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Abstract

Tracking entities throughout a procedure de-
scribed in a text is challenging due to the dy-
namic nature of the world described in the pro-
cess. Firstly, we propose to formulate this task
as a question answering problem. This en-
ables us to use pre-trained transformer-based
language models on other QA benchmarks
by adapting those to the procedural text un-
derstanding. Secondly, since the transformer-
based language models cannot encode the flow
of events by themselves, we propose a Time-
Stamped Language Model (TSLM model) to
encode event information in LMs architec-
ture by introducing the timestamp encoding.
Our model evaluated on the Propara dataset
shows improvements on the published state-
of-the-art results with a 3.1% increase in F1
score. Moreover, our model yields better re-
sults on the location prediction task on the
NPN-Cooking dataset. This result indicates
that our approach is effective for procedural
text understanding in general.

1 Introduction

A procedural text such as a recipe or an instruction
usually describes the interaction between multiple
entities and their attribute changes at each step of
a process. For example, the photosynthesis pro-
cedure can contain steps such as 1. Roots absorb
water from soil; 2. The water flows to the leaf
3. Light from the sun and CO2 enter the leaf; 4.
The water, light, and CO2 combine into a mixture;
5. Mixture forms sugar. Procedural text under-
standing is a machine reading comprehension task
defined on procedural texts. Answering questions
such as "what is the location of the mixture at step
4", in the above example, requires tracking enti-
ties’ interactions to predict their attributes at each
step (Dalvi et al., 2018; Bosselut et al., 2018). This
is quite challenging due to the dynamic nature of
the entities’ attributes in the context.
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Transformer-based language models have shown
promising results on multi-hop or single-hop
question answering benchmarks such as Hot-
potQA (Yang et al., 2018), SQuAD (Rajpurkar
et al., 2016), and Drop (Dua et al., 2019). Howeyver,
it is hard to expect LMs to understand the flow of
events and pay attention to the time in the proce-
dure (e.g., step 4) without extra modeling efforts.

In recent research, different approaches are taken
to address procedural reasoning based on lan-
guage models using QA formulations. Following
the intuition that attributes of entities can be re-
trieved based on the current and previous steps,
DynaPro (Amini et al., 2020) modifies the input to
only contain those sentences in the input at each
time. This will provide a different input to the
model based on each question to help it detect
changes after adding each step. KG-MRC (Das
et al., 2018) also generates a dynamic knowledge
graph at each step to answer the questions. How-
ever, this intuition is contradicted in some scenar-
ios such as detecting inputs of the process. For
instance, the answer to the question "Where is light
as step 07" is "Sun", even if it is not mentioned in
the first sentence of the process. Inputs are entities
that are not created in the process.

The architecture of the QA transformer-based
LMs is very similar to the traditional attention
mechanism.  Other methods such as ProLo-
cal (Dalvi et al., 2018) and ProGlobal (Dalvi et al.,
2018) have structured this task by finding the at-
tention of each entity to the text at each step. To
be sensitive to the changes at each step, ProLo-
cal manually changes the model’s input by remov-
ing all steps except the one related to the question.
ProGlobal computes attention to the whole context
while adding a distance value. Distance value is
computed for each token based on its distance to
the direct mention of the entity at each step.

The current language models convey rich linguis-
tic knowledge and can serve as a strong basis for
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solving various NLP tasks (Liu et al., 2019; Devlin
et al., 2019; Yang et al., 2019). That is why most
of the state-of-the-art models on procedural reason-
ing are also built based on current language mod-
els (Amini et al., 2020; Gupta and Durrett, 2019).
Following the same idea, we investigate the chal-
lenges that current models are facing for dealing
with procedural text and propose a new approach
for feeding the procedural information into LMs
in a way that the LM-based QA models are aware
of the taken steps and can answer the questions
related to each specific step in the procedure.

