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Abstract
Utilizing clinical texts in survival analysis is
difficult because they are largely unstructured.
Current automatic extraction models fail to
capture textual information comprehensively
since their labels are limited in scope. Fur-
thermore, they typically require a large amount
of data and high-quality expert annotations for
training. In this work, we present a novel
method of using BERT-based hidden layer
representations of clinical texts as covariates
for proportional hazards models to predict pa-
tient survival outcomes. We show that hid-
den layers yield notably more accurate pre-
dictions than predefined features, outperform-
ing the previous baseline model by 5.7% on
average across C-index and time-dependent
AUC. We make our work publicly available
at https://github.com/bionlplab/
heart_failure_mortality.

1 Introduction

Survival analysis estimates the expected time until
an event of interest occurs (Ranganath et al., 2016).
In clinical research, it is used to understand the
relationship between prognostic covariates (e.g.,
age and treatment) and patient survival time for
important use cases such as predicting mortality of
heart failure patients and providing management
recommendations for intensive care units during a
public health crisis like the COVID-19 pandemic
(Pandey et al., 2020; Sprung et al., 2020; Nielsen
et al., 2019).

Clinical texts such as radiology reports contain
rich information about patients that is used to diag-
nose disease, plan treatments and monitor progress.
It also contains the high-level reasoning of human
experts that requires years of knowledge accumula-
tion and professional training (Langlotz, 2015). De-
spite their clinical relevance, it is challenging to use
them in survival analysis since they are largely un-
structured. Automatic labelers are often unable to
capture detailed information to distinguish between

patients, especially ones with similar conditions,
because they mostly rely on a small set of manually
selected labels (Lao et al., 2017). Developing meth-
ods for accessing the critical information embedded
in unstructured clinical texts holds the potential to
meaningfully benefit clinical research.

To bridge this gap, we propose a deep learning
method to predict the survival probability of heart
failure (HF) patients based on the high-dimensional
feature representations of their radiology reports.
Concretely, we extract hidden features from the
texts with BERT-based (Devlin et al., 2019) mod-
els and apply a recurrent neural network (RNN)
to model sequences of reports and estimate the
log-risk function for the overall mortality predic-
tion. This approach can encapsulate more textual
information than hand-crafted features and incorpo-
rate higher-order temporal information from report
sequences. We find that our model improves on
average 5.7% in both C-index and time-dependent
AUC without requiring additional expert annota-
tions.

We make three contributions through this work:
(1) present a novel survival analysis model to lever-
age feature representations from clinical texts, (2)
demonstrate that our model outperforms the ones
dependent on predefined expert features and that
this approach can generalize across various biomed-
ical and clinical BERT models, and (3) make our
work publicly available for reproduction by others.

2 Related Work

Due to the lack of expert annotations, earlier au-
tomatic labelers mostly use predefined linguistic
patterns to extract relevant information. NegEx
(Chapman et al., 2001) is a regular expression algo-
rithm that identifies observations based on specified
phrases. NegBio (Peng et al., 2018) uses universal
dependencies and subgraph matching in addition to
regular expressions. CheXpert (Irvin et al., 2019)
extends NegBio by adding rules to extract, classify,

https://github.com/bionlplab/heart_failure_mortality
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and aggregate mentions to improve performance.
While they typically achieve a high precision, they
suffer from a low recall because of their limited
rules.

BERT (Devlin et al., 2019) is a transformer-
based method that extracts feature representations
of unlabeled text that are effective for transfer learn-
ing across various NLP tasks. It is adapted to
a wide range of domains, including biomedical
and clinical domains (Lee et al., 2020; Alsentzer
et al., 2019; Peng et al., 2019). Recently, BERT
models have been applied to labeling radiology
reports. CheXbert (Smit et al., 2020) and CheX-
pert++ (McDermott et al., 2020) train on silver-
standard datasets created with a rule-based labeler,
CheXpert. Although they outperform rule-based
labelers, these approaches need a curated training
corpus which can be costly to obtain and error-
prone. Furthermore, their labels are still limited
and can miss critical information from the reports.

