere through photosynthesis .
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(C) renewable energy (D) water
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Figure 1: We study the task of open-ended com-
monsense reasoning (OpenCSR), where answer candi-
dates are not provided (as in a multiple-choice setting).
Given a question, a reasoner uses multi-hop reasoning
over a knowledge corpus of facts, and outputs a ranked
list of concepts from the corpus.

QA model cannot be directly applied in practical
applications where answer candidates are not pro-
vided (e.g., answering a question asked on a search
engine, or during conversation with a chat-bot).

Because we seek to advance commonsense rea-
soning towards practical applications, we pro-
pose to study open-ended commonsense reason-
ing (OpenCSR), where answers are generated ef-
ficiently, rather than selected from a small list
of candidates (see Figure 1). As a step to-
ward this, here we explore a setting where the
model produces a ranked list of answers from a
large question-independent set of candidate con-
cepts that are extracted offline from a corpus of
common-sense facts written in natural language.

The OpenCSR task is inherently challenging.
One problem is that for many questions, find-
ing an answer requires reasoning over two or

https://open-csr.github.io/
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more natural-language facts from a corpus. In
the multiple-choice QA setting, as the set of can-
didates is small, we can pair a question with an
answer, and use the combination to retrieve rel-
evant facts and then reason with them. In the
open-ended setting, this is impractical: instead one
needs to retrieve facts from the corpus using the
question alone. In this respect, OpenCSR is simi-
lar to multi-hop factoid QA about named entities,
e.g. as done for HotpotQA (Yang et al., 2018).

However, the underlying reasoning chains of
most multi-hop factoid QA datasets are relatively
clear and context-independent, and are thus eas-
ier to infer. Commonsense questions, in contrast,
exhibit more variable types of reasoning, and the
relationship between a question and the reasoning
to answer the question is often unclear. (For ex-
ample, a factoid question like “who starred in a
movie directed by Bradley Cooper?” clearly sug-
gests following a directed-by relationship and then
a starred-in relationship, while the underlying rea-
soning chains of a question like “what can help
alleviate global warming?” is relatively implicit
from the question.) Furthermore, annotations are
not available to identify which facts are needed
in the latent reasoning chains that lead to an an-
swer — the only supervision is a set of questions
and their answers. We discuss the formulation of
OpenCSR and its challenges further in Section 3.

As shown in Fig. 1, another challenge is that
many commonsense questions require reasoning
about facts that link several concepts together.
E.g., the fact “trees remove carbon dioxide from
the atmosphere through photosynthesis” cannot
be easily decomposed into pairwise relationships
between “trees”, “carbon dioxide”, “the atmo-
sphere”, and “photosynthesis”, which makes it
more difficult to store in a knowledge graph (KG).
However, such facts have been collected as sen-
tences in common-sense corpora, e.g., Generics-
KB (Bhakthavatsalam et al., 2020). This motivates
the question: how can we conduct multi-hop rea-
soning over such a knowledge corpus, similar to
the way multi-hop reasoning methods traverse a
KG? Moreover, can we achieve this in a differen-
tiable way, to support end-to-end learning?

To address this question, we extend work by Seo
et al. (2019) and Dhingra et al. (2020), and pro-
pose an efficient, differentiable multi-hop reason-
ing method for OpenCSR, named DRFACT (for
Differentiable Reasoning over Facts). Specifically,

we formulate multi-hop reasoning over a corpus as
an iterative process of differentiable fact-following
operations over a hypergraph. We first encode all
fact sentences within the corpus as dense vectors
to form a neural fact index, such that a fast re-
trieval can be done via maximum inner product
search (MIPS). This dense representation is sup-
plemented by a sparse fact-to-fact matrix to store
symbolic links between facts (i.e., a pair of facts
are linked if they share common concepts). DR-
FACT thus merges both neural and symbolic as-
pects of the relationships between facts to model
reasoning in an end-to-end differentiable frame-
work (Section 4).

To evaluate OpenCSR methods, we construct
new OpenCSR datasets by adapting three exist-
ing multiple-choice QA datasets: QASC (Khot
et al., 2020), OBQA (Mihaylov et al., 2018), and
ARC (Clark et al., 2018). Note that unlike fac-
toid questions that usually have a single correct
answer, open-ended commonsense questions can
have multiple correct answers. Thus, we collect a
collection of new answers for each test question by
crowd-sourcing human annotations. We compare
with several strong baseline methods and show
that our proposed DRFACT outperforms them by
a large margin. Overall DRFACT gives an 4.6%
absolute improvement in Hit@100 accuracy over
DPR (Karpukhin et al., 2020), a state-of-the-art
text retriever for QA, and 3.2% over DrKIT (Dhin-
gra et al., 2020), a strong baseline for entity-
centric multi-hop reasoning. With a relatively
more expensive re-ranking module, the gap be-
tween DRFACT and others is even larger. (Sec. 5)

2 Related Work

Commonsense Reasoning. Many recent
commonsense-reasoning (CSR) methods focus on
multiple-choice QA. For example, KagNet (Lin
et al., 2019) and MHGRN (Feng et al., 2020) use
an external commonsense knowledge graph as
structural priors to individually score each choice.
These methods, though powerful in determining
the best choice for a multi-choice question, are
less realistic for practical applications where
answer candidates are typically not available.
UnifiedQA (Khashabi et al., 2020) and other
closed-book QA models (Roberts et al., 2020)
generate answers to questions by fine-tuning a
text-to-text transformer such as BART (Lewis
et al., 2020a) or T5 (Raffel et al., 2020), but a
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disadvantage of closed-book QA models is that
they do not provide intermediate explanations for
their answers, i.e., the supporting facts, which
makes them less trustworthy in downstream
applications. Although closed-book models exist
that are augmented with an additional retrieval
module (Lewis et al., 2020b), these models mainly
work for single-hop reasoning.

