
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4313–4324

June 6–11, 2021. ©2021 Association for Computational Linguistics

4313

Progressive Generation of Long Text
with Pretrained Language Models

Bowen Tan1, Zichao Yang1, Maruan Al-Shedivat1, Eric P. Xing1,2,3, Zhiting Hu1,4

1Carnegie Mellon University, 2Petuum Inc., 3MBZUAI, 4UC San Diego
{btan2, zichaoy, alshedivat, epxing}@andrew.cmu.edu, zhh019@ucsd.edu

Abstract

Large-scale language models (LMs) pre-

trained on massive corpora of text, such as

GPT-2, are powerful open-domain text genera-

tors. However, as our systematic examination

reveals, it is still challenging for such models

to generate coherent long passages of text (e.g.,

1000 tokens), especially when the models are

fine-tuned to the target domain on a small cor-

pus. Previous planning-then-generation meth-

ods also fall short of producing such long

text in various domains. To overcome the

limitations, we propose a simple but effec-

tive method of generating text in a progressive

manner, inspired by generating images from

low to high resolution. Our method first pro-

duces domain-specific content keywords and

then progressively refines them into complete

passages in multiple stages. The simple de-

sign allows our approach to take advantage of

pretrained LMs at each stage and effectively

adapt to any target domain given only a small

set of examples. We conduct a comprehensive

empirical study with a broad set of evaluation

metrics, and show that our approach signifi-

cantly improves upon the fine-tuned large LMs

and various planning-then-generation methods

in terms of quality and sample efficiency. Hu-

man evaluation also validates that our model

generations are more coherent.1

1 Introduction

Generating coherent long text (e.g., 1000s of to-

kens) is useful in myriad applications of creating re-

ports, essays, and other long-form content. Yet the

problem is particularly challenging as it demands

models to capture global context, plan content, and

produce local words in a consistent manner. Prior

studies on “long” text generation have typically

limited to outputs of 50-200 tokens (Shen et al.,

2019; Bosselut et al., 2018; Zhao et al., 2020).

1Code available at https://github.com/
tanyuqian/progressive-generation

Figure 1: Results of large-scale LMs (GPT-2 and BART)
fine-tuned on 10K stories. Coherence of text is evaluated by
BERT next sentence prediction (NSP) score, where x-axis is
the position of the evaluated sentences in the passage. There is
a significant gap in coherence between text by human and text
by large-scale LMs. Our proposed ProGen instead generates
more coherent samples close to human text.

Recent large-scale pretrained language models

(LMs), such as GPT-2 (Radford et al., 2019) and

BART (Lewis et al., 2020), emerged as an impres-

sive open-ended text generator capable of produc-

ing surprisingly fluent text. The massive LMs are

typically pretrained on large corpora of generic

text once, and then fine-tuned with small domain-

specific data. The latest work has mostly focused

on the regime of relatively short text with low hun-

dreds of tokens. For example, Holtzman et al.

(2020); See et al. (2019); Hua and Wang (2020)

studied GPT-2 and BART generations with a max-

imum length ranging from 150 to 350 tokens. In

this work, we study the problem of generating co-

herent, much longer passages of text (e.g., 1000

tokens). GPT-3 (Brown et al., 2020) was reported

to produce long essays, yet the results seem to need

extensive human curations (e.g., MarketMuse; Gar-

dian), and the system is not publicly available to

adapt to arbitrary desired domains.

In this work, we examine fine-tuning of large-

scale LMs for domain-specific generation of extra-

4314

long text. We find that samples produced by GPT-2

fine-tuned on small domain-specific corpora exhibit

various imperfections, including excessive repet-

itiveness and incoherence between sentences far

apart. Figure 1 measures the coherence of text gen-

erated by the fine-tuned GPT-2 w.r.t the BERT next

sentence prediction (Devlin et al., 2019) score. As

the figure shows, GPT-2 models (regardless of the

model size) exhibit a significant gap in the score

compared with human text, hence falling short in

generating coherent text.

We hypothesize that the problem is mainly

caused by the sequential generation order of the

LMs, which makes global content planning of the

passage difficult, especially when the generated

text is long and contains thousands of words. One

could potentially adopt the recent planning-then-
generation or non-monotonic methods (Sec 2), yet

those methods either require specialized neural ar-

chitectures that need costly retraining for each do-

main (Gu et al., 2019; Stern et al., 2019; Chan

et al., 2019; Fan et al., 2019), or rely on dedicated

intermediate content plans (e.g., summaries, SRL

labels) (Fan et al., 2019; Yao et al., 2019) with lim-

ited flexibility and producing sub-optimal results

as shown in our experiments.