Regarding survival analysis, the Cox propor-
tional hazards model (CPH) is widely adopted as it
can deal with censored data and evaluate the prog-
nostic values of covariates simultaneously (Cox,
1972). DeepSurv (Katzman et al., 2018) and Deep-
Hit (Lee et al., 2018) are more contemporary meth-
ods that use deep neural networks to model more
complex, nonlinear relationships of predictor vari-
ables. RNN-SURV (Giunchiglia et al., 2018) and
DRSA (Ren et al., 2019) model time-variant, se-
quential patterns from predictor variables. To the
best of our knowledge, the compatibility of these
models and high-dimensional features as covariates
has not been tested.

Automatic extraction tools enable survival analy-
sis to incorporate textual information from clinical
texts. Pandey et al. (2020) used a convolutional neu-
ral network to extract findings from radiology re-
ports of heart failure patients and predict all-cause
mortality with CPH. Heo et al. (2020) performed
stroke prognosis based on the document-level and
sentence-level representations of MRI records. Our
work extends this line of research by using contex-
tual deep representations of clinical texts to per-
form survival analysis.

3 Methods

3.1 Task

We first formulate the survival analysis problem. In
the discrete context, we divide the continuous time
into disjoint intervals V = (tl−1, tl] where t0 and

tT are the first and last observation interval bound-
aries. At time tu, the model predicts the survival
probability in the prediction window (tu, tT ] with
longitudinal features in the observation window
(t0, tu] (Figure 1).

For each participant i, the survival probability
at each time tl (l > u) is Si(tl) = Pr(z > tl),
where z is the time-to-event, time until death in our
case. The hazard rate of the survival probability is
λi(tl) =

Si(tl−1)−Si(tl)
Si(tl)

.

3.2 Model
Our framework consists of two stages: feature ex-
traction and survival analysis (Figure 1).
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Figure 1: Model Architecture.

3.2.1 Feature Extraction
The input of each time tl is given by the features
extracted from the reports of each patient i. In this
work, we evaluate two sets of predefined features
and hidden features of the reports.

The first feature set consists of 14 common ra-
diographic findings in computed tomography (CT)
imaging reports (aortic aneurysm, ascites, atelec-
tasis, atherosclerosis, cardiomegaly, enlarged liver,
gall bladder wall thickening, hernia, hydronephro-
sis, lymphadenopathy, pleural effusion, pneumonia,
previous surgery, and pulmonary edema). The find-
ings are extracted using the convolutional neural
network provided by Pandey et al. (2020) which
had the reported performance of 0.90 F1 in average.

The second feature set consists of 14 predefined
findings in CheXpert (Irvin et al., 2019) which are
commonly found in radiology reports (atelectasis,
cardiomegaly, consolidation, edema, enlarged car-
diomediastinum, fracture, lung lesion, lung opacity,
pleural effusion, pleural other, pneumonia, pneu-
mothorax, support devices, and normal). These
features are extracted using CheXbert (Smit et al.,
2020) with the reported performance of 0.80 F1 in
average.

For deep representations, we use CheXbert’s
final hidden layer features of the reports. More
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specifically, we extract the information before it
passes on to the output layer that consists of 14
linear heads. The representations are vectors of
size 768.

Lastly, we construct sequential deep representa-
tions by creating arrays of up to three most recent
reports of each patient. As the reports can change
over time based on the patient’s condition, these
features are time-variant and contain temporal in-
formation that cannot be obtained by a single report.
In addition to CheXbert, we apply BERT variations
– BERT, BioBert, ClinicalBert and BlueBert.

3.2.2 Deep survival analysis
In this study, the hazard rate has the form

λi(tl | Xi) = λu(tl)e
ψ(Xi) (1)

ψ is a patient’s log-risk of failure, Xi are covariates
representing a patient’s variables up to tu, and λu
baseline hazard at tu.

For the standard Cox Proportional-Hazards
(CPH) model (Cox, 1972), ψ(Xi) has the form
of a linear combination of p covariates β1Xi1 +
· · ·+βpXip. In our experiments, the covariates are
the features extracted from the reports.
ψ can also be a non-linear risk function of a mul-

tilayer perceptron (MLP). To this end, our model
is the same as DeepSurv (Katzman et al., 2018).

