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Abstract

Natural language inference requires reason-
ing about contradictions, negations, and their
commonsense implications. Given a simple
premise (e.g., “I’m mad at you”), humans can
reason about the varying shades of contradic-
tory statements ranging from straightforward
negations (“I’m not mad at you”) to common-
sense contradictions (“I’m happy”). Moreover,
these negated or contradictory statements shift
the commonsense implications of the origi-
nal premise in nontrivial ways. For example,
while “I’m mad” implies “I’m unhappy about
something,” negating the premise (i.e., “I’m
not mad”) does not necessarily negate the cor-
responding commonsense implications.

In this paper, we present the first comprehen-
sive study focusing on commonsense impli-
cations of negated statements and contradic-
tions. We introduce ANION1, a new com-
monsense knowledge graph with 624K if-then
rules focusing on negated and contradictory
events. We then present joint generative and
discriminative inference models for this new
resource, providing novel empirical insights
on how logical negations and commonsense
contradictions reshape the commonsense im-
plications of their original premises.

1 Introduction

Humans reason about underlying causes and ef-
fects of events described in text. For example,
in Figure 1, the event “X wears a mask” is as-
sociated with many causal inferences such as “X
is seen as responsible,” or “Others get protected.”
Hypothesizing and reasoning about commonsense
inferences is used for understanding complex sit-
uations encountered in everyday life (Sap et al.,
2019; Bisk et al., 2020; Bhagavatula et al., 2020;
Sakaguchi et al., 2020). This ability eludes AI sys-
tems, and has motivated the design of a wealth of

1Data and code available at https://github.com/
liweijiang/anion
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Figure 1: Commonsense inferences for the event “X
wears a mask,” its logical negation and commonsense
contradiction events, and their associated inferences.

commonsense knowledge resources, such as Cyc
(Lenat, 1995), ConceptNet (Speer et al., 2017), and
ATOMIC (Sap et al., 2020; Hwang et al., 2020),
to provide structured reasoning capabilities to AI
systems (Lin et al., 2019; Feng et al., 2020).

However, reasoning about negated observations
remains a challenge (Hossain et al., 2020). While
negation is often considered a poorer form of mean-
ing than affirmation2 (Ackrill, 1963; Horn and
Wansing, 2020), negated statements can still im-
ply expressive commonsense inferences. In Fig-
ure 1, the negated event “X doesn’t wear a mask,”

2Following Horn and Wansing (2020), we classify declar-
ative expressions as affirmations or negations/contradictions
based on whether they affirm or deny an action or object.

https://github.com/liweijiang/anion
https://github.com/liweijiang/anion
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is connected to rich commonsense inferences, de-
spite describing the absence of action. However,
negated observations are rarely found in common-
sense knowledge resources. For example, negated
examples make up only ∼3% of examples in the
ConceptNet knowledge graph (Li et al., 2016).

This scarcity poses downstream issues for sys-
tems that must understand negated situations. Com-
monsense knowledge models (Bosselut et al., 2019;
Hwang et al., 2020) trained on resources of largely
affirmative instances struggle particularly with
negation examples. Their ability to hypothesize
inferences for negated events is 35% lower than
for affirmative events (§4.2). Furthermore, since
negated statements are asymmetrically mentioned
in text compared to affirmative statements (Jowett
et al., 1892; Horn and Wansing, 2020), large-scale
pretraining does not implicitly learn negation scop-
ing (Kim et al., 2019). As a result, when presented
with negated concepts, pretrained neural language
models (PLMs) often exhibit the same associations
as affirmative statements (Kassner et al., 2020).
Motivated by these observations, our work focuses
on improving the ability of knowledge models to
make commonsense inferences about events that
convey denial, rejection or contradiction of actions.

We define our contributions as follows. First,
we crowdsource a new large scale resource, Array
of commonseNse Inferences for Oppositions and
Negations (ANION), which contains inferences for
different types of negated events.This new resource
can be used to train knowledge models on com-
monsense inferences associated with the absence
of actions. Second, we propose a new class of nega-
tion discriminators that can be applied to generated
commonsense inferences. These discriminators
partition inferences based on logical consistency,
thereby mitigating the effects of common affirma-
tive associations that violate negation constraints.
Discriminators are trained using contrastive sam-
ples from paired affirmative and negated events in
ANION. Finally, we conduct an empirical study
of both of these techniques and show that using
training- and discriminator-based approaches for
modeling negation cuts the performance difference
between affirmative and negated events by 73% -
85% depending on the negation variety.

2 Commonsense Negation

Negation in Language In Categories and De In-
terpretatione, Aristotle classifies declarative state-

ments into affirmation and negation, which respec-
tively affirms or denies observations about an event
(Ackrill, 1963). Despite this seeming simplic-
ity, natural language often expresses negation in
complex and subtle ways, using diverse syntactic,
semantic and pragmatic formulations (Horn and
Wansing, 2020). For example, syntactically, differ-
ent negation determiners (i.e., negation cues) such
as no, few and only result in distinct explicit and
implicit negative perceptions (Xiang et al., 2016).

Despite their diversity, however, negated lan-
guage expressions are much less likely to appear
in text than affirmative statements (Reitan et al.,
2015). Consequently, PLMs, which rely on large-
scale textual corpora as training data, are prone
to decreased performance when confronted with
negated constructions. In machine translation, for
example, the presence of negation may heavily af-
fect the quality of produced translations (Fancellu
and Webber, 2015; Hossain et al., 2020). In factual
knowledge understanding tasks, PLMs memorize
positive and negative sentences seen during train-
ing, but generalize more poorly to unseen negated
instances (Kassner and Schütze, 2020).

Negation in Commonsense Reasoning Under-
standing negation and oppositional expressions is
critical for reasoning about commonsense knowl-
edge, particularly in counterfactual scenarios (Qin
et al., 2019). However, negation is rarely explicitly
modeled in NLP studies on commonsense reason-
ing. As a result, in many NLP tasks, these mod-
els experience a performance drop when presented
with examples exhibiting negated characteristics.

As a case study, the ATOMIC (Sap et al., 2020)
knowledge graph encodes social commonsense
knowledge about event pre-conditions, event post-
conditions, and static attributes in the form of
natural language if-then rules. However, despite
the fact that ATOMIC provides a rich set of seed
events, it comprises an unbalanced set of affirma-
tive events (97.9%) and negated events (2.1%). As
a result, when systems link to ATOMIC to retrieve
relevant social commonsense inferences, they are
likely to recover inferences of affirmative events
even when searching for negated instances. Fur-
thermore, knowledge models that use this resource
(e.g., COMET; Bosselut et al., 2019) are unlikely to
learn implicit differences between inferences of af-
firmative and negated events. When given negated
events, these models often produce associations of
counterpart affirmative events. For example, for
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Types Example Negation Cues Example Sentences

Affixes un-, ir-, non-, il-, im-, -less, etc. X addresses an irrelevant point
X is unlikely to be a spy
X unsaddles the horse

Single-word not, no, nothing, nobody, few, little, without,
never, hardly, rarely, barely, seldomly, etc.

X does not tell the truth to the public
X never eats ice cream
X went to a movie without his friends

Multi-word no longer, barely/hardly ever, not at all,
a lack of, be deprived of, in the absence of,
on no condition, by no means, not by any means,
under no circumstances, make no attempt to, etc.

X no longer wants to buy a car
X is not at all impressed by Y’s ideas
X under no circumstances smokes
X is by no means cheating on Y

Negative Verbs oppose, refuse, resist, avoid, disapprove,
lack, discontinue, stop, cease, halt, prohibit,
forbid, prevent, reject, fail, etc.