We propose the Time-Stamped Language
model (TSLM model), which uses timestamp em-
bedding to encode past, current, and future time of
events as a part of the input to the model. TSLM
utilizes timestamp embedding to answer differently
to the same question and context based on differ-
ent steps of the process. As we do not change the
portion of the input manually, our approach en-
ables us to benefit from the pre-trained LMs on
other QA benchmarks by using their parameters
to initialize our model and adapt their architecture
by introducing a new embedding type. Here, we
use RoBERTa (Liu et al., 2019) as our baseline
language model.

We evaluate our model on two bench-
marks, Propara (Dalvi et al., 2018) and NPN-
Cooking (Bosselut et al., 2018). Propara contains
procedural paragraphs describing a series of events
with detailed annotations of the entities along with
their status and location. NPN-Cooking contains
cooking recipes annotated with their ingredients
and their changes after each step in criteria such as
location, cleanliness, and temperature.

TSLM differs from previous research as its pri-
mary focus is on using pre-trained QA models and
integrating the flow of events in the global repre-
sentation of the text rather than manually chang-
ing the part of the input fed to the model at each
step. TSLM outperforms the state-of-the-art mod-
els in nearly all metrics of two different evalua-
tions defined on the Propara dataset. Results show
a 3.1% F1 score improvement and a 10.4% im-
provement in recall. TSLM also achieves the state-
of-the-art result on the location accuracy on the
NPN-Cooking location change prediction task by a
margin of 1.55%. In summary, our contribution is
as follows:

* We propose Time-Stamped Language
Model (TSLM model) to encode the meaning

of past, present, and future steps in processing
a procedural text in language models.

* Our proposal enables procedural text under-
standing models to benefit from pre-trained
LM-based QA models on general-domain QA
benchmarks.

* TSLM outperforms the state-of-the-art mod-
els on the Propara benchmark on both
document-level and sentence-level evalua-
tions. TSLM improves the performance state-
of-the-art models on the location prediction
task of the NPN-Cooking (Bosselut et al.,
2018) benchmark.

* Improving over two different procedural text
understanding benchmarks suggests that our
approach is effective, in general, for solving
the problems that require the integration of
the flow of events in a process.

2 Problem Definition

An example of a procedural text is shown in Table
1. The example is taken from the Propara (Dalvi
et al., 2018) dataset and shows the photosynthesis
procedure. At each row, the first column is list
of the sentences, each of which forms one step
of the procedure. The second column contains
the number of the step in the process and the rest
are the entities interacting in the process and their
location at each step. The location of entities at step
0 is their initial location, which is not affected by
this process. If an entity has a known or unknown
location (specified by “?”") at step 0, we call it an
input.

The procedural text understanding task is de-
fined as follows. Given a procedure p contain-
ing a list of n sentences P = {s1,...s,}, an en-
tity e and a time step ¢;, we find L, the location
of that entity and specify the status S of that en-
tity. Status S is one value in the predefined set of
{ non-existence, unknown-location, known-location}. loca-
tion L is a span of text in the procedure that is spec-
ified with its beginning and end token. We formu-
late the task as finding function F' that maps each
triplet of entity, procedure and time step to a pair
of entity location and status: (S, L) = F'(e, P, t;)

3 Proposed Procedural Reasoning Model

3.1 QA Setting

To predict the status and the location of entities at
each step, we model F' with a question answering
setting. For each entity e, we form the input (). as
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Participants
Paragraph State number | Water | Light | CO2 | Mixture | Sugar
(Before the process starts) State 0 Soil Sun ? - -
Roots absorb water from soil State 1 Root Sun ? - -
The water flows to the leaf State 2 Leaf Sun ? - -
Light from the sun and CO2 enter the leaf State 3 Leaf Leaf | Leaf - -
The water, light, and CO2 combine into a mixture State 4 - - - Leaf -
Mixture forms sugar State 5 - - - - Leaf
Table 1: An example of procedural text and its annotations from the Propara dataset (Dalvi et al., 2018). "-" means

entity does not exist. "?" means the location of entity is unknown.

follows:
Q. =[CLS] Where is ¢? [SEP]

1
s1 [SEP] so [SEP] ..., sy, [SEP] W

Although (). is not a step-dependent representa-
tion and does not incorporate any different informa-
tion for each step, our mapping function needs to
generate different answers for the question "Where
is entity e?" based on each step of the procedure.
For instance, consider the example in Table 1 and
the question "where is water?", our model should
generate different answers at four different steps.
The answer will be “root”, “leaf”, “leaf”, “non-
existence” for steps 1 to 4, respectively.