Both CPH and DeepSurv cannot incorporate the
higher-order temporal information from report se-
quences. To solve this problem, we define ψ =
LSTM(Xi) to model the possible time-variant ef-
fects of the covariates leading up to tu (Figure 1).
Our model is similar to RNN-SURV (Giunchiglia
et al., 2018) and DRSA (Ren et al., 2019). The
main difference is that the objective function is
the average partial log-likelihood (Kvamme et al.,
2019):

− 1

N

∑
i∈Ul

ψ̃(xi)− log
∑
j∈Rl

eψ̃(xj)

 (2)

Ul is the set of patients that are deceased or last
known to be alive (censored) by time point tl. Rl
is the set of all live and uncensored patients before
tl. N is the total number of deceased patients in
the dataset.

4 Experiments

4.1 Data
The dataset (Pandey et al., 2020) is a collec-
tion of thoracoabdominal CT reports in English

for heart failure patients from the New York-
Presbyterian/Weill Cornell Medical Center who
were admitted and discharged with billing codes
ICD-9 Code 428 or ICD-10 Code I50 from January
2008 and July 2018 (Table 1). It was reviewed by
the institutional board and de-identified. We use
each patient’s three most recent reports or zero vec-
tors for any missing ones. Their time-to-event is
calculated as the number of days between the most
recent report date and death date if deceased or the
last follow-up date if censored. We perform simple
preprocessing steps to confirm each patient has at
least one report and nonnegative time-to-event.

Characteristics n

Number of Patients 11,971
30 days mortality 1,209
365 days mortality 2,062
Total mortality 2,602

Number of Reports 39,752
Avg number of words in reports 306

Table 1: Dataset Overview.

4.2 Metrics
To assess the discriminative accuracies of our mod-
els, we use the C-index (Harrell et al., 1982) and
time-dependent area-under-the-curve (AUC) (Hea-
gerty and Zheng, 2005), some of the most com-
monly used evaluation metrics in clinical research
(Kamarudin et al., 2017; Pencina and D’Agostino,
2004; Uno et al., 2011). Intuitively, the C-index
measures the extent to which the model is able
to assign logical risk scores. An individual with
shorter time-to-event T should have a higher risk
score R than the ones with longer time-to-event.
Formally, it is defined as:

C =

∑
i,j
I(Ti > Tj) · I(Ri < Rj) · dj∑

i,j
I(Ti > Tj) · dj

(3)

I(c) =

{
1 if c is true
0 else

dj =

{
1 if Tj exists
0 else

Both C-index and AUC assign a random model
0.5 and a perfect model 1. We measure all-time C-
index, C-index at 30 days (C-index@30), and AUC
at 30 days and 365 days (AUC@30 and AUC@365)
to show the models’ performances dealing with
different time-to-events1.

1https://github.com/sebp/
scikit-survival

https://github.com/sebp/scikit-survival
https://github.com/sebp/scikit-survival
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Model C-index C-index@30 AUC@30 AUC@365

CPH + Feature Set 1 0.499 ± 0.025 0.504 ± 0.032 0.503 ± 0.037 0.501 ± 0.028
CPH + Feature Set 2 0.621 ± 0.014 0.632 ± 0.033 0.642 ± 0.030 0.642 ± 0.030
CPH + Hidden Features 0.674 ± 0.023 0.696 ± 0.022 0.710 ± 0.022 0.697 ± 0.026
MLP + Feature Set 1 0.502 ± 0.023 0.509 ± 0.026 0.509 ± 0.030 0.501 ± 0.032
MLP + Feature Set 2 0.658 ± 0.010 0.671 ± 0.025 0.685 ± 0.023 0.683 ± 0.008
MLP + Hidden Features 0.704 ± 0.017 0.726 ± 0.020 0.744 ± 0.019 0.734 ± 0.018
LSTM + Sequential HF 0.709 ± 0.022 0.733 ± 0.031 0.752 ± 0.033 0.742 ± 0.023

Table 2: Evaluation results. Feature Set 1 - (Pandey et al., 2020), Feature Set 2 - (Irvin et al., 2019), Sequential
HF - sequential hidden features

Model C-index C-index@30 AUC@30 AUC@365

BERT-Base (Devlin et al., 2019) 0.603 ± 0.115 0.611 ± 0.123 0.618 ± 0.134 0.620 ± 0.136
BioBert (Lee et al., 2020) 0.701 ± 0.021 0.714 ± 0.027 0.734 ± 0.029 0.739 ± 0.028
ClinicalBert (Alsentzer et al., 2019) 0.692 ± 0.019 0.705 ± 0.023 0.723 ± 0.025 0.727 ± 0.029
BlueBert (Peng et al., 2019) 0.713 ± 0.019 0.735 ± 0.024 0.755 ± 0.024 0.756 ± 0.021
CheXbert (Smit et al., 2020) 0.709 ± 0.022 0.733 ± 0.031 0.752 ± 0.033 0.742 ± 0.023

Table 3: Evaluation results of LSTM + sequential hidden features using different BERT models.