QA over KGs or Text. A conventional source
of commonsense knowledge is triple-based sym-
bolic commonsense knowledge graphs (CSKGs)
such as ConceptNet (Speer et al., 2017). How-
ever, the binary relations in CSKGs greatly limit
the types of the knowledge that can be encoded.
Here, instead of a KB, we use a corpus of generic
sentences about commonsense facts, in particular
GenericsKB (Bhakthavatsalam et al., 2020). The
advantage of this approach is that text can rep-
resent more complex commonsense knowledge,
including facts that relate three or more con-
cepts. Formalized in this way, OpenCSR is a
question answering task requiring (possibly) iter-
ative retrieval, similar to other open-domain QA
tasks (Chen et al., 2017) such as HotpotQA (Yang
et al., 2018) and Natural Questions (Kwiatkowski
et al., 2019). As noted above, however, the sur-
face of commonsense questions in OpenCSR have
fewer hints about kinds of multi-hop reasoning re-
quired to answer them than the factoid questions in
open-domain QA, resulting in a particularly chal-
lenging reasoning problem (see Sec. 3).

Multi-Hop Reasoning. Many recent models
for open-domain QA tackle multi-hop reasoning
through iterative retrieval, e.g., GRAFT-Net (Sun
et al., 2018), MUPPET (Feldman and El-Yaniv,
2019), PullNet (Sun et al., 2019), and GoldEn (Qi
et al., 2019). These models, however, are not end-
to-end differentiable and thus tend to have slower
inference speed, which is a limitation shared by
many other works using reading comprehension
for multi-step QA (Das et al., 2019; Lee et al.,
2019). As another approach, Neural Query Lan-
guage (Cohen et al., 2020) designs differentiable
multi-hop entity-following templates for reason-
ing over a compactly stored symbolic KG, but this
KG is limited to binary relations between entities
from an explicitly enumerated set.

DrKIT (Dhingra et al., 2020) is the most similar
work to our DRFACT, as it also supports multi-hop
reasoning over a corpus. Unlike DRFACT, DrKIT
is designed for entity-centric reasoning. DrKIT

begins with an entity-linked corpus, and computes
both sparse and dense indices of entity mentions
(i.e., linked named-entity spans). DrKIT’s funda-
mental reasoning operation is to “hop” from one
weighted set of X entities to another, by 1) find-
ing mentions of new entities x′ that are related to
some entity in X , guided by the indices, and then
2) aggregating these mentions to produce a new
weighted set of entities. DrKIT’s operations are
differentiable, and by learning to construct appro-
priate queries to the indices, it can be trained to
answer multi-hop entity-related questions.

Prior to our work DrKIT been applied only on
factoid questions about named entities. In CSR,
the concepts that drive reasoning are generally
less precise than entities, harder to disambiguate
in context, and are also much more densely con-
nected, so it is unclear to what extent DrKIT would
be effective. We present here novel results using
DrKIT on OpenCSR tasks, and show experimen-
tally that our new approach, DRFACT, improves
over DrKIT. DRFACT mainly differs from DrKIT
in that its reasoning process learns to “hop” from
one fact to another, rather than from one entity to
another, thus effectively using the full information
from a fact for multi-hop reasoning.

3 Open-Ended Commonsense Reasoning

Task Formulation. We denote a corpus of knowl-
edge facts as F , and use V to denote a vocab-
ulary of concepts; both are sets consisting of
unique elements. A fact fi ∈ F is a sentence
that describes generic commonsense knowledge,
such as “trees remove carbon dioxide from the
atmosphere through photosynthesis.” A concept
cj ∈ V is a noun or base noun phrase mentioned
frequently in these facts (e.g., ‘tree’ and ‘carbon
dioxide’). Concepts are considered identical if
their surface forms are the same (after lemma-
tization). Given only a question q (e.g., “what
can help alleviate global warming?”), an open-
ended commonsense reasoner is supposed to an-
swer it by returning a weighted set of concepts,
such as {(a1=‘renewable energy’, w1), (a2=‘tree’,
w2), . . .}, where wi ∈ R is the weight of the pre-
dicted concept ai ∈ V .

To learn interpretable, trustworthy reasoning
models, it is expected that models can output in-
termediate results that justify the reasoning pro-
cess — i.e., the supporting facts from F . E.g., an
explanation for ‘tree’ to be an answer to the ques-
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global warming

greenhouse gas

= trees remove carbon dioxide from 
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Question: What can help 
alleviate global warming?

Modeling a knowledge 
corpus as a hypergraph.
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DrFact: Multi-hop reasoning as 
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Figure 2: A motivating example of how DrFact works for OpenCSR. We model the knowledge corpus as a
hypergraph consisting of concepts in V as nodes and facts in F as hyperedges. Then, we develop a differentiable
reasoning method, DrFact, to perform multi-hop reasoning via fact-following operations (e.g., f1 → f2).

tion above can be the combination of two facts: f1
= “carbon dioxide is the major ...” and f2 = “trees
remove ...”, as shown in Figure 1.

Implicit Multi-Hop Structures. Commonsense
questions (i.e., questions that need common-
sense knowledge to reason) contrast with better-
studied multi-hop factoid QA datasets, e.g., Hot-
potQA (Yang et al., 2018), which primarily fo-
cus on querying about evident relations between
named entities. For example, an example multi-
hop factoid question can be “which team does the
player named 2015 Diamond Head Classic’s MVP
play for?” Its query structure is relatively clear and
self-evident from the question itself: in this case
the reasoning process can be decomposed into q1
= “the player named 2015 DHC’s MVP” and q2 =
“which team does q1. answer play for”.