X denies the existence of god
X restrains himself from eating with Y
X refuses to be in a relationship

Table 1: Negation cues and examples from ANION.

the negated event, “X opposes racism,” COMET
infers “X intends to be a racist,” an association of
the affirmative statement, “X supports racism.”

At the heart of this problem is that inferring
commonsense knowledge about negations often re-
quires implicit reasoning. In factual knowledge rea-
soning, applying logical rules over statements can
be effective for handling negative queries (Asai and
Hajishirzi, 2020; Ren and Leskovec, 2020). How-
ever, directly manipulating affirmative forms with
logic-guided rules may fail for commonsense rea-
soning: the boundary of commonsense inferences
between affirmative and negated statements is not
always wholly contrastive. Many inferences can
be relevant to both forms. The events “X puts the
potato in the oven” and “X doesn’t put the potato in
the oven,” could both have an associated inference:
“X wants to make dinner.” The affirmative event
clearly implies this inference. For the negated event
to be worth mentioning on its own (Grice et al.,
1975), an implicit complementary event (e.g., “X
puts the potato in the microwave”) would likely
hold, which might validate the inference w.r.t. the
negated event. To model the defeasibility of com-
monsense reasoning (Pratt, 1994; Rudinger et al.,
2020), modeling both common and contrastive in-
ferences of negated forms is necessary.

3 ANION: Commonsense Inferences of
Oppositions and Negations

To provide a rich resource of commonsense infer-
ences for opposition and negation events, we design
ANION. Using the same schema as the ATOMIC

knowledge graph (Sap et al., 2020), we initialize
22,483 negated forms paired to original ATOMIC

events and crowdsource 627,042 new inferences
for these negated events. Consistent with ATOMIC,

ANION is constructed using English formulations
of events and inferences. We briefly recap ATOMIC

and describe the construction of ANION below.

ATOMIC Background The ATOMIC knowledge
graph contains ∼24K base events (e.g., “X plays
the piano”) with 877K accompanying social com-
monsense inferences (e.g., “Before, X needs to buy
a piano.”) along nine dimensions (e.g., xNeed). The
full description of ATOMIC relation types can be
found in Table 12 in the Appendix.

3.1 Overview of ANION Construction

Our knowledge construction pipeline consists of
two steps. First, we collect negated and contra-
dictive events by deriving oppositions of events in
ATOMIC. Inspired by the distinction made between
negation contributed by semantic assertion (explicit
negation) or non-asserted content (implicit nega-
tion) (Xiang et al., 2016), we define three varieties
of negated events: logical negations, semi-logical
negations, and commonsense contradictions, which
we describe in detail below. Logical and semi-
logical negations were heuristically formulated
from ATOMIC events. Commonsense contradiction
events were crowdsourced from Amazon Mechan-
ical Turk (MTurk). Negated events in ANION are
assigned to the same data split as the corresponding
affirmative event from which they are derived (e.g.,
negated events for ATOMIC training set events are
found in the ANION training set).

Once a list of negated events is compiled, we
crowdsource inferences of these new events on
MTurk using similar annotation templates as Sap
et al. (2020). We design qualifying tasks to filter
out unreliable workers and screen their answers
manually for quality control purposes.
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Type #Words Total Train Development Test

ATOMIC
event 4.61 25,096 20,322 2,282 2,492

inference - 795,059 643,571 72,227 79,261

ANION - Logical (L) event 4.47 8,285 4,175 1,903 2,207
inference - 225,635 110,864 57,170 57,601

ANION - Semi-logical (S) event 4.52 5,019 2,457 1,223 1,339
inference - 138,587 66,087 33,030 39,470

ANION - Commonsense Contradiction (C) event 4.46 9,179 3,267 2,808 3,104
inference - 262,820 93,419 95,685 73,716

Table 2: Statistics of ATOMIC and different subsets of ANION (ANION-L + ANION-S + ANION-C).

Logical Negation We define logical negation
events as events with the negation cue not added to
their original formulation (e.g., “X does not play
the piano”). However, different positions of the not
modifier in a clause can result in different negation
scopes, which can alter the semantics of the event
(Councill et al., 2010). To be consistent, we sys-
tematically insert not after the subject of the event
clause. If necessary, we change verb forms and
add auxiliary words (e.g., do, does, did, is, was,
can, could, would, should, may, might). For quality
control, we have human workers validate each log-
ically negated event form and exclude events that
annotators identify as uninterpretable or awkwardly
worded. For each created event, we then collect the
same nine dimensions of inferences as defined in
ATOMIC. Consequently, we collected 8,285 logi-
cally negated events with 225K corresponding in-
ferences (as shown in Table 2). Appendix A.1 pro-
vides further details of the compilation of logical
negation events.

Semi-logical Negation We define semi-logical
negation using explicit cues other than not. We cat-
egorize these negation cues (words or phrases) into
four subtypes: affixes (e.g., legal/illegal), single-
word cues (e.g., never), multi-word cues (e.g., no
longer), and negative verbs (e.g., refuse). See Ta-
ble 1 for examples. We create semi-logical nega-
tion events by heuristically adding these cues to
different positions of ATOMIC events. Similar
to logically-negated events, we avoid grammati-
cally incorrect or semantically awkward events by
removing auto-generated instances of low qual-
ity. The final set of data includes 5,019 semi-
logical negation events. We then crowdsource a
total of 138K inferences for these new events. Ap-
pendix A.1 provides further details of the compila-
tion of semi-logical negation events.

Event Commonsense Contradiction

X buys a bicycle X buys a car
X donates a bicycle

X walks in the door X stops at the door
X walks out of the building

X works hard all day X plays games all day
X puts in minimal effort all day

X finishes the story X starts the story
X stops halfway through the story

X turns the air blue X secretly curses
X speaks appropriately

Table 3: Contradictions of events from ATOMIC

Commonsense Contradiction We formulate
commonsense contradiction as contradictory state-
ments without negation cues. Commonsense con-
tradiction events are not identifiable as negations
on their own, but demonstrate reversed semantic
or pragmatic meaning when paired with their affir-
mative counterparts (e.g., “X eats a hamburger” vs.
“X eats a salad”). To obtain commonsense contra-
dictions, we crowdsource two oppositional events
for each ATOMIC event, excluding events with
blank placeholders representing generic objects,
resulting in 40K new commonsense contradiction
events. For 9,179 of these events, we crowdsource
an additional 262K commonsense inferences. Ap-
pendix A.1 provides further details of the crowd-
sourcing of commonsense contradiction events.

4 Knowledge Models of Negated Events

ANION can be used as training data for common-
sense models to make inferences about negated
events. Here, we recap COMET (Bosselut et al.,
2019), a commonsense knowledge model, and eval-
uate how training knowledge models on ANION

affects their ability to hypothesize commonsense
knowledge for negated and oppositional events.
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Eval Set Train Set PPL ↓ BL2 ↑ P@10 ↑

ATOMIC
ATOMIC 9.30 14.18 55.18
ATOMIC + ANION 9.28 14.05 *53.61

ANION-L ATOMIC 10.87 10.86 35.84
ATOMIC + ANION 9.08 11.96 **45.42

ANION-S ATOMIC 11.69 12.07 36.89
ATOMIC + ANION 9.80 13.22 **46.88

ANION-C ATOMIC 12.02 14.32 46.70
ATOMIC + ANION 11.20 14.64 **50.65

Table 4: Evaluations of COMET models trained on
ATOMIC and ANION KGs. Training on examples of
negated events leads to large improvements in the qual-
ity of generated inferences with minimal dropoff in
the quality of inferences for affirmative events. Sin-
gle (*) and double asterisks (**) indicate significance
at p<0.05 and p<0.01, respectively.