To model this, we create pairs of (Q.,t;) for
each i € {0,1,...,n}. For each pair, Q. is
timestamped according to ¢; using Timestamp(.)
function described in Sec. 3.2 and mapped to
an updated step-dependent representation, Q% =
Timestamp(Qe, t;).

The updated input representation is fed to a lan-
guage model (here ROBERTA) to obtain the step-
dependent entity representation, R%, as shown in
Equation 2. We discuss the special case of ¢ = 0 in
more details in Sec. 3.2.

Rl = RoBERTa(QY) (2)

We use the step-dependent entity representation,
R, and forward it to another mapping function
g(.) to obtain the location and status of the entity
e in the output. In particular the output includes
the following three vectors, a vector representing
the predictions of entity status .S, another vector
for each token’s probability of being the start of
the location span L, and a third vector carrying the
probability of each word being the last token of
the location span. The outputs of the model are
computed according to the Equation 3.

(status, Start_prob, End_prob) = g(RY) (3)

where R, is the tokens’ representations output of
RoBERTa (Liu et al., 2019), and ¢(.) is a function
we apply on the token representations to get the
final predictions. We will discuss each part of the
model separately in the following sections.

3.2 Timestamp Embedding

The timestamp embedding adds the step informa-
tion to the input ). to be considered in the attention
mechanism. The step attention is designed to dis-
tinguish between current (what is happening now),
past (what has happened before), and future (what
has not yet happened) information.

We use the mapping function T'imestamp(.)
from the pair (Q., t;) to add a number along with
each token in (). and retrieve the step-dependent
input Q% as shown in Figure 1. The Mapping func-
tion Timestamp(.) integrates past, current, and
future representations to all of the tokens related to
each part. Timestamp(.) function assigns number
1 for past, 2 for current, and 3 for future tokens in
the paragraph by considering one step of the pro-
cess as the current event. These values are used
to compute an embedding vector for each token,
which will be added to its initial representation as
shown in Figure 2. The special number 0 is as-
signed to the question tokens, which are not part of
the process timeline. For predicting State O (The
inputs of the process), we set all the paragraph
information as the current step.

3.3 Status classification

To predict the entities’ status, we apply a linear
classification module on top of the [C'LS] token
representation in R, as shown in Equation 4.

Attribute = Softmaﬂz(WTRe[C}) “)

where Re|c) is the representation of the [C'LS]
token which is the first token in R,.
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Question

Paragraph

Where is Water? Roots absorb water from soil. The water flows to the leaf. The water, light and CO2 combine into a mixture.
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Figure 1: An example of timestamp embedding in a procedural text. The question is always ignored with value
"0". At each step ¢, the tokens from that step are paired with “current” value, tokens from steps O to ¢ are paired
with “past” value, and the tokens from step @ to last step are paired with the “future” value.

3.4 Span prediction

We predict a location span for each entity for
each step of the process as shown in Equation
5, we follow the popular approach of selecting
start/end tokens to detect a span of the text as
the final answer. We compute the probability of
each token being the start or the end of the an-
swer span. If the index with the highest probabil-
ity to be the start token is tokengiqr+ and for the
end token is token.,q, the answer location will be
Location = P[tokengiart : tokenenq].