The reasoning required to answer common-
sense questions is usually more implicit and rel-
atively unclear. Consider the previous example in
Fig. 1, q = ‘what can help alleviate global warm-
ing?’ can be decomposed by q1 = “what con-
tributes to global warming” and q2 = “what re-
moves q1. answer from the atmosphere” — but
many other decompositions are also plausible. In
addition, unlike HotpotQA, we assume that we
have no ground-truth justifications for training,
which makes OpenCSR even more challenging.

4 DrFact: An Efficient Approach for
Differentiable Reasoning over Facts

In this section we present DRFACT, a model for
multi-hop reasoning over facts. More implemen-
tation details are in Appendix B.

4.1 Overview
In DRFACT, we propose to model reasoning as
traversing a hypergraph, where each hyperedge
corresponds to a fact in F , and connects the con-
cepts in V that are mentioned in that fact. This
is shown in Figure 2. Notice that a fact, as a hy-
peredge, connects multiple concepts that are men-
tioned, while the textual form of the fact maintains
the contextual information of the original natural
language statement, and hence we do not assume
a fixed set of relations.

Given such a hypergraph, our open-ended rea-
soning model will traverse the hypergraph starting
from the question (concepts) and finally arrive at a
set of concept nodes by following multiple hyper-
edges (facts). A probabilistic view of this process
over T hops is:

P (c | q) = P (c | q, FT )
∏T
t=1 P (Ft | q, Ft−1)P (F0 | q)

Intuitively, we want to model the distribution
of a concept c ∈ V being an answer to a ques-
tion q as P (c | q). This answering process
can be seen as a process of multiple iterations of
“fact-following,” or moving from one fact to an-
other based on shared concepts, and finally mov-
ing from facts to concepts. We use Ft to repre-
sent a weighted set of retrieved facts at the hop t,
and F0 for the initial facts below. Then, given the
question and the current retrieved facts, we itera-
tively retrieve the facts for the next hop. Finally,
we score a concept using retrieved facts.

4.2 Pre-computed Indices

Dense Neural Fact Index D. We pre-train a
bi-encoder architecture over BERT (Devlin et al.,
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Figure 3: The overall workflow of DRFACT. We encode the hypergraph (Fig. 2) with a concept-to-fact sparse
matrix E and a fact-to-fact sparse matrix S. The dense fact indexD is pre-computed with a pre-trained bi-encoder.
A weighed set of facts is represented as a sparse vector F . The workflow (left) of DRFACT starts mapping a
question to a set of initial facts that have common concepts with it. Then, it recursively performs Fact-Follow
operations (right) for computing Ft and At. Finally, it uses learnable hop-weights αt to aggregate the answers.

2019), which learns to maximize the score of facts
that contain correct answers to a given question,
following the steps of Karpukhin et al. (2020)
(i.e., dense passage retrieval), so that we can use
MIPS to do dense retrieval over the facts. Af-
ter pre-training, we embed each fact in F with a
dense vector (using the [CLS] token representa-
tion). Hence D is a |F| × d dense matrix.
Sparse Fact-to-Fact Index S. We pre-compute
the sparse links between facts by a set of connec-
tion rules, such as fi → fj when fi and fj have
at least one common concept and fj introduces at
least two more new concepts that are not in fi (see
Appendix B (2) for more). Hence S is a binary
sparse tensor with the dense shape |F| × |F|.
Sparse Index of Concept-to-Fact Links E. As
shown in Figure 2, a concept can appear in mul-
tiple facts and a fact also usually mentions mul-
tiple concepts. We encode these co-occurrences
between each fact and its mentioned concepts into
a sparse matrix with the dense shape |V| × |F|—
i.e., the concept-to-fact index.

4.3 Differentiable Fact-Following Operation
The most important part in our framework is how
to model the fact-following step in our formula-
tion, i.e., P (Ft | Ft−1, q). For modeling the trans-
lation from a fact to another fact under the con-
text of a question q, we propose an efficient ap-
proach with a differentiable operation that uses
both neural embeddings of the facts and their sym-
bolic connections in the hypergraph.

The symbolic connections between facts are
represented by the very sparse fact-to-fact matrix

S, which in our model is efficiently implemented
with the tf.RaggedTensor construct of Ten-
sorFlow (Dhingra et al., 2020). S stores a pre-
computed dependency between pairs of facts, Sij .
Intuitively, if we can traverse from fi to fj these
facts should mention some common concepts, and
also the facts’ semantics are related, so our Sij
will reflect this intuition. The fact embeddings
computed by a pre-trained bi-encoder are in the
dense index of fact vectors D, which contains rich
semantic information about each fact, and helps
measure the plausibility of a fact in the context of
a given question.

The proposed fact-follow operation has two par-
allel sub-steps: 1) sparse retrieval and 2) dense
retrieval. The sparse retrieval uses a fact-to-fact
sparse matrix to obtain possible next-hop facts.
We can compute F st = Ft−1S efficiently thanks
to the ragged representation of sparse matrices.

For the neural dense retrieval, we use a maxi-
mum inner product search (MIPS) (Johnson et al.,
2019; Guo et al., 2020) over the dense fact embed-
ding index D:

zt−1 = Ft−1D

ht−1 = g(zt−1,qt)

F dt = MIPSK(ht−1, D)

We first aggregate the dense vectors of the facts
in Ft−1 into the dense vector zt−1, which is fed
into a neural layer with the query embedding at
the current step, qt (encoded by BERT), to create
a query vector ht−1. Here g(·) is an MLP that
maps the concatenation of the two input vectors to
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a dense output with the same dimensionality as the
fact vectors, which we named to be fact-translating
function. Finally, we retrieve the next-hop top-K
facts F dt with the MIPSK operator.