4.1 Setup

Commonsense transformers (COMET) are gener-
ative knowledge models that learn to hypothesize
commonsense inferences by training on examples
from a knowledge graph. Specifically, COMET
receives knowledge tuples in {h, r, t} form during
training, where h is a head entity, r is a relation
type, and t is a tail entity. The model is trained to
maximize the conditional loglikelihood of predict-
ing the tokens of the tail entity t given the tokens
of the head entity h and relation r:

LG = −
∑

logP (t|h, r) (1)

In ATOMIC and ANION, h corresponds to events,
such as “X has a nightmare,” t corresponds to com-
monsense inferences about those events, such as
“X wakes up,” and r corresponds to commonsense
inference types, such as “As a result, X does...”.

Following Bosselut et al. (2019) and Sap et al.
(2020), for each event and relation type in ATOMIC,
10 candidate inferences are decoded from COMET
using beam search with b=10.

4.2 Experiments

As oppositional instances remain challenging to
knowledge models such as COMET, we evaluate
how ANION can be used to augment the type of
examples seen by COMET during training.

Evaluation Metrics Following Bosselut et al.
(2019), we evaluate the quality of generated in-
ferences using BLEU-2 (Papineni et al., 2002) as
an automatic evaluation. We also compute the per-
plexity of models on their reference generations.

For the human evaluation, we employ human
judges from MTurk to identify whether gener-
ated commonsense inferences are plausible. We
randomly sample 100 events from the original
ATOMIC test set along with their negated coun-
terparts from ANION. For each event, we present
every decoded inference to five crowdworkers and
ask them to identify whether the inference is plau-
sible given the event. For each model trained on
a different combination of ATOMIC and ANION

(i.e., ANION-L, ANION-S, ANION-C), we evalu-
ate the same events for comparison. We calculate
Precision @ 10 (P@10) across these human rat-
ings, i.e., the average number of correct options per
event-relation prompt. Specifically, we average the
results from 45K ratings to compute the final hu-
man score (100 events × 9 relations × 10 options
× 5 annotators). The pairwise agreement score
of human evaluation is 63.6, which is on par with
other similar commonsense reasoning annotation
tasks (Rashkin et al., 2016).

Does negated event training improve common-
sense inference for negated situations? We
train a COMET model on the events from ATOMIC

(i.e., COMET-ATOMIC), and another on the exam-
ples from both ATOMIC and ANION (i.e., COMET-
FULL). The combined dataset is shuffled so that
the original and negated examples are uniformly
mixed during training.

We report our comparison of these two mod-
els in Table 4. The performance of the original
COMET model trained only on the ATOMIC knowl-
edge graph drops significantly across all types of
oppositional instances. Most surprisingly, a drop
in performance is also observed on commonsense
contradictions (ANION-C), which have no explicit
negation cues. However, commonsense contradic-
tion events can often be richer in content (see Ta-
ble 3), making them more challenging for knowl-
edge models. Meanwhile training on all negated
examples in the ANION knowledge graph produces
significant improvements across all negation cate-
gories (ANION-{L,S,C}), though we do observe a
slight drop in human ratings on the examples from
the original ATOMIC test set.

Does negated event training deteriorate com-
monsense inference of affirmative situations?
We note in Table 4 that training on ATOMIC + AN-
ION hurts inference performance on the original
ATOMIC evaluation set. To analyze why COMET-
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FULL does not improve on this set of examples,
we perform a case study on inferences generated
by COMET-ATOMIC and COMET-FULL under the
same event and relation prompt, and note two qual-
itative patterns.

First, we observe that COMET-FULL tends to
generate inferences that are less generic, but that
may require additional implicit context. For exam-
ple, for the event “X is really sad” and the relation
xEffect (i.e., the effect of the event on X), COMET-
ATOMIC generates inferences such as “cries,” “gets
depressed” and “takes medication.” Conversely,
COMET-FULL generates context-specific infer-
ences such as “thinks about the past” and “thinks
about what they did,” which, while plausible in
some context, may be less straightforward when
evaluated broadly (not all feelings of sadness lead
to reflection on the past or one’s own actions).

Second, we find an overall improvement for
certain compositional events in ATOMIC that con-
tain conjunction words: “and” or “but.” On these
examples, COMET-FULL outperforms COMET-
ATOMIC with 12.41 and 12.22 BLEU-2 scores
respectively. For example, for the event “X is
hot and humid” and the relation xEffect, COMET-
ATOMIC’s generation includes correct inferences,
such as “to take a shower,” “to cool down,” “to
drink some water,” “to go outside,” and incorrect
inferences, such as “to turn on the heat” and “to
drink a hot tea.” COMET-FULL generates all of
COMET-ATOMIC’s correct inferences, but none of
the incorrect inferences, demonstrating that train-
ing COMET jointly on ATOMIC and ANION can
help avoid incorrect inferences involving common-
sense mismatch in more compositional situations.

In summary, the ability to generate richer, con-
textual inferences for COMET-FULL is beneficial
when handling complex events, but may not be nec-
essary for many of the simple events in ATOMIC,
and may backfire when subtler inferences are made.

Which variety of negated events are most cru-
cial to include in training sets? As ablations,
we train additional models using different subsets
of ANION: logical negations (ATOMIC + ANION-
L), semi-logical negations (ATOMIC + ANION-S),
and commonsense contradictions (ATOMIC + AN-
ION-C). These ablations evaluate whether knowl-
edge models can adapt to certain types of negation
more efficiently with additional data.

In Table 5, we show that training with exam-
ples of each negation type improves performance

Eval Set Train Set PPL ↓ BL2 ↑ P@10 ↑

ATOMIC

ATOMIC 9.30 14.18 55.18
+ ANION-L 9.27 14.20 **58.11
+ ANION-S 9.30 14.09 55.74
+ ANION-C 9.29 14.10 **52.22

ANION-L

ATOMIC 10.87 10.86 35.84
+ ANION-L 9.28 11.94 **44.94
+ ANION-S 9.93 11.29 **44.01
+ ANION-C 10.34 11.04 **42.33

ANION-S

ATOMIC 11.69 12.07 36.89
+ ANION-L 10.69 12.69 **42.38
+ ANION-S 10.23 12.79 **45.50
+ ANION-C 10.95 12.35 **41.76

ANION-C

ATOMIC 12.02 14.32 46.70
+ ANION-L 11.72 14.43 47.78
+ ANION-S 11.67 14.34 46.09
+ ANION-C 11.50 14.58 **48.79

Table 5: Ablation results of models trained and evalu-
ated on different portions of ANION. The best result on
each subset of ANION comes from training on similar
examples. The model trained on negated events from
ANION-L performs the best at generating inferences for
the original ATOMIC events. Double asterisks (**) in-
dicate significance at p<0.01.

on the evaluation set related to that negation type.
Interestingly, though, training on certain types of
negation examples can also yield benefits down-
stream on other negation types. For example, train-
ing on commonsense contradictions (ANION-C)
provides a clear benefit when evaluating on semi-
logically negated events (ANION-S) as opposed to
merely training on ATOMIC. Notably, the knowl-
edge model trained with logically negated exam-
ples (ATOMIC + ANION-L) outperforms the model
trained only on ATOMIC on all test sets.