Start_prob = Softmax (WL,  R%)
( nth )
(
(

End_prob = Softmax
Start_prob) ~ (5)

tokenggat = arg max

tokengpg = arg max(End_prob)

3.5 Training

We use the cross-entropy loss function to train the
model. At each prediction for entity e at times-
tamp ¢;, we compute one loss value 105S4ttripute
regarding the status prediction and one loss value
l0sSjocation fOr the span selection. The vari-
able 10SSjocation 18 the summation of the losses
of the start token and the end token prediction,
losslocation = losslocationsmrt + losslocationend‘
The final loss of entity e at time ¢; is computed
as in Equation 6.

e _ e e
LOSS@' - loss(i,attribut@) + loss(i,location) (6)

-/?/Location

Attribute Prediction Start/End Span prediction

‘ Transformer Model ‘

‘ +

Position TimeStamp

Embeddlng

@Where Is Wa1er"Absorbs- ' Step
Number,

Question

Word Embedding Type Embedding

Embedding

P h
aragrap Current step of the question

Figure 2: An overview of the proposed model. The

“Timestamp Embedding” module is introduced in this

work and the rest of the modules are taken from basic
language model architecture.

3.6 Inference

At inference time, we apply two different post-
processing rules on the outputs of the model. First,
we impose that the final selected location answer
should be a noun phrase in the original procedure.
Considering that a location span is a noun phrase,
we limit the model to do a softmax over tokens of
noun phrases in the paragraph to select the start and
end tokens. Second, we apply consistency rules to
make sure that our predicted status of entities are
consistent. We define the two following rules:

* An entity can not be created if it has been
already destroyed : if S%i is "non-existence"
and Séi“ is unknown or known location, then
for every step 73, if Szj is unknown or known
location and Séj 1 s "non-existence", then i
<j.
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* An entity cannot be created/destroyed twice
in a process: if S5 and Sti are both "-", Skt
and S'+1 are both either known or unknown
location, then © = j.

Sti is the status of entity e at step t; of the process.

We do not apply an optimization/search algo-
rithm to find the best assignment over the predic-
tions according to the defined constraints. The
constraints are only applied based on the order of
the steps to ensure that the later predictions are
consistent with the ones made before.

4 [Experiments

4.1 Datasets

Propara (Dalvi et al., 2018): This dataset was
created as a benchmark for procedural text under-
standing to track entities at each step of a process.
Propara contains 488 paragraphs and 3,300 sen-
tences with annotations that are provided by crowd-
workers. The annotations ( 81,000) are the location
of entities at each step of the process. The location
can be either the name of the location, unknown
location, or specified as non-existence.
NPN-Cooking (Bosselut et al., 2018): This is
a benchmark containing textual cooking instruc-
tions. Annotators have specified ingredients of
these recipes and explained the recipe using differ-
ent changes happening on each ingredient at each
step of the instructions. These changes are reported
in categories such as location, temperature, clean-
liness, and shape. We evaluate our model on the
location prediction task of this benchmark, which
is the hardest task due to having more than 260
candidate answers. We do not use the candidates
to find the locations in our setting; Instead, we find
a span of the text as the final location answer. This
is a relatively harder setting but more flexible and
generalizable than the classification setting.

4.2 Implementation Details

We use SGD optimizer implemented by Py-
torch (Paszke et al., 2017) to update the model
parameters. The learning rate for the Propara im-
plementation is set to 3 — e4 and is updated by
a scheduler with a 0.5 coefficient every 50 steps.
We use 1 — e6 as the learning rate and a scheduler
with 0.5 coefficient to update the parameters ev-
ery ten steps on the NPN-Cooking implementation.
The implementation code is publicly available at

Step | Entity | Action | Before | After
1 Water | Move Root | Leaf
2 Water | Destroy | Leaf -
1 Sugar | Create - Leaf
2 Sugar | None Leaf | Leaf

Table 2: A sample table to evaluate the Propara
document-level task.

GitHub'.

We use RoBERTa (Liu et al.,, 2019) ques-
tion answering architecture provided by Hugging-
Face (Wolf et al., 2019). RoBERTa is pretrained
with SQuAD (Rajpurkar et al., 2016) and used as
our base language model to compute the token rep-
resentations. Our model executes batches contain-
ing an entity at every step and makes updates based
on the average loss of entities per procedure. The
network parameters are updated after executing one
whole example. The implementation code will be
publicly available on GitHub after acceptance.