To get the best of both symbolic and neural
world, we use element-wise multiplication to com-
bine the sparse and dense retrieved results: Ft =
F st � F dt . We summarize the fact-following oper-
ation with these differentiable steps:

Ft = Fact-Follow(Ft−1, q) (1)

= Ft−1S �MIPSK(g(Ft−1D,qt), D)

After each hop, we multiply Ft with a pre-
computed fact-to-concept matrix E, thus generat-
ing At, a set of concept predictions. To aggregate
the concept scores, we take the maximum score
among the facts that mention a concept c. Finally
we take the weighted sum of the concept predic-
tions at all hops as the final weighted concept sets
A =

∑T
t=1 αtAt, where αt is a learnable parame-

ter. Please read Appendix B for more details.
Equation 1 defines a random-walk process on

the hypergraph associated with the corpus. We
found that performance was improved by making
this a “lazy” random walk—in particular by aug-
menting Ft with the facts in Ft−1 which have a
weight higher than a threshold τ :

Ft = Fact-Follow(Ft−1, q) + Filter(Ft−1, τ).

We call this as self-following, which means that
Ft contains highly-relevant facts for all distances
t′ < t, and thus improve models when there are
variable numbers of “hops” for different questions.

Initial Facts. Note that the set of initial facts F0

is computed differently, as they are produced us-
ing the input question q, instead of a previous-hop
Ft−1. We first use our pre-trained bi-encoder and
the associated index D via MIPS query to finds
facts related to q, and then select from the retrieved
set those facts that contain question concepts (i.e.,
concepts that are matched in the question text), us-
ing the concept-to-fact index E.

4.4 Auxiliary Learning with Distant Evidence
Intermediate evidence, i.e., supporting facts, is
significant for guiding multi-hop reasoning mod-
els during training. In a weakly supervised setting,
however, we usually do not have ground-truth an-
notations as they are expensive to obtain.

To get some noisy yet still helpful supporting
facts, we use as distant supervision dense retrieval

based on the training questions. Specifically, we
concatenate the question and the best candidate
answer to build a query to our pre-trained indexD,
and then we divide the results into four groups de-
pending on whether they contain question/answer
concepts: 1) question-answer facts, 2) question-
only facts, 3) answer-only facts, and 4) none-facts.

Then, to get a 2-hop evidence chain, we first
check if a question-only fact can be linked to an
answer-only fact through the sparse fact-to-fact
matrix S. Similarly, we can also get 3-hop distant
evidence. In this manner, we can collect the set of
supporting facts at each hop position, denoted as
{F ∗1 , F ∗2 , . . . , F ∗T }.

The final learning objective is thus to optimize
the sum of the cross-entropy loss l between the fi-
nal weighed set of concepts A and the answer set
A∗, as well as the auxiliary loss from distant ev-
idence — i.e., the mean of the hop-wise loss be-
tween the predicted facts Ft and the distant sup-
porting facts at that hop F ∗t , defined as follows:

L = l(A,A∗) +
1

T

T∑

t=1

l(Ft, F
∗
t )

5 Experiments

5.1 Experimental Setup
Fact corpus and concept vocabulary
We use the GenericsKB-Best corpus as the main
knowledge source2. In total, we have 1,025,413
unique facts as our F . We use the spaCy toolkit
to prepossess all sentences in the corpus and then
extract frequent noun chunks within them as our
concepts. The vocabulary V has 80,524 concepts,
and every concept is mentioned at least 3 times.

Datasets for OpenCSR
To facilitate the research on open-ended com-
monsense reasoning (OpenCSR), we reformat-
ted three existing multi-choice question answer-
ing datasets to allow evaluating OpenCSR meth-
ods. We choose three datasets: QASC, OBQA,
and ARC, as their questions require commonsense
knowledge about science and everyday objects
and are presented in natural language. By apply-
ing a set of filters and rephrasing rules, we se-
lected those open-ended commonsense questions
that query concepts in our vocabulary V .

2It was constructed from multiple commonsense knowl-
edge corpora and only kept naturally occurring generic state-
ments, which makes it a perfect fit for OpenCSR.
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Stat. \ Data ARC QASC OBQA Overall

# All Examples 6,600 8,443 5,288 20,331

# Training Set 5,355 6,883 4,199 16, 437
# Validation Set 562 731 463 1,756

# Test Set 683 829 626 2,138

Avg.#Answers 6.8 7.6 7.7 7.5

Single-hop % 66.91% 59.35% 50.80% 59.02%

Table 1: Statistics of datasets for OpenCSR (v1.0).

As we know that there can be multiple correct
answers for a question in OpenCSR, we employed
crowd-workers to collect more answers for each
test question based on a carefully designed anno-
tation protocol. In total, we collect 15,691 an-
swers for 2,138 rephrased questions for evalua-
tion, which results in 7.5 answers per question on
average. Please find more details about crowd-
sourcing and analysis in Appendix A.

We show some statistics of the OpenCSR
datasets and our new annotations in Table 1. To
understand the multi-hop nature and the difficulty
of each dataset, we use a heuristic to estimate the
percentage of “single-hop questions”, for which
we can find a fact (from top-1k facts retrieved by
BM25) containing both a question concept and an
answer concept. The ARC dataset has about 67%
one-hop questions and thus is the easiest, while
OBQA has only 50%.

Evaluation metrics.
Recall that, given a question q, the final output of
every method is a weighted set of concepts A =
{(a1, w1), . . . }. We denote the set of true answer
concepts, as defined above, asA∗ = {a∗1, a∗2, . . . }.
We define Hit@K accuracy to be the fraction of
questions for which we can find at least one cor-
rect answer concept a∗i ∈ A∗ in the top-K con-
cepts of A (sorted in descending order of weight).
As questions have multiple correct answers, re-
call is also an important aspect for evaluating
OpenCSR, so we also use Rec@K to evaluate the
average recall of the top-K proposed answers.