5 Discriminating Inconsistent Inferences

While training on examples of negated events helps
knowledge models generate commonsense infer-
ences for these event types, there is still a large
gap compared to their performance on affirmative
events. To address this discrepancy, we introduce
a discriminator-based approach for distinguishing
inconsistent inferences of negated events. Our in-
ference discriminator learns to identify plausible
and invalid inferences of events by learning from
contrastive samples from ATOMIC and ANION.

5.1 Experimental Setup
We fine-tune the RoBERTa-base model (Liu et al.,
2019) as a binary classifier to identify whether a
given knowledge tuple {h, r, t} is logically valid.
The model is trained on paired original and negated



4386

events as described below. Such training examples
inject implicit commonsense nuances that differ
between oppositional events to teach the discrim-
inator to identify logical pitfalls. Training details
for discriminators can be found in Appendix A.3.

Data The paired events used to train the nega-
tion discriminator are automatically constructed
from the ATOMIC and ANION knowledge graphs.
Positive examples can be constructed by sampling
tuples from each knowledge graph. To construct
negative training samples, we introduce the concept
of common and contrast sets among inferences of
events and their oppositions.

Common and contrast sets distinguish how com-
monsense inferences are not necessarily negated
in the same manner as their corresponding events.
While certain inferences of events are also in op-
position to a negated event, some may be common.
For the events “X eats a cheeseburger” and “X eats
a salad,” an inference such as “X is hungry” might
be common to both events while inferences such as
“X is unhealthy” or “X is healthy” would be viewed
as contrastive.

Specifically, we assume two head events in
ATOMIC and ANION, and their respective set of
tail inferences regarding a common relation type.
We define the common set of these inferences as
the intersection of the two sets of tail inferences
connected to each head event by applying the exact
match of string forms. The contrast set is formed
by distinct tail inferences connected to the two head
events. Logically valid (i.e., positive) training ex-
amples consist of knowledge tuples from ATOMIC

and ANION. Logically invalid (i.e., negative) train-
ing examples are formed by swapping the set of
contrast set inferences between paired original and
negated events.3

To balance the training set, we sample the same
number of positive and negative tuples for origi-
nal and negation events. Statistics of the resulting
training sets are in Table 6.

5.2 Experiments
Using different portions of ANION for training
yields four unique discriminators (i.e., L, S, C and

3We note that annotations in ATOMIC and ANION are finite
(i.e., not covering the full space of possible commonsense
inferences about events). As a result, it is possible that in
a more expansive annotation, elements of the contrast sets
would in fact be part of the common set of an event and its
negation. For the purpose of this work, however, contrast sets
were an efficient way of acquiring high-quality semantically
negative examples for training discriminators.

Discriminator Train Set Size

Logical Negation (L) ANION-L 324,843
Semi-logical Negation (S) ANION-S 194,732
Commonsense Contradiction (C) ANION-C 276,272
All Oppositional Data (LSC) ANION 795,845

Table 6: Statistics of data used to train negation dis-
criminators.

Eval Set # BL2↑ P@k↑

ATOMIC
all 10.0 14.18 55.18
valid 6.3 14.24 59.07
invalid 3.7 13.93 44.10

ANION-L
all 10.0 10.86 35.84
valid 5.6 11.33 45.59
invalid 4.4 10.13 25.96

ANION-S
all 10.0 12.07 36.89
valid 6.3 12.63 44.93
invalid 3.7 11.32 27.83

ANION-C
all 10.0 14.32 46.70
valid 5.9 14.78 51.45
invalid 4.1 13.56 37.33

Table 7: The evaluation of the all, valid and invalid sets
of inferences generated by COMET-ATOMIC as parti-
tioned by the LSC discriminator. P@k corresponds to
the human-rated precision of a set. k is the number of
elements in all, valid, or invalid set. For the valid set,
higher P@k is better (i.e., more valid inferences are
being partitioned). For the invalid set, lower P@k is
better (i.e., fewer valid inferences are being included).

LSC) that we apply to commonsense inferences
generated by COMET. The discriminators classify
each option as either logically valid or invalid, par-
titioning the candidates into two sets, which we
evaluate with human judgements. As a baseline,
we also record the precision of not using a discrim-
inator, which assumes all generated inferences are
valid candidates (i.e., the all set).

Metrics We evaluate and compare the quality of
the all, valid and invalid sets using BLEU-2 and the
same human evaluation as in §4. The all set con-
tains the full set of 10 candidates, while the valid
and invalid sets have varying number of elements
depending on how discriminators classify them,
summing to 10. To compute statistical significance
between valid and all sets, we use a permutation
test with 100K permutations. Details are provided
in Appendix A.4.

Do discriminators effectively distinguish incon-
sistent inferences? The results in Table 7 demon-
strate that the discriminator trained on all subsets of
ANION (LSC) can select subsets of inferences (i.e.,
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Event + Rel Generation V P

X does
not skate
around
xAttr

athletic 7 7
careless 7 7
lazy 3 3
uncoordinated 3 3
unskilled 3 3

X does
not sit
behind Y
xIntent

to be alone 3 3
to be left alone 3 3
to avoid Y 3 3
to sit 7 7
to wait 3 7

X does
not look
angry
xNeed

to calm down 7 3
to watch a movie 3 7
to have been provoked 7 7
to not be angry 3 3
to be calm 3 3

X refuses
to hear a
scary noise
xWant

to run away 7 7
to go to sleep 3 3
to be safe 3 3
to keep quiet 3 3
to avoid the noise 3 3

X never
brings Y into
conflicts
oWant

to avoid X 7 7
to be left alone 7 3
to thank X 3 3
to fight back 7 7
to avoid conflict 7 3

X scarcely
gets sunburned

xReact

burned 7 7
hurt 7 7
sick 7 7
sad 7 7
satisfied 3 3

X under no
circumstances
forgets Y’s wallet
oReact

upset 7 7
sad 7 7
angry 7 7
thankful 3 3
grateful 3 3

X has trouble
with advertising
X’s business
xEffect

loses money 3 3
loses clients 3 3
gets fired 3 3
gets sued 7 7
cries 3 3

X puts Y
out of mind

oEffect

has a better day 7 7
becomes sad 3 3
cries 3 3
is grateful towards X 7 7
feels better 7 7

Table 8: Inferences of randomly selected ANION events
by COMET-ATOMIC. The top 5 options are classified
as valid or invalid by the LSC discriminator. V indi-
cates whether an option is classified as valid by the
LSC discriminator. P indicates whether an option is
plausible judging by humans.

the valid set) that are more logically consistent with
their seed event. This observation holds across all
evaluation subsets of ANION, as well as the original
ATOMIC evaluation set. Table 8 shows examples of
valid and invalid candidates for negated and con-
tradicted events from ANION as specified by the
LSC discriminator. The discriminator is notably

Eval
Disc L S C LSC

ATOMIC
all 55.69 55.93 56.94 58.30

valid 55.65 56.18 57.26 59.07
%iprv -0.07 0.44 0.57 1.32

ANION-L
all 39.46 37.85 36.43 39.45

valid **46.39 **41.93 37.54 **45.59
%iprv 17.55 10.78 3.03 15.57

ANION-S
all 37.13 39.29 37.72 38.55

valid 37.48 **44.58 39.03 **44.93
%iprv 0.96 13.47 3.45 16.56

ANION-C
all 46.92 47.32 48.26 48.81

valid 46.83 47.68 48.79 *51.45
%iprv -0.20 0.75 1.09 5.40

Table 9: P@{# valid} scores of the all and valid sets de-
termined by the L, S, C and LSC discriminators. Gen-
erations are from COMET-ATOMIC. Asterisks (**) in-
dicate significance at p<0.01. iprv% is the improve-
ment of the valid over the all set. Underlines show the
highest iprv% across discriminators.

good at identifying invalid inferences wrongly as-
sociated to corresponding affirmative events (e.g.,
“athletic” and “careless” for the event “X does not
skate around” under the relation, xAttr).