4.3 Evaluation

Sentence-level evaluation is introduced in (Dalvi
et al., 2018) for Propara dataset. This evaluation
focuses on the following three categories.

* Catl Is e created (destroyed/moved) during
the process?

* Cat2 When is e created (destroyed/moved)
during the process?

* Cat3 Where is e created (destroyed/moved
from or to) during the process?

Document-level evaluation is a more comprehen-
sive evaluation process and introduced later in (Tan-
don et al., 2018) for Propara benchmark. Currently,
this is the default evaluation in the Propara leader-
board containing four criteria:

* What are the Inputs? Which entities existed
before the process began and do not exist after
the process ends.

* What are the Outputs? Which entities got
created during the process?

* What are the Conversions? Which entities
got converted to other entities?

* What are the Moves? Which entities moved
from one location to another?

The document-level evaluation requires models to
reformat their predictions in a tabular format as
shown in Table 2. At each row of this table, for
each entity at a specific step, we can see the action

"https://github.com/HLR/TSLM
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Sentence-level Document-level
Model Catl Cat2 Cat3 Macro?”? Micro?v? P R F1
ProLocal (Dalvi et al., 2018) 62.7 30.5 104 34.5 34.0 774 229 353
ProGlobal (Dalvi et al., 2018) 63.0 364 359 45.1 454 46.7 524 494
EntNet (Henaff et al., 2017) 51.6 188 7.8 26.1 26.0 50.2 33,5 402
QRN (Seo et al., 2017) 524 155 109 26.3 26.5 55.5 313 400
KG-MRC (Das et al., 2018) 629 40.0 382 47.0 46.6 64.5 50.7 56.8
NCET (Gupta and Durrett, 2019) | 73.7 47.1 41.0 53.9 54.0 67.1 58.5 625
XPAD (Dalvi et al., 2019) - - - - - 70.5 453 552
ProStruct (Tandon et al., 2018) - - - - - 743 43.0 545
DYNAPRO (Amini et al., 2020) 724 493 445 554 55.5 752 58.0 655
TSLM (Our Model) 78.81 56.8 40.9 58.83 58.37 | 684 68.9 68.6

Table 3: Results from sentence-level and document-level

Section 4.3.

applied on that entity, the location of that entity
before that step, and the location of the entity after
that step. Action takes values from a predefined
set including, “None”, “Create”, “Move”, and “De-
stroy”. The exact action can be specified based on
the before and after locations.

We have to process our (Status S, Location L)
predictions at each step to generate a similar tabular
format as in Table 2. We define 7% as a row in this
table which stores the predictions related to entity e
at step ¢;. To fill this row, we first process the status
predictions. If the status prediction .S is either “-
” or “?”, we fill those values directly in the after
location column. The before location column value
of r’ is always equal to the after location column
value of i1, If the status is predicted to be a
“Known Location”, we fill the predicted location
span L into the after location column of 7¢.

The action column is filled based on the data
provided in before and after locations columns. If
the before location is/isn’t "-" and after location
is not/is "-", then the action is "Create"/"Destroy".
If the before and after locations are equal, then
the action is "None" and if the before and after
locations are both spans and are different from each

other, the action is "Move".

NPN-Cooking location change: We evaluate our
model on the NPN-Cooking benchmark by com-
puting the accuracy of the predicted locations at
steps where the locations of ingredients change.
We use the portion of the data that has been anno-
tated by the location changes to train and evaluate
our model. In this evaluation, we do not use the sta-
tus prediction part of our proposed TSLM model.
Since training our model on the whole training set

evaluation on Propara. Cati evaluations are defined in

takes a very long time (around 20 hours per iter-
ation), we use a reduced number of samples for
training. This is a practice that is also used in other
prior work (Das et al., 2018).

4.4 Results

The performance of our model on Propara
dataset (Dalvi et al., 2018) is quantified in Table 3.
Results show that our model improves the SOTA
by a 3.1% margin in the F1 score and improves the
Recall metric with 10.4% on the document-level
evaluation. On the sentence-level evaluation, we
outperform SOTA models with a 5.11% in Catl,
and 7.49% in Cat2 and by a 3.4% margin in the
macro-average. We report Table 3 without consid-
ering the consistency rules and evaluate the effect
of those in the ablation study in Sec. 4.5.