To overcome the limitations, we introduce a new

method for Progressive Generation of Text (Pro-

Gen). We observe that generation of some words

(e.g., stop words) does not require many contexts,

while other words are decisive and have long-term

impact on the whole content of the passage. Mo-

tivated by this observation, our approach first pro-

duces a sequence of most informative words, then

progressively refines the sequence by adding finer-

grained details in multiple stages, until completing

a full passage. The generation at each stage is

conditioning on the output of the preceding stage

which provides anchors and steers the current gen-

eration (Figure 2). The intermediate words pro-

duced at each stage are defined based on a simple

TF-IDF informativeness metric.

The approach enjoys several core advantages:

(1) Although the progressive approach implements

a conceptually non-monotonic generation process,

generation at each stage can still be performed in

a left-to-right manner and thus is directly compati-

ble with the powerful pretrained monotonic LMs.

The LMs at different stages are easily fine-tuned to

accommodate a target domain using only small, in-

dependently constructed data. Intuitively, each LM

is addressing a sub-task of mapping a sequence to

a finer-resolution one, which is much simpler than

the overall task of mapping from conditions to full

passages of text. In this work, we use BART (Lewis

et al., 2020) for generation at each stage, though

one can also plug in other off-the-shelf LMs. As

seen from Figure 1, ProGen can generate more

much coherent text compared with GPT-2 and

nearly match human text in terms of the BERT-

NSP score; (2) In contrast to the typical 2-stage

planning-then-generation in prior work, the simple

progressive strategy offers added flexibility for an

arbitrary number of intermediate stages, yielding

improved results; (3) The training data for each

stage is extracted from domain corpus using the

simple TF-IDF metric, without need of additional

resources (e.g., pretrained summarization models)

as in prior work, making the method broadly appli-

cable to various domains and languages.

We conduct extensive empirical studies on the

CNN News (Hermann et al., 2015) and Writing-

Prompts (Fan et al., 2018) corpora, evaluating vari-

ous systems by a wide-range of automatic metrics

as well as human judgement. Results show that Pro-

Gen achieves strongly improved performance by

decomposing the generation into more progressive

stages. Our method produces diverse text passages

of higher quality and coherence than a broad set of

models, including fine-tuned GPT-2, BART, and

other various planning-then-generation strategies.

2 Related Work

Content planning in generation. The idea of

separate content planning and surface realization

has been studied in early text generation sys-

tems (Reiter and Dale, 1997). Recent neural ap-

proaches have also adopted similar planning-then-

generation strategies for data-to-text (Moryossef

et al., 2019; Puduppully et al., 2019), story-

telling (Fan et al., 2019; Yao et al., 2019; Xu et al.,

2020), machine translation (Ford et al., 2018), and

others (Hua and Wang, 2019; Yao et al., 2017).

These models often involve customized architec-

tures incompatible with the existing large LMs.

Scaling those models for long text generation thus

can require expensive training, which restricts sys-

tematic studies. On the other hand, it is possible to

adopt some of the content planning strategies (e.g.,

summaries or SRL sequences as the plans (Fan

et al., 2019)), and repurpose pretrained LMs for

generation in each stage. However, these strategies

4315

with dedicated intermediate plans and a pre-fixed

number (typically 2) of stages can have limited

flexibility, leading to sub-optimal results as shown

in our empirical study. Besides, creating training

data for planning requires additional resources (e.g.,

pretrained summarization models or SRL models)

which are not always available (e.g., in certain do-

mains or for low-resource languages). In contrast,

we propose a simple way for designing the interme-

diate stages based on word informativeness, which

can flexibly increase the number of stages for im-

proved results, and easily create training data for

all stages without additional models.

Non-monotonic generation and refinement.
Another relevant line of research is non-monotonic

generation (Welleck et al., 2019; Gu et al., 2019;

Stern et al., 2019; Chan et al., 2019; Zhang et al.,

2020), infilling (Zhu et al., 2019; Shen et al., 2020;

Qin et al., 2020), or refinement (Lee et al., 2018;

Novak et al., 2016; Mansimov et