However, this analysis leaves open the possibil-
ity that we are generating too many inferences for
each event, but that the decoder could rank correct
inferences higher among the full set of generated
candidates. To evaluate this possibility, we count
the number of elements in the valid sets for each
example and only keep the same number of the
top-scoring elements from the all set (scored using
generation perplexity). In Table 9, we see the aver-
age precision score for the pruned all sets (P@{#
valid}) still underperforms the precision of their
corresponding valid sets.

Which negation categories are most important
to provide a discriminator for? To examine the
generalization effects of each negation type, we
also train discriminators on a single negation sub-
set of ANION examples (i.e., L, S, C) and compare
the P@{# valid} score of the all and valid sets. Re-
sults in Table 9 indicate that each discriminator is
best for identifying valid inferences for the types
of events on which it was trained. The L, S, and
C discriminators all achieve improvements when
partitioning events similar to their training. How-
ever, the LSC discriminator trained on all nega-
tion forms shows the largest valid set improvement
across all discriminators on ATOMIC, ANION-S,
and ANION-C. On ANION-L, the LSC discrimina-
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Eval
Disc L S C LSC

ATOMIC
all 54.16 54.49 55.03 55.68

valid 54.20 54.64 55.71 **57.58
%iprv 0.08 0.28 1.23 3.41

ANION-L
all 46.54 46.26 46.15 46.39

valid **50.71 **48.36 46.16 **49.85
%iprv 8.98 4.54 0.03 7.45

ANION-S
all 46.90 47.73 47.47 47.53

valid 47.14 **50.42 48.20 **50.62
%iprv 0.51 5.65 1.55 6.50

ANION-C
all 50.80 51.29 51.28 51.83

valid 50.94 51.52 52.65 *53.91
%iprv 0.28 0.45 2.67 4.02

Table 10: P@{# valid} scores of the all and valid sets
determined by the L, S, C and LSC discriminators.
Generations are from COMET-FULL . Single (*) and
double asterisks (**) indicate significance at p<0.05
and p<0.01, respectively. iprv% is the improvement
of the valid over the all set. Underlines indicate the
highest iprv% across discriminators.

Beam Size Set #3 #total P@#total

10 all 3.6 10.0 35.84
valid 2.1 4.4 45.59

25 all 8.1 25.0 32.29
valid 4.3 10.5 38.18

Table 11: Number of correct generations from apply-
ing the LSC discriminator to generations of COMET-
ATOMIC for beam size of 10 and 25 for logical negation
events. #3 is the number of correct options. #total is
the number of options in each set.

tor still yields a significantly improved valid set.

6 Discussion

Are learning-based and discriminator-based
approaches complementary? We apply our dis-
criminators to the generations of the COMET
model trained on ANION. In Table 10, we see
that the LSC discriminator, when applied to gen-
erations of COMET trained on ANION, achieves
significant improvements over all evaluation sets,
including the original events. The full evaluation
of the P@{# valid} and P@3 scores of applying
different discriminators to generations of COMET
trained on different data over all evaluation sets are
shown in Table 13 and 14 in Appendix A.

Can discriminators be used to more aggres-
sively generate inferences? While applying dis-
criminators to generated inferences yields a valid
subset with higher accuracy, we are left with fewer
correct inferences in total. Thus, we investigate

the efficiency of using discriminators to expand the
number of inferences generated. We decode infer-
ences from COMET with beam size 25, and then
apply the discriminator to this larger candidate set.

Table 11 shows that for logical negation, the
valid set of beam 25 has higher accuracy and more
correct options than the all set of beam 10. Thus,
when we have a larger and potentially more noisy
set of candidates, applying the negation discrimina-
tor yields a set of options that have higher quality
than using all the candidates from a smaller set of
initial generations.

7 Conclusion

We present the first comprehensive study on com-
monsense implications of negations and contradic-
tions. To expand commonsense resources for the
challenge of negation modeling, we introduce AN-
ION, a large scale commonsense knowledge graph
for negated and contradicted events. We use AN-
ION to train commonsense knowledge models and
demonstrate that it effectively enriches machine
commonsense inference capabilities around nega-
tion. Lastly, we propose a negation discrimina-
tor capable of identifying logical flaws in com-
monsense inferences. By combining the model
trained on ANION with the negation discriminator,
we achieve a further performance boost.

Ethical Considerations

ANION Language Choice and Implications
We select English as the base language of ANION

so that our resource may be directly linked with
the original ATOMIC knowledge graph. We ac-
knowledge, however, that resources in English are
more likely to reflect the mindsets and behaviors
of English speakers. Furthermore, and in our case
specifically, our annotators were primarily from
the US. Consequently, this language choice biases
the content of the knowledge graph toward North
American perspectives, which affects what models
trained on these resources would learn about social
norms (Acharya et al., 2021). Future works may
also include other languages and cultures to make
the ANION resource more culturally and ideologi-
cally inclusive.

Crowdworker Recruitment, Quality Control
and Remuneration
We recruit crowdworkers from MTurk who are lo-
cated within the US with HIT approval rates higher
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than 98%. To ensure high quality task completions,
we post pilot batches and manually examine tens
of thousands of responses to identify users who
provide high quality annotations. We select 834
qualified users for the formal data collection and hu-
man evaluation tasks. Since the entire study spans
multiple months, we regularly sample responses to
re-examine their quality during the formal study,
and remove HITs from crowdworkers who pro-
vide decreased-quality responses over time. We are
particularly cautious about the human evaluation
tasks, so even with qualified users, we still com-
prehensively examine tens of thousands of human
evaluation tasks by grouping HITs per users, and
look at their responses together to identify potential
spamming behaviors and inconsistencies.

For the data collection and human evaluation
tasks, we aimed to compensate crowdworkers with
an average of $15 per hour. To ensure a fair pay-
ment, we first post a pilot task to evaluate average
time cost of a specific task, and pay users at a high
rate in this round to avoid underpayment during
the pilot study. We then calculate new payment
from the pilot task such that approximately 75%
of the HITs would have been paid with more than
$15 per hour at the adjusted rate in the pilot round.
We then adopt this new rate for the formal study.
We repeat the above procedure of determining pay-
ment periodically during the study to ensure the
crowdworkers are consistently well-paid.
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A Appendices

A.1 ANION Data Collection Details
Heuristic of Creating Logical and Semi-logical
Negation Events For logical negation, with the
majority of the original events being simple sen-
tences with one predicate, our general rule of
thumb is to negate the original event at the sen-
tence level. Specifically, with respect to each orig-
inal event, we first identify each tokens’ part of
speech (POS) tags via the NLTK toolkit4. Then,
we insert the negation cue not after the subject of
each sentence, with majority of the case the entity
“PersonX,” with few exceptions of “PersonX’s” and
“PersonX and PersonY.”