In Table 5, we report a more detailed quanti-
fied analysis of TSLM model’s performance based
on each different criteria defined in the document-
level evaluation. Table 5 shows that our model
performs best on detecting the procedure’s outputs
and performs worst on detecting the moves. De-
tecting moves is essentially hard for TSLM as it is
predicting outputs based on the whole paragraph
at once. Outperforming SOTA results on the input
and output detection suggests that TSLM model
can understand the interactions between entities
and detect the entities which exist before the pro-
cess begins. The detection of input entities is one
of the weak aspects of the previous research that
we improve here.

A recent unpublished research (Zhang et al.,
2021) reports better results than our model. How-
ever, their primary focus is on common-sense rea-
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Model Accuracy | Training Samples | Prediction task
NPN-cooking (Bosselut et al., 2018) 51.3 ~ 83,000 (all data) | Classification
KG-MRC (Das et al., 2018) 51.6 ~ 10,000 Span Prediction
DynaPro (Amini et al., 2020) 62.9 ~ 83,000 (all data) | Classification
63.73 ~ 10,000 Span Prediction
TSLM (Our Model) 64.45 ~ 15,000 Span Prediction

Table 4: Results on the NPN-Cooking benchmark. Both class prediction and span prediction tasks are the same but
use two different settings, one selects among candidates, and the other chooses a span from the recipe. However,
each model has used a different setting and a different portion of the training data. The information of the data

splits was not available that makes a fair comparison hard.

Criteria Precision ‘ Recall ‘ F1
Inputs 89.8 713 | 795
Outputs 85.6 914 | 884
Conversions 57.7 56.7 | 57.2
Moves 40.5 56 47

Table 5: Detailed analysis of TSLM performance on
the Propara test set on four criteria defined in the
document-level evaluation.

soning and their goal is orthogonal to our main
focus in proposing TSLM model. Such approaches
can be later integrated with TSLM to benefit from
common-sense knowledge on solving the Propara
dataset.

The reason that TSLM performs better at recall
and worse at precision is that our model looks at the
global context, which increases the recall and low-
ers the precision when local information is strongly
important. The same phenomenon (better recall) is
observed in ProGlobal, which also considers global
information as we do, compared to ProLocal.

Table 4 shows our results on the NPN-Cooking
benchmark for the location prediction task. Re-
sults are computed by only considering the steps
that contain a location change and are reported
by computing the accuracy of predicting those
changes. Our results show that TSLM outperforms
the SOTA models with a 1.55% margin on accu-
racy even after training on 15,000 training samples.
To be comparable with the KG-MRC (Das et al.,
2018) experiment on NPN-Cooking which is only
trained on 10k samples, we report the performance
of our model trained on the same number of sam-
ples, where TSLM gets a 12.1% improvement over
the performance of KG-MRC (Das et al., 2018).

4.5 Ablation Study

To evaluate the importance of each module one at
a time, we report the performance of the TSLM

by removing the noun-phrase filtering at infer-
ence, the consistency rules, timestamp embedding,
SQuAD (Rajpurkar et al., 2016) pre-training, and
by replacing RoBERTa (Liu et al., 2019) with
BERT (Devlin et al., 2019). These variations are
evaluated on the development set of the Propara
dataset and reported in Table 6. As stated before
and shown in Table 6, it is impossible to remove
the timestamp embedding as that is the only part of
the model enabling changes in the answer at each
step. Hence, by removing that, the model cannot
converge and yields a 25% decrease on the F1
score. The simple consistency and span filtering
rules are relatively easy to be learned by the model
based on the available data, therefore adding those
does not affect the final performance of the model.