5.2 Baseline Methods

We present baseline methods and an optional re-
ranker component for boosting the performance
on OpenCSR. Table 3 shows a summary of the
comparisions of the three methods and our DrFact.

Direct Retrieval Methods. The most straightfor-
ward approach to the OpenCSR task is to directly

Methods BM25 DPR DrKIT DrFact (ours) 

Knowledge 
Corpus Structure

A set of 
docs

A set of 
docs

Mention-Entity 
Bipartite Graph

Concept-Fact 
Hypergraph

Multi-hop 
Formulation

N/A N/A
Entity-

Following
Fact-Following

Index for 
Dense Retrieval

N/A
Dense Fact 

Embeddings
Dense Mention

Embeddings
Dense Fact 

Embeddings

Sparse Retrieval 
Method

BM25 N/A
Entity-

Entity/Mention 
Co-occurrence

Fact-to-Fact, 
Concept-to-Fact 

Matrix

# models for
Multi-Hop

N/A N/A
Multiple 
Models

A single model 
(self-following) 

Intermediate 
Supervision

N/A N/A N/A
Auxiliary 
Learning

Table 3: Comparisons of the four retrieval methods.

retrieve relevant facts, and then use the concepts
mentioned in the top-ranked facts as answer pre-
dictions. BM25 is one of the most popular un-
supervised method for retrieval, while the Dense
Passage Retrieval (DPR) model is a state-of-the-
art trainable, neural retriever (Karpukhin et al.,
2020). Following prior work with DPR, we used
BM25-retrieved facts to create positive and (hard-
)negative examples as supervision. For both meth-
ods, we score a concept by the max3 of the rele-
vance scores of retrieved facts that mention it.

DrKIT. Following Dhingra et al. (2020), we use
DrKIT for OpenCSR, treating concepts as enti-
ties. DrKIT is also an efficient multi-hop reason-
ing model that reasons over a pre-computed in-
dexed corpus, which, as noted above (Sec. 2), dif-
fers from our work in that DrKIT traverses a graph
of entities and entity mentions, while DRFACT tra-
verses a hypergraph of facts.

Multiple-choice style re-ranking (MCQA). A
conventional approach to multiple-choice QA
(MCQA) is to fine-tune a pre-trained language
model such as BERT, by combining a question and
a particular concept as a single input sequence in
the form of “[CLS]question[SEP]choice” and
using [CLS] vectors for learning to score choices.
We follow this schema and train4 such a multiple-
choice QA model on top of BERT-Large, and use
this to re-rank the top-K concept predictions.

5.3 Results and Analysis
Main results. For a comprehensive understand-
ing, we report the Hit@K and Rec@K of all meth-
ods, at K=50 and K=100, in Table 2. The over-
all results are the average over the three datasets.

3We also tried mean and sum, but max performs the best.
4Specifically, we fine-tune BERT-Large to score truth an-

swers over 9 sampled distractors, and use it to rank the top-
500 concepts produced by each above retrieval method.
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ARC QASC OBQA Overall

Metric = Hit@K (%) H@50 H@100 H@50 H@100 H@50 H@100 H@50 H@100

BM25 (off-the-shelf) 56.95 67.35 58.50 66.71 53.99 66.29 56.48 66.78
DPR (Karpukhin et al., 2020) 68.67 78.62 69.36 78.89 62.30 73.80 66.78 77.10
DrKIT (Dhingra et al., 2020) 67.63 77.89 67.49 81.63 61.74 75.92 65.62 78.48

DRFACT (Ours) 71.60 80.38 72.01 84.56 69.01 80.03 70.87 81.66

BM25 + MCQA Reranker 76.87 80.38 75.75 80.22 79.23 84.03 77.28 81.54
DPR + MCQA Reranker 76.72 83.16 81.66 87.45 77.16 83.39 78.51 84.67

DrKIT + MCQA Reranker 78.44 83.37 84.00 86.83 79.25 84.03 80.56 84.74
DRFACT + MCQA Reranker 84.19 89.90 89.87 93.00 85.78 90.10 86.61 91.00

Metric = Rec@K (%) R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

BM25 (off-the-shelf) 21.12 28.08 16.33 20.13 14.27 20.21 17.24 22.81
DPR (Karpukhin et al., 2020) 28.93 38.63 23.19 32.12 18.11 26.83 23.41 32.53
DrKIT (Dhingra et al., 2020) 27.57 37.29 21.25 30.93 18.18 27.10 22.33 31.77

DRFACT (Ours) 31.48 40.93 23.29 33.60 21.27 30.32 25.35 34.95

BM25 + MCQA Reranker 39.11 42.96 29.03 32.11 36.38 39.46 34.84 38.18
DPR + MCQA Reranker 43.78 51.56 40.72 48.25 36.18 43.61 40.23 47.81

DrKIT + MCQA Reranker 43.14 49.17 39.20 44.37 35.12 39.85 39.15 44.46
DRFACT + MCQA Reranker 47.73 55.20 44.30 50.30 39.60 45.24 43.88 50.25

Table 2: Results of the Hit@K and Rec@K (K=50/100) on OpenCSR (v1.0). We present two groups of methods
with different inference speed levels. The upper group is retrieval-only methods that are efficient (< 0.5 sec/q),
while the bottom group are augmented with a computationally expensive answer reranker (≥ 14 sec/q).