To ensure the grammar correctness of the heuris-
tically generated logical negation events, we add
appropriate auxiliary verbs (e.g., do, does, did, is,
was, can, could, would, should, may, might) in
accordance with the tenses (e.g., present, past, fu-
ture) of the original events. Since NLTK’s POS
parser fails to recognize some of the verbs that
have both noun and verb usage (e.g., “waters” the
plant, “supports” her argument), we curate a list
of dual-used words and map them manually. Also,
while converting the original events to their logical
negation counterparts, we revise grammar mistakes
from ATOMIC and exclude awkward expressions as
much as possible. In addition, to make the negation
forms sound more natural, we replace the modifier
“some” by “any” during conversion (e.g., “PersonX
buys some shoes” is converted to “PersonX doesn’t
buy any shoes”). For the minority of compound
events with clauses or complex sentence structures,
we disregard them for the purpose of ensuring the
data quality.

For semi-logical negation events, we curate a
list of semi-logical negation cues besides not from
various sources5 (Councill et al., 2010; Hossain
et al., 2020; Kim et al., 2019) and categorize
them into four types including affixes, single-word
cues, multi-word cues and negative verbs (Table
1). We identify appropriate rules to insert each
semi-logical negation cue in simple base events
from ATOMIC consisting of a subject and a pred-
icate. We apply the rules to original events from
ATOMIC and randomly select at least 200 automat-
ically generated semi-logical negation events per
each negation cue for manual screening by the first

4https://www.nltk.org
5https://dictionary.cambridge.org/us/

grammar/british-grammar/negation_2

author to avoid misplacement of negation cues and
awkward expressions. In the end, we were able to
identify 5,019 high quality semi-logical negation
events originating from ATOMIC.

As a final quality control step of the constructed
logical and semi-logical events, after obtaining the
crowdsourced inferences for each event, we remove
all events that annotators comment as “unclear,”
“doesn’t make sense” or “grammatically wrong.”

Crowdsourcing of Commonsense Contradic-
tion Events For collecting commonsense con-
tradiction events, we present an original ATOMIC

event to the annotators and ask them to formu-
late corresponding opposite events. We exclude
ATOMIC events with placeholders representing
generic objects) to capture semantic and pragmatic
subtlety. In the MTurk task, we present annotators
detailed instructions of formulating the opposite
events (e.g., avoid using negative words as much as
possible, use complete sentences, follow grammar
rules) and concrete examples as references. Figure
2 shows details of the MTurk task. Although we ex-
plicitly instruct annotators to avoid using negation
cues, there are still some exceptions. Therefore,
after the compilation of all commonsense contra-
diction events, we remove ones that contain any
explicit negation cues to make sure the categoriza-
tion is clean.

Crowdsourcing of ANION Event Inferences
For the collection of ANION event inferences, we
adopt the MTurk templates used by the original
ATOMIC data collection6. Similarly to logical
and semi-logical events, we remove all inferences
of events that annotators comment as “unclear,”
“doesn’t make sense” or “grammatically wrong.”

A.2 Training Details of COMET Models
Input A knowledge tuple {h, r, t} is represented
as a concatenated sequence with tokens of each
element in the tuple: X = {Xh, Xr, Xt} where
Xh = {xh0 , ..., xh|h|} are the tokens comprising the
event, Xr = {xr0, ..., xr|r|} as tokens comprising
the relation, and Xt = {xt0, ..., xt|t|} are the tokens
comprising the commonsense inference.

Initialization Similar to Bosselut et al. (2020),
we initialize the trained parameters of COMET
to the 345M parameter GPT2 model (GPT2-M)
from Radford et al. (2019). Special tokens that

6https://homes.cs.washington.edu/
~msap/atomic/mTurkFiles/

https://www.nltk.org
https://dictionary.cambridge.org/us/grammar/british-grammar/negation_2
https://dictionary.cambridge.org/us/grammar/british-grammar/negation_2
https://homes.cs.washington.edu/~msap/atomic/mTurkFiles/
https://homes.cs.washington.edu/~msap/atomic/mTurkFiles/
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represent relation types (e.g., xIntent) are added to
the vocabulary and initialized via sampling from
the normal distribution.

Hyperparameters Following Bosselut et al.
(2019), we use a dropout rate of 0.1 and GeLU
(Hendrycks and Gimpel, 2020) units as activation
functions. During training, we use the Adam op-
timizer (Kingma and Ba, 2017) with a batch size
of 64. For COMET models trained on different
subsets of the ATOMIC and ANION datasets, we
adopt a maximum learning rate of 6.25e-5 with a
warmup period of 0.002 times of the total number
of minibatches customized for each model, which
decays linearly until finishing training.

We train different COMET models for differ-
ent subsets of the full on original data (ATOMIC),
original and logical negation data (ATOMIC + AN-
ION-L), original and semi-logical negation data
(ATOMIC + ANION-S), original and commonsense
contradiction data (ATOMIC + ANION-C), and the
overall dataset (ATOMIC + ANION), for 21k, 25K,
24K, 24K and 29K minibatches respectively, and
apply early stopping for all models. The rest of the
hyperparameters are the same as those of GPT2-
M in Radford et al. (2019) implemented via the
publicly available HuggingFace API7 .

All models are fine-tuned and evaluated on a
single NVIDIA QUADRO RTX 8000 GPU for six
to twelve hours depending on the complexity of the
experimental setup.

A.3 Training Details of Negation
Discriminator

Input As input to the discriminator model, we
design sentence patterns that express relation types
in natural language and fill out the patterned sen-
tences with events and conditions before encoding
them (e.g., “PersonX addresses a talk. As a result,
PersonX wants to convince others.”). Relations and
their corresponding patterned sentences are listed
in Table 12. Adopting patterned sentences is found
to be a more effective approach than concatenat-
ing components in knowledge tuples from the pilot
study.

Loss Function The negation discriminator is
trained to minimized the binary cross-entropy loss:

LD = y · logP (y)+(1−y) · log (1− P (y)) (2)

7https://huggingface.co/transformers/

Relation Patterned sentences

xIntent {h}. Because PersonX wanted {t}.
xNeed {h}. Before, PersonX needed {t}.
xAttr {h}. PersonX is seen as {t}.
xWant {h}. As a result, PersonX wants {t}.
oWant {h}. As a result, others want {t}.
xEffect {h}. As a result, PersonX then {t}.
oEffect {h}. As a result, others then {t}.
xReact {h}. As a result, PersonX feels {t}.
oReact {h}. As a result, others feel {t}.

Table 12: Patterned sentences representing relation
types in ATOMIC, used to construct inputs for training
negation discriminators.

where y is the label for an input (i.e., logically valid
or invalid).

Hyperparameters Parameters are initialized
with the trained weights of the RoBERTa-base
model in Liu et al. (2019). During training, we use
the Adam optimizer (Kingma and Ba, 2017) and
train the model with a batch size of 64. We adopt
a maximum learning rate of 4.5e-5 with a warmup
period of 10 minibatches. We trained L, S, C, LSC
discriminators, for 25K, 14K, 21K and 6K mini-
batches respectively, and apply early stopping for
all models. We use a probability threshold of 0.7 to
determine whether an input knowledge tuples to the
discriminator is plausible based on pilot study on
the development sets. The rest of the hyperparame-
ters are the same as those of RoBERTa-base (Liu
et al., 2019) implemented via the publicly available
HuggingFace API8 .

All models are fine-tuned and evaluated on a sin-
gle NVIDIA QUADRO RTX 8000 GPU for four to
six hours depending on the different experimental
setups.

A.4 Statistical Significance Testing

To compare P@{# valid} for the all and valid sets,
we use a Permutation Test9 with 1,000 permuta-
tions to test for statistical significance. For mul-
tiple comparisons, we use the Bonferroni method
(Haynes, 2013) to correct significance thresholds.