TSLMpgrt experiment is designed to ensure
a fair comparison with previous research (Amini
et al., 2020) which has used BERT as their base lan-
guage model. The comparison of TSLM ggrr to
-SQuAD Pre-training and - Timestamp Embedding
in Table 6 indicates that using RoBERTa instead
of BERT is not as much important as our main
proposal (using Time-stamp encoding) in TSLM
model. Also, TSLMggrT achieves 66.7% F1 score
on the Propara test set, which is 1.2% better than
the current SOTA performance.

By removing the SQuAD pre-training phase, the
model performance drops with a 10.6% in the F1
score. This indicates that despite the difference
between the procedural text understanding and the
general MRC tasks, it is quite beneficial to design
methods that can transfer knowledge from other
QA data sources to help with procedural reasoning.
This is crucial as annotating procedural texts is
relatively more expensive and time-consuming.
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Model P R Fl1

TSLMRoBERTa 729 74.1 73.5
- constraints 73.8 733 1735
- noun-phrase filtering 735 733 734
- SQuAD Pre-training 78.8 522 628
- Timestamp Embedding | 94.6 32.6 48.5
TSLMggRrr 69.2 735 713

Table 6: Ablation study results on the development set

99

of the Propara document-level task. “- constraints”,
Span filtering”, and - Timestamp Encoding” shows
our model performance while removing those modules.
-SQuAD Pre-training is when we do not pre-train our
base language model on SQuAD. TSLMgggr is when
we use BERT as the base language model.

5 Discussion

We provide more samples to support our hypoth-
esis in solving the procedural reasoning task and
answer some of the main questions about the ideas
presented in TSLM model.

Why is the whole context important? The main
intuition behind TSLM is that the whole context,
not just previous information, matters in reason-
ing over a process. Here, we provide some sam-
ples from Propara to show why this intuition is
correct. Consider this partial paragraph, "Step i:
With enough time the pressure builds up greatly.
Step ¢ + 1: The resulting volcano may explode.".
Looking at the annotated status and location, the
"volcano" is being created at Step ¢ without even be-
ing mentioned in that step. This is only detectable
if we look at the next step saying "The resulting
Volcano...".

As another example, consider this partial para-
graph: "Step ¢: Dead plants form layers called peat.
... Step ¢ + 3: Pressure squeezes water out of the
peat.". The annotation indicates that the location of
"water" is being changed to "peat" at step ¢, which
is only possible to detect if the model is aware of
the following steps indicating that the water comes
out of the peat.

Positional Embedding VS Time-stamp encod-
ing: As mentioned before the whole context (fu-
ture and past events) is essential for procedural
reasoning at a specific step. However, the reason-
ing should focus on one step at a time, given the
whole context. While positional encoding encodes
the order of information at the token-level for rea-
soning over the entire text, we need another level
of encoding to specify the steps’ positions (bound-

aries) and, more importantly, to indicate the step
that the model should focus on when answering a
question.

Advantages/Disadvantages of TSLM model:
TSLM integrates higher-level information into the
token representations. This higher-level infor-
mation can come from event-sequence (time of
events), sentence-level, or any other higher source
than the token-level information. The first advan-
tage of TSLM is that it enables designing a model
which is aware of the whole context, while previous
methods had to customize the input at each step to
only contain the information of earlier steps. Fur-
thermore, using TSLM enables us to use pretrained
QA models on other datasets without requiring us
to retrain them with the added time-stamped en-
coding. One main disadvantage of TSLM model,
which is natural due to the larger context setting in
this model, is not being sensitive to local changes,
which is consistent with the observation in the com-
parison between ProGlobal and ProLocal models.