4.3 Training

We perform a grid search to find the optimal hyper-
parameters based on the metrics and use them for
all configurations. The learning rate is set to 0.0001
with an Adam optimizer. We iterate the training
process for 100 epochs with batch size 256 and
early stop if the validation loss does not decrease.
The dropout rate is 0.6. We perform five-fold cross-
validation to produce 95% confidence intervals for
each metric. The training, validation and test splits
are 70%, 10%, 20%, respectively. We use pycox
and PyTorch to implement the framework2. The
end-to-end training takes about 30 minutes with
NVIDIA Tesla P100 16 GB GPU, mainly due to
feature extraction.

4.4 Results & Discussions

Table 2 shows our experimental results with varia-
tions in covariates and survival analysis models.

Our LSTM model with hidden features (LSTM
+ Hidden Features) achieves the best results (0.709
in C-index), 3.5% and 0.5% improvements over
CPH + Hidden Features and MLP + Hidden Fea-
tures. In contrast to the MLP, its data included the
reports from patients’ prior visits with more textual
and higher-order temporal information. Nonethe-
less, the improvements are stll marginal, suggesting
that the evaluation of the effectiveness of LSTM

2https://github.com/havakv/pycox

in survival analysis in this context would require
more empirical evidence, particularly with more
longitudinal text data.

We observe that the hidden features provide at
least 5% improvements over the other feature sets
with both CPH and MLP. This indicates that the
hidden features capture textual information more
thoroughly than the predefined features for survival
analysis.

We find that Feature Set 2, obtained with
CheXbert (Smit et al., 2020), performs significantly
better (> 10% C-index) than Feature Set 1, ob-
tained with the CNN model (Pandey et al., 2020).
With both CPH and MLP, Feature Set 1 yields
around 0.5 in C-index and AUC, whereas Feature
Set 2 shows prognostic value in the 0.62-0.69 range.
The difference of the feature sets directly results
in the performance difference. While Feature Set
1 and Feature Set 2 have overlapping features (at-
electasis, cardiomegaly, pleural effusion, and pneu-
monia), Feature Set 1 is not as discriminatory as
Feature Set 2. This observation informs us that
much important textual information with prognos-
tic value is likely lost between the feature sets.

Finally, we compare our model on BERT-Base
variants. BERT-Base, CheXbert and BlueBert used
“uncased” text. BioBert and ClinicalBert used
“cased” text. BioBert was pretrained on PubMed ab-
stracts. ClinicalBert was initialized with BioBert’s
weights and further trained on MIMIC-III clinical
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notes. BlueBert was pretrained on both datasets
altogether. Table 3 shows that all BERT variants
(except the original BERT) capture the textual in-
formation more comprehensively than the prede-
fined features and yield significantly more accurate
predictions. Further, the models with more perti-
nence to radiology reports perform incrementally
better. BlueBert outperforms others and improves
on CheXbert slightly. This observation is consis-
tent with the findings in (Peng et al., 2019). These
results illustrate that using hidden layer represen-
tations in survival analysis can generalize across
deep learning models based on their areas of focus.

4.5 Conclusion & Future Work

Incorporating the textual information of clinical
texts in survival analysis is challenging because
of their unstructured format. Automatic extraction
tools have a small set of features selected by ex-
perts and fail to capture the information fully and
precisely. We show a novel method of using hidden
layer representations of clinical texts as covariates
for proportional hazards models. When applied
to predicting all-cause mortality of heart failure
patients, the results indicate that hidden features
encapsulate more comprehensive and effective tex-
tual information than predefined features.

We plan to explore the use of the attention mech-
anism to the input sequence and test the general-
izability of this method with more datasets. In
addition, we plan to gain more insights on how
hidden features are influenced (e.g. word choice,
text length, etc.) and add value for better predic-
tion as interpretability is highly important in the
medical domain. We hope our small contribution
provides assistance in the scalable development of
accurate predictive models that harness clinical text
information.
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