A.5 Quality Check for the Human
Evaluation

We conduct comprehensive pre- and post-
evaluation screening on the users and the tasks
being completed to ensure the objectivity and high
quality of the evaluations. Besides qualifying users

8https://huggingface.co/transformers/
9http://rasbt.github.io/mlxtend/
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Eval ATOMIC ANION-L ANION-S ANION-C
Trn Dis all valid ipv% all valid ipv% all valid ipv% all valid ipv%

ATOMIC

L 55.69 55.65 -0.07 39.46 **46.39 17.55 37.13 37.48 0.96 46.92 46.83 -0.20
S 55.93 56.18 0.44 37.85 **41.93 10.78 39.29 **44.58 13.47 47.32 47.68 0.75
C 56.94 57.26 0.57 36.43 37.54 3.03 37.72 39.03 3.45 48.26 48.79 1.09

LSC 58.30 59.07 1.32 39.45 **45.59 15.57 38.55 **44.93 16.56 48.81 *51.44 5.40

ATOMIC+
ANION-L

L 58.62 58.72 0.16 46.05 **51.19 11.16 42.42 42.89 1.11 47.98 47.97 -0.02
S 58.93 59.31 0.64 45.90 **49.00 6.77 44.22 **47.59 7.64 48.10 48.69 1.24
C 59.63 60.07 0.73 45.88 46.23 0.76 43.40 43.74 0.79 48.81 49.84 2.12

LSC 60.83 62.49 2.74 45.96 **50.19 9.20 44.61 **48.30 8.27 49.73 *51.97 4.51

ATOMIC+
ANION-S

L 56.37 56.35 -0.05 44.77 **51.76 15.60 45.58 45.87 0.63 46.24 46.29 0.11
S 56.60 56.66 0.11 44.39 **47.42 6.83 46.07 **48.32 4.89 46.62 47.17 1.19
C 57.46 57.60 0.23 44.46 45.39 2.07 45.81 47.15 2.93 47.38 48.83 3.06

LSC 58.74 *60.39 2.81 44.94 **49.88 10.98 46.08 **48.67 5.62 48.56 **51.22 5.46

ATOMIC+
ANION-C

L 52.72 52.73 0.02 43.45 **49.62 14.20 41.83 41.88 0.12 48.93 48.97 0.07
S 52.93 53.33 0.76 42.66 **46.40 8.75 42.57 **46.40 8.98 49.18 49.49 0.62
C 53.70 54.07 0.69 42.83 43.26 1.00 42.25 42.70 1.07 49.30 *50.97 3.38

LSC 54.38 55.74 2.49 44.17 **48.84 10.58 42.37 **46.22 9.10 50.07 **52.80 5.46

ATOMIC+
ANION

L 54.16 54.20 0.08 46.54 **50.71 8.98 46.90 47.14 0.51 50.80 50.94 0.28
S 54.49 54.64 0.28 46.26 **48.36 4.54 47.73 **50.42 5.65 51.29 51.52 0.45
C 55.03 55.71 1.23 46.15 46.16 0.03 47.47 48.20 1.55 51.28 52.65 2.67

LSC 55.68 **57.58 3.41 46.39 **49.85 7.45 47.53 **50.62 6.50 51.83 *53.91 4.02

Table 13: For generations of COMET models trained on different subsets of ATOMIC and ANION, the Precision @
{# valid} scores of the all and valid sets determined by L, S, C and LSC discriminators with respect to the original
and negation evaluation sets. The single (*) and double asterisks (**) indicate significance at p<0.05 and p<0.01
respectively. iprv% is the percentage improvement of the valid set over the all set.

Eval ATOMIC ANION-L ANION-S ANION-C
Trn Dis all valid iprv% all valid iprv% all valid iprv% all valid iprv%

ATOMIC

L 59.41 59.65 0.40 44.92 **49.95 11.20 39.47 39.94 1.21 50.77 50.91 0.27
S 59.48 60.14 1.12 42.88 **46.24 7.83 45.27 **49.25 8.81 51.22 51.84 1.21
C 59.89 60.89 1.66 39.20 40.28 2.75 40.07 41.40 3.32 51.77 52.88 2.15

LSC 61.37 63.12 2.85 46.00 **50.34 9.44 46.15 **50.23 8.85 53.29 55.24 3.65

ATOMIC+
ANION-L

L 61.33 61.57 0.39 51.47 **56.16 9.11 45.73 46.04 0.68 51.40 51.57 0.33
S 61.13 62.05 1.51 50.12 **53.40 6.54 50.84 **54.09 6.40 51.89 52.91 1.96
C 61.48 62.96 2.40 48.23 49.06 1.72 46.42 46.99 1.22 52.31 53.67 2.61

LSC 63.66 *65.85 3.44 51.90 **56.26 8.40 51.12 **54.59 6.78 53.97 56.15 4.04

ATOMIC+
ANION-S

L 60.25 60.65 0.67 48.11 **54.45 13.18 45.97 46.35 0.81 50.82 50.89 0.15
S 60.23 60.85 1.03 46.48 **49.14 5.72 47.58 **50.29 5.70 51.11 52.00 1.74
C 60.43 61.28 1.40 44.61 46.31 3.80 46.21 **48.78 5.58 51.72 53.25 2.95

LSC 62.22 *64.44 3.58 47.63 **51.12 7.32 48.24 *50.70 5.11 53.51 *56.04 4.74

ATOMIC+
ANION-C

L 54.36 54.80 0.81 46.25 **51.57 11.51 42.81 43.13 0.76 50.71 50.81 0.20
S 54.50 55.75 2.29 45.59 *48.11 5.53 45.40 **48.50 6.83 51.00 51.78 1.52
C 54.43 55.50 1.97 42.61 43.26 1.53 43.11 44.13 2.38 51.44 *53.46 3.93

LSC 55.68 *57.91 4.01 47.11 **51.25 8.80 45.75 **49.03 7.18 52.44 **55.68 6.18

ATOMIC+
ANION

L 56.63 57.11 0.85 50.39 **54.52 8.20 47.92 48.27 0.73 53.11 53.41 0.56
S 56.53 57.42 1.57 48.92 **52.07 6.44 49.21 **52.51 6.72 53.10 53.67 1.09
C 56.40 57.64 2.21 47.96 48.30 0.70 48.16 50.00 3.82 53.90 55.48 2.94

LSC 58.27 60.53 3.87 50.25 **54.27 8.02 49.85 **53.09 6.50 54.50 **57.66 5.79

Table 14: For generations of COMET models trained on different subsets of ATOMIC and ANION, the Precision
@ 3 scores of the all and valid sets determined by L, S, C and LSC discriminators with respect to the original
and negation evaluation sets. The single (*) and double asterisks (**) indicate significance at p<0.05 and p<0.01
respectively. iprv% is the percentage improvement of the valid set over the all set.
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Event + Rel Generation V P

X does
not skate
around
xAttr

athletic 7 7
careless 7 7
lazy 3 3
uncoordinated 3 3
unskilled 3 3

X does
not sit
behind Y
xIntent

to be alone 3 3
to be left alone 3 3
to avoid Y 3 3
to sit 7 7
to wait 3 7

X does
not look
angry
xNeed

to calm down 7 3
to watch a movie 3 7
to have been provoked 7 7
to not be angry 3 3
to be calm 3 3

X does
not rent
an apartment
xWant

to save money 3 3
to get a job 3 7
to pay rent 7 7
to move in 7 7
to get a new apartment 3 3

X is
not offered
the job
oWant

to hire X 7 7
to fire X 3 3
to hire someone else 3 3
to accept the job 7 7
to hire them 7 7