We can see that DRFACT outperforms all baseline
methods for all datasets and metrics. Comparing
with the state-of-the-art text retriever DPR, DR-
FACT improves by about 4.1% absolute points in
Hit@50 accuracy overall. With the expensive yet
powerful MCQA reranker module DRFACT gives
an even large gap (∼ 8% gain in H@50 acc).

The performance gains on the QASC and
OBQA datasets are larger than the one on ARC.
This observation correlates the statistics that the
former two have more multi-hop questions and
thus DRFACT has more advantages. As shown
in Figure 4, we can see that DRFACT consistently
outperforms other retrieval methods at differentK
by a considerable margin.

Interestingly, we find that with the MCQA
reranker, DrKIT does not yield a large improve-
ment over DPR, and it usually has a lower than
other methods. We conjecture this is because
that entity-centric reasoning schema produces too
many possible concepts and thus is more likely to
take more irrelevant concepts at the top positions.

The results on Rec@K in bottom section of Ta-
ble 2 show that even our DRFACT+MCQA model
only recalls about 50% of the correct answers in
top-100 results on average. This suggests that
OpenCSR is still a very challenging problem and
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Figure 4: The curve of Hit@K accuracy in overall.
Please find the curve of Rec@K in Figure 7.

future works should focus on improving the ability
of ranking more correct answers higher.

Run-time efficiency analysis. We use Table 4
to summarize the online inference speed of each
OpenCSR method. At inference time, DPR will
make one call to BERT-base for encoding a ques-
tion and do one MIPS search. Similarly, DrKIT
and DRFACT with T hops will make one call to
BERT-base for query encoding and do T MIPS
searches. However, since the entity-to-mention
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Methods Major Computations Speed (sec/q)

BM25 Sparse Retrieval 0.14
DPR BERT-base + MIPS 0.08

DrKIT BERT-base + T*(MIPS+ spe2m) 0.47
DRFACT BERT-base + T*(MIPS+ spf2f ) 0.23

X+ MCQA X + K * BERT-Large + 14.12

Table 4: The major competitions of each method and
their online (batch-size=1) inference speed in sec/q.

ARC QASC OBQA Overall

T=1 69.3% 70.1% 65.0% 68.1%
T=2 71.1% 72.2% 68.3% 70.5%
T=3 3 71.6% 72.0% 69.0% 70.9%

w/o. Self-follow 70.9% 70.4% 68.4% 69.9%
w/o. Aux. loss 70.6% 70.1% 68.0% 69.6%

Table 5: Ablation study of DRFACT (H@50 test acc).

matrix (spe2m) of DrKIT is much larger than the
fact-to-fact matrix (spf2f ) of DRFACT, DrKIT is
about twice as slow as DRFACT. The MCQA
is much more computationally expensive, as it
makes K calls to BERT-Large for each combina-
tion of question and choice. Note that in these ex-
periments we use T=2 for DrKIT, T=3 for DR-
FACT and K=500 for the MCQA re-rankers.5

Ablation study. Varying the maximum hops
(T={1,2,3}) — i.e., the number of calls to
Fact-Follow — indicates that overall perfor-
mance is the best when T=3 as shown in Table 5.
The performance with T=2 drops 0.7% point on
OBQA. We conjecture this is due to nature of the
datasets, in particular the percentage of hard ques-
tions. We also test the model (with T=3) without
the auxiliary learning loss (Sec. 4.4) or the self-
following trick. Both are seen to be important to
DRFACT. Self-following is especially helpful for
QASC and OBQA, where there are more multi-
hop questions. It also makes learning and infer-
ence more faster than an alternative approach of
ensembling multiple models with different maxi-
mum hops as done in some prior works.

Qualitative analysis. We show a concrete exam-
ple in Fig. 5 to compare the behaviour of DPR and
DRFACT in reasoning. DPR uses purely dense re-
trieval without any regularization, yielding irrele-
vant facts. The fact f2 matches the phrase “sepa-

5We note the MCQA-reranker could be speed up by scor-
ing more choices in parallel. All run-time tests were per-
formed on NVIDIA V100 (16GB), but MCQA with batch-
size of 1 requires only ∼5GB. This suggests more parallel
inference on a V100 could obtain 4.5 sec/q for MCQA.

Q: “What will separate iron filings from sand? ”

magnets attract magnetic metals through magnetism (in F2)

iron filings show the magnetic fields . (in F0)
magnets produce a magnetic field with a north … (in F1)

f1= angle irons reinforce the thinnest section of the ring .”

f3= stainless steel has a rough surface just after filing .”
f2= sieves are used for separating fossils from sand...”

f1=heterogeneous mixtures have distinguishable phases , e.g., a
mixture of iron filings and sulphur .
f2=…a soil textural class where sand is the dominate separate

BM25

DPR

DrFact

Figure 5: A case study to compare DPR and DRFACT.

rating...from sand,” but does not help reason about
the question. The f3 shows here for the seman-
tic relatedness of “steel” and “iron” while “fill-
ing” here is not related to question concepts. Our
DRFACT, however, can faithfully reason about the
question via fact-following over the hypergraph,
and use neural fact embeddings to cumulatively
reason about a concept, e.g., magnet. By back-
tracking with our hypergraph, we can use retrieved
facts as explanations for a particular prediction.