6 Related Works

ScoNe (Long et al., 2016), NPN-Cooking (Bosselut
et al., 2018), bAbl (Weston et al., 2015), Process-
Bank (Berant et al., 2014), and Propara (Dalvi et al.,
2018) are benchmarks proposed to evaluate models
on procedural text understanding. Processbank (Be-
rant et al., 2014) contains procedural paragraphs
mainly concentrated on extracting arguments and
relations for the events rather than tracking the
states of entities. ScoNe (Long et al., 2016) aims to
handle co-reference in a procedural text expressed
about a simulated environment. bAbI (Weston
et al., 2015) is a simpler machine-generated tex-
tual dataset containing multiple procedural tasks
such as motion tracking, which has encouraged the
community to develop neural network models sup-
porting explicit modeling of memories (Sukhbaatar
et al., 2015; Santoro et al., 2018) and gated re-
current models (Cho et al., 2014; Henaff et al.,
2017). NPN-Cooking (Bosselut et al., 2018) con-
tains recipes annotated with the state changes of
ingredients on criteria such as location, tempera-
ture, and composition. Propara (Dalvi et al., 2018)
provides procedural paragraphs and detailed anno-
tations of entity locations and the status of their
existence at each step of a process.

Inspired by Propara and NPN-Cooking bench-
marks, recent research has focused on tracking en-
tities in a procedural text. Query Reduction Net-

4567



works (QRN) (Seo et al., 2017) performs gated
propagation of a hidden state vector at each step.
Neural Process Network (NPN) (Bosselut et al.,
2018) computes the state changes at each step by
looking at the predicted actions and involved en-
tities. Prolocal (Dalvi et al., 2018) predicts loca-
tions and status changes locally based on each sen-
tence and then globally propagates the predictions
using a persistence rule. Proglobal (Dalvi et al.,
2018) predicts the status changes and locations
over the whole paragraph using distance values
at each step and predicts current status based on
current representation and the predictions of the
previous step. ProStruct (Tandon et al., 2018) aims
to integrate manually extracted rules or knowledge-
base information on VerbNet (Schuler, 2005) as
constraints to inject common-sense into the model.
KG-MRC (Das et al., 2018) uses a dynamic knowl-
edge graph of entities over time and predicts lo-
cations with spans of the text by utilizing read-
ing comprehension models. Ncet (Gupta and Dur-
rett, 2019) updates entities representation based
on each sentence and connects sentences together
with an LSTM. To ensure the consistency of pre-
dictions, Ncet uses a neural CRF over the changing
entity representations. XPAD (Dalvi et al., 2019)
is also proposed to make dependency graphs on
the Propara dataset to explain the dependencies of
events over time. Most recently, DynaPro (Amini
et al., 2020) feeds an incremental input to pre-
trained LMs’ question answering architecture to
predict entity status and transitions jointly.

TSLM differs from recent research, as we pro-
pose a simple, straightforward, and effective tech-
nique to make our model benefit from pre-trained
LMs on general MRC tasks and yet enhance their
ability to operate on procedural text understand-
ing. We explicitly inject past, current, and future
timestamps into the language models input and im-
plicitly train the model to understand the events’
flow rather than manually feeding different portions
of the context at each step. Procedural reasoning
has also been pursued within the multi-modality
domain (Yagcioglu et al., 2018; Rajaby Faghihi
etal., 2020; Amac et al., 2019) which has additional
challenges of aligning the representation spaces of
different modalities.

7 Conclusion

We proposed the Time-Stamped Language
Model (TSLM model), a novel approach based

on a simple and effective idea, which enables
pre-trained QA models to process procedural
texts and produce different outputs based on each
step to track entities and their changes. TSLM
utilizes a timestamp function that causes the
attention modules in the transformer-based LM
architecture to incorporate past, current, and
future information by computing a timestamp
embedding for each input token. Our experiments
show a 3.1% improvement on the F1 score and
a 10.4% improvement over the Recall metric on
Propara Dataset. Our model further outperforms
the state-of-the-art models with a 1.55% margin in
the NPN-Cooking dataset accuracy for the location
prediction task.

As a future direction, it is worth investigating
how common-sense knowledge can be integrated
with the TSLM setting by augmenting the process
context using external sources of related domain
knowledge. We also intend to investigate the effec-
tiveness of our approach on similar tasks on other
domains and benchmarks. As another future direc-
tion, it can be effective to apply an inference algo-
rithm to impose the global consistency constraints
over joint predictions in procedural reasoning in-
stead of using naive post-processing rules.
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