X does
not buy
a snack
xReact

satisfied 7 7
hungry 3 3
satiated 7 7
full 7 7
guilty 3 7

X does
not bring Y
into conflict
oReact

relieved 3 3
sad 7 7
satisfied 3 3
grateful 3 3
angry 7 7

X does
not learn
new things
xEffect

gains knowledge 7 7
becomes lazy 3 3
gets bored 3 3
becomes ignorant 7 3
cries 3 3

X does
not put Y
in mind
oEffect

becomes confused 7 7
does not think about X 3 3
Y thinks about X 7 7
Y is not remembered 3 3
cries 7 3

Table 15: Randomly selected generations of the orig-
inal COMET model regarding logical negation events
in ANION-L. The top 5 options are classified as either
valid or invalid by the LSC discriminator. V indicates
whether an option is classified as valid by the LSC dis-
criminator. P indicates whether an option is plausible
judging by humans.

during pilot batches, we double check to remove
evaluation tasks that are not carefully conducted
(e.g., tasks done by users that select all/no options
for all hundreds of tasks that they perform). Figure
3 shows a snippet of the human evaluation MTurk

Event + Rel Generation V P

X hardly ever
increases X’s
knowledge
xAttr

intelligent 7 7
determined 7 7
studious 7 7
lazy 3 3
dedicated 7 7

X avoids
skating
around
xIntent

to have fun 7 7
to be safe 3 3
to stay home 3 3
to stay in shape 7 7
to get fit 7 7

X not at all
wants to learn
karate
xNeed

learn karate 7 7
to not like it 3 3
to avoid it 3 3
to be lazy 3 3
to find a teacher 7 7

X refuses
to hear a
scary noise
xWant

to run away 7 7
to go to sleep 3 3
to be safe 3 3
to keep quiet 3 3
to avoid the noise 3 3

X never
brings Y into
conflicts
oWant

to avoid X 7 7
to be left alone 7 3
to thank X 3 3
to fight back 7 7
to avoid conflict 7 3

X scarcely
gets sunburned

xReact

burned 7 7
hurt 7 7
sick 7 7
sad 7 7
satisfied 3 3

X under no
circumstances
forgets Y’s wallet
oReact

upset 7 7
sad 7 7
angry 7 7
thankful 3 3
grateful 3 3

X has trouble
with advertising
X’s business
xEffect

loses money 3 3
loses clients 3 3
gets fired 3 3
gets sued 7 7
cries 3 3

X fails to
make it through
the day
oEffect

loses a friend 3 3
worries about X 3 3
worried 3 3
want them to do better 3 3
cries 3 7

Table 16: Randomly selected generations of the orig-
inal COMET model regarding semi-logical negation
events from ANION-S. The top 5 options are classified
as either valid or invalid by the LSC discriminator. V
indicates whether an option is classified as valid by the
LSC discriminator. P indicates whether an option is
plausible judging by humans.

task.
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Event + Rel Generation V P

X keeps
the old one

xAttr

determined 7 7
careful 7 7
loyal 3 3
tired 7 7
caring 7 7

X pays twice
the retail price
for a rare item
xIntent

to own something rare 3 3
to buy something rare 3 3
to purchase something rare 3 3
to obtain something 7 7
to acquire something 7 7

X is a
complete
loner
xNeed

to avoid people 3 3
to be lonely 3 3
to start a relationship 7 7
to stay quiet 3 3
to get into trouble 7 7

X is
miserable
playing
xWant

to get better 3 3
to take a break 7 3
to go home 7 7
to go to sleep 7 7
to cry 3 3

X is picky
about
everything
oWant

to ignore X 3 3
to avoid X 3 3
to talk to X 7 7
to help X 7 7
to make X feel better 3 7

X resigns
himself

xReact

relieved 3 3
relaxed 3 7
satisfied 7 7
accomplished 7 7
sad 3 3

X gives away
X’s laptop

oReact

grateful 3 3
thankful 3 3
upset 7 7
sad 7 7
surprised 3 3

X goes
home

xEffect

relaxes 3 3
goes to sleep 3 3
is greeted by family 7 3
gets rest 3 3
gets tired 7 7

X puts Y
out of mind

oEffect

has a better day 7 7
becomes sad 3 3
cries 3 3
becomes grateful towards X 7 7
feels better 7 7

Table 17: Randomly selected generations of the origi-
nal COMET model regarding commonsense contradic-
tion events from ANION-C. The top 5 options are classi-
fied as either valid or invalid by the LSC discriminator.
V indicates whether an option is classified as valid by
the LSC discriminator. P indicates whether an option
is plausible judging by humans.
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4/8/21, 9:32 AM

Page 1 of 2file:///Users/liweijiang/Desktop/Useful/Projects/ANION/comet/crowdsourcing/mturk_template/atomic_neg_prag_event_camera_ready.html

Instructions (click to collapse/expand)

a. Step 1: read a short event sentence.

Note that the names of speci!c people have been replaced by generic words (e.g., "PersonX", "PersonY").

b. Step 2: given this event, you are asked to formulate TWO (up to FOUR) corresponding OPPOSITE events.

There might be multiple grammatically correct ways of expressing your interpretation of the OPPOSITE events. Please
express them in natural language (i.e., in a way that you normally talk), and make sure your OPPOSITE events are in
complete sentences.

Please don't trivially negate. Try not to use negative words directly, including but not limited to: no, not, nothing, no
one, none, nobody, nowhere, neither, nor, never, lack of, unless you feel necessary.

Changing one of the characters (e.g., from "PersonX" to "PersonY"), or one of the objects (e.g., from "mother" to "father"
or from "cat" to "dog") are not the goals of the OPPOSITE event, unless you think they are appropriate.

Please do not add unnecessary/unrelated additional details to the OPPOSITE event.

Examples (click to collapse/expand)

Event ${Event}

Given this event, can you formulate corresponding OPPOSITE events? Make sure they are in complete
sentences.

Opposite Event
1 (REQUIRED)

Opposite Event
2 (REQUIRED)

Opposite Event
3 (OPTIONAL)

Opposite Event
4 (OPTIONAL)

Submit

Figure 2: Snippet of the annotation task used to collect commonsense contradiction events.
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4/8/21, 10:15 AM

Page 1 of 1file:///Users/liweijiang/Desktop/Useful/Projects/ANION/comet-neg-disc…inator/mturk/human_eval/template/human_eval_10_opts_camera_ready.html

Instructions

${title}

Full Instructions     (Expand/Collapse)

You will read a sentence fragment depicting an event, and be asked to ${task}.

Events are short phrases possibly involving participants. The names of specific people have been replaced by generic words (e.g. PersonX, PersonY, PersonZ). PersonX is
always the subject of the event.

${instruction}
Notes on the events: some of the events may be figurative, and should not be taken literally
(e.g., "PersonX kills two birds with one stone" does *not* make PersonX "murderous")

Examples     (Expand/Collapse)

${examples}

Event

${event}

${question}

${note}

Optional Feedback: Thanks for filling out the questions above! If something about the hit was unclear, please leave a comment in the box
below. We would like to make this HIT easier for future workers, so we really appreciate feedback though it is optional.

 

${xAtt0}

${xAtt1}

${xAtt2}

${xAtt3}

${xAtt4}

${xAtt5}

${xAtt6}

${xAtt7}

${xAtt8}

${xAtt9}

Other/None of the above

Submit

Figure 3: Snippet of the human evaluation task used to evaluate model generated tail inferences.