6 Conclusion

We introduce and study a new task — open-ended
commonsense reasoning (OpenCSR) — which is
both realistic and challenging. We construct three
OpenCSR versions of widely used datasets target-
ing commonsense reasoning with a novel crowd-
sourced collection of multiple answers, and eval-
uate a number of baseline methods for this task.
We also present a novel method, DRFACT. DR-
FACT is a scalable multi-hop reasoning method
that traverses a corpus (as a hypergraph) via a
differentiable “fact-following” reasoning process,
employing both a neural dense index of facts and
sparse tensors of symbolic links between facts,
using a combination of MIPS and sparse-matrix
computation. DRFACT outperforms several strong
baseline methods on our data, making a significant
step towards adapting commonsense reasoning ap-
proaches to more practical applications. Base on
the multi-hop reasoning framework of DRFACT,
we hope the work can benefit future research on
neural-symbolic commonsense reasoning.
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* Ethical Considerations

Crowd-workers. This work presents three
datasets for addressing a new problem, open
common-sense reasoning. The datasets are all de-
rived from existing multiple-choice CSR datasets,
and were produced by filtering questions and using
crowd-workers to annotate common-sense ques-
tions by suggesting additional answers. Most of
the questions are about elementary science and
common knowledge about our physical world.
None of the questions involve sensitive personal
opinions or involve personally identifiable infor-
mation. We study posted tasks to be completed
by crowd-workers instead of crowd-workers them-
selves, and we do not retrieve any identifiable pri-
vate information about a human subject.
Data bias. Like most crowdsourced data, and in
particular most common-sense data, these crowd-
sourced answers are inherently subject to bias: for
example, a question like “what do people usually
do at work” might be answered very differently by
people from different backgrounds and cultures.
The prior multiple-choice CSR datasets which our
datasets are built on are arguably more strongly
biased culturally, as they include a single correct
answer and a small number of distractor answers,
while our new datasets include many answers con-
sidered correct by several annotators. However,
this potential bias (or reduction in bias) has not
been systematically measured in this work.
Sustainability. For most of the experiments,
we use the virtual compute engines on Google
Cloud Platform, which “is committed to purchas-
ing enough renewable energy to match consump-
tion for all of their operations globally.”6 With
such virtual machine instances, we are able to use
the resources only when we have jobs to run, in-
stead of holding them all the time like using phys-
ical machines, thus avoiding unnecessary waste.
Application. The work also evaluates a few pro-
posed baselines for OpenCSR, and introduced a
new model which outperforms them. This raises
the question of whether harm might arise from ap-
plications of OpenCSR—or more generally, since

6https://cloud.google.com/
sustainability

OpenCSR is intended as a step toward making
multiple-choice CSR more applicable, whether
harm might arise more generally from CSR meth-
ods. Among the risks that need to be considered
in any deployment of NLP technology are that re-
sponses may be wrong, or biased, in ways that
would lead to improperly justified decisions. Al-
though in our view the current technology is still
relatively immature, and unlikely to be fielded in
applications that would cause harm of this sort, it
is desirable that CSR methods provide audit trails,
and recourse so that their predictions can be ex-
plained to and critiqued by affected parties. Our
focus on methods that provide chains of evidence
is largely a reflection of this perceived need.
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Appendix

In this appendix, we show more details of
our dataset construction (Appx. A), details of
model implementation and experiments for re-
produciblility (Appx. B), and more related works
(Appx. C). As we have submitted our code as sup-
plementary material with detailed instructions for
running baselines, we will skip some minor details
here. We will make our code and data public after
the anonymity period.

A Constructing OpenCSR Datasets

A.1 Reformatting Questions and Answers

In this section, we introduce how we refor-
mat the existing three datasets and crowd-source
annotations of multiple answers for evaluating
OpenCSR. To convert a multiple-choice question
to an open-ended question, we first remove ques-
tions where the correct answer does not contain
any concept in V and the few questions that re-
quire comparisons between original choices, as
they are designed only for multiple-choice QA,
e.g., “which of the following is the most . . . ” Then,
we rephrase questions with long answers to be an
open-ended question querying a single concept.

For example, an original question-answer pair
such as (Q:“The Earth revolving around the sun
can cause ”, A:“constellation to appear in one
place in spring and another in fall”) is now
rephrased to (Q*=“The Earth revolving around the
sun can cause what to appear in one place in spring
and another in fall?”, A*=“constellation”). Specif-
ically, we combine the original question (Q) and
original correct choice (A) to form a long state-
ment and rephrase it to be a new question (Q*)
querying a single concept (A*) in the original an-
swer, where we use the least frequent concept as
the target. This question-rephrasing largely im-
prove the number of answerable questions, partic-
ularly for the OBQA dataset. All are English data.

A.2 Crowd-sourcing More Answers

Note that there can be multiple correct answers
to an open-ended question in OpenCSR while the
original datasets only provide a single answer.
Thus, we use Amazon Mechanical Turk7 (AMT)
to collect more answers for the test questions to
have a more precise OpenCSR evaluation.

7https://www.mturk.com/
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Figure 6: Distribution of # answers of test questions.

We design a three-stage annotation protocol as
follows:

• S1) Multiple-Choice Sanity Check. We
provide a question and 4 choices where only
one choice is correct and the other 3 are
randomly sampled. Only the workers who
passed this task, their following annotations
will be considered. This is mainly designed
for avoiding noise from random workers.

• S2) Selection from Candidates. To im-
prove the efficiency of annotation, we take
the union of top 20 predictions from BM25,
DPR, DrKIT, and DrFact and randomly shuf-
fle the order of these concepts (most of them
are about 60∼70 candidates). workers can
simply input the ids of the concepts that they
think are good answers to the question (i.e., a
list of integers separated by comma). There
are three different workers for each question
and we take the candidates which are selected
by at least two workers. Note that we also
put the correct answer we already have in
the candidates and use them as another san-
ity check to filter out noisy workers.

• S3) Web-based Answer Collection. We
generate an URL link to Google Search of the
input question to help workers to use the Web
for associating more correct answers to the
question (the input here is a string for a list of
concepts separated by comma). We also pro-
vide our concept vocabulary as a web-page so
one can quickly check if a concept is valid.

After careful post-processing and multiple
rounds of re-assignment, we have in total 15k an-
swers for 2k questions, and the distribution of
number of answers are in Figure 6 and Table 1.

https://www.mturk.com/
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B Details of Implementation and Our
Experiments

B.1 DrFact Implementation
We present some concrete design choices within
our DrFact implementation which are abstractly il-
lustrated in the main content of the paper.
(1) Pre-training Dense Fact Index D. As
we mentioned in Sec. 4, we follow the steps
of Karpukhin et al. (2020) to pre-train a bi-
encoder question answering model on top of
BERT (Devlin et al., 2019). To create negative
examples, we use the BM25 results which do not
contain any answer concept. We use BERT-base
(uncased L-12 H-768 A-12) in our imple-
mentation and thus d = 768 in our experiments.
(2) Sparse Fact-to-Fact Index S. We use a set of
rules to decide if we can create a link fi → fj (i.e.,
Sij = 1) as follows:

• i 6= j. We do not allow self-link here but use
self-following as we described in Sec. 4.

• |I| >= 1 where I is the set of concepts that
are mentioned in both fi and fj . Note that we
remove the most frequent 100 concepts (e.g.,
human) from I .

• |I| < |fi|. We do not create links when all
concepts in fi are mentioned in fj , which are
usually redundant.

• |fj | − |I| >= 2. We create links only when
there are more than two unseen concepts in fj
which are not in fi, such that the fact-to-fact
links create effective reasoning chains.

We also limit that a fact can be followed by at
most 1k different facts. Additionally, we append
the links from our distant supervision of justifica-
tions as well if they were filtered out before.
(3) Hop-wise Question Encoding qt. We encode
the question q with BERT-base and then use its
[CLS] token vector as the dense representation
for q. For each hop, we append a hop-specific
layer to model how the question context changes
over the reasoning process — qt = MLPθt(q).
(4) Fact Translating Function g. The translating
function accepts both the vector representation of
previous-hop facts Ft−1 and the hop-wise ques-
tion vector qt and uses an MLP to map the con-
catenation of them to a vector used for a MIPS
query: ht−1 = MLPθg([Ft−1;qt]). Thus, ht−1
has the same dimension as a fact vector in U .
(5) Hop-wise Answer Weights αt. We use the
shared query vector to learn how to aggregate pre-
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Figure 7: The curve of Rec@K in overall data.

dictions at different hops. For a T -hop DrFact
model, we learn to transform the q to a T -dim vec-
tor where αt is the t-th component.

B.2 Hyper-parameters and Training Details
We now present the details and final hyper-
parameters that we used in our experiments. For
all methods, we tune their hyper-parameters on the
validation set and then use the same configurations
to train them with the combination of the training
and validation sets for the same steps.
BM25. We use the off-the-shelf implementation
by elasticsearch8, which are open-source and un-
supervised. For the run-time analysis, we use In-
tel(R) Xeon(R) CPU @ 2.00GHz and the localhost
webserver for data transfer.

DPR. We use the source code9 released by the
original authors. The creation of negative contexts
are the same when we pre-train our dense fact in-
dex D, which are sampled from BM25 results.

DrKIT. We use the official source code10 for
our experiments. We did minimal modifications
on their code for adapt DrKIT towards building
dense index of mentions for the OpenCSR cor-
pus and datasets. For fair comparisions between
DPR, DrKIT and DrFact, we all use BERT-base
as question and mention/fact encoder. We use
200 as the dimension of mention embeddings and
T=2 as the maximum hops. We found that us-
ing T=3 will cause too much memory usage (due
to denser entity-to-mention matrix) and also result

8https://github.com/elastic/
elasticsearch

9https://github.com/facebookresearch/
DPR

10https://github.com/google-research/
language/tree/master/language/labs/drkit

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/facebookresearch/DPR
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https://github.com/google-research/language/tree/master/language/labs/drkit
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4625

in a very slow training speed. Non-default hyper-
parameters are: train batch size=8 due to the limit
of our GPU memory, entity score threshold=5e-3
(out of {5e-2, 5e-3, 5e-4, 1e-4}) to filter numer-
ous long-tail intermediate concepts for speeding
up training and inference.

DrFact. Similar to DrKIT, we also implement
DrFact in TensorFlow for its efficient implemen-
tation of tf.RaggedTensor which are essen-
tial for us to compute over large sparse ten-
sors. We record the default hyper-parameters
in our submitted code. We use a single V100
GPU (16GB) for training with batch size of
24 (using 15GB memory) and learning rate as
3e-5, selected from {1e-5, 2e-5, 3e-5, 4e-5,
5e-5}. The entity score threshold=1e-4, and
fact score threshold=1e-5, which are all selected
from {1e-3, 1e-4, 1e-5} based on the dev set.

Model Parameters. DPR, DrKIT and DrFact are
all based on the BERT-base, which are 110 million
parameters (after pre-training index). DrKIT and
DrFact additionally have several MLP layers on
top of ‘[CLS]’ token vectors, which are all less
than 1 million parameters. The MCQA-reranker
model is based on BERT-Large, and thus has 345
million parameters.

C Discussion on Other Related Work

Other Open-Domain QA models. Recent
open-domain QA models such as REALM (Guu
et al., 2020), Path-Retriever (Asai et al., 2020),
ORQA (Lee et al., 2019), and RAG (Lewis
et al., 2020b), mainly focus on QA over the
full Wikipedia corpus like DrKIT (Dhingra et al.,
2020) does. Some of them explicitly use the links
between pages to form reasoning chain, while
a few them rely on expensive QA-oriented pre-
training. Moreover, as DPR (Karpukhin et al.,
2020) already shows better performance (see their
Table 4) than most prior works with a simpler
method, we thus use DPR as the major baseline
for evaluation in this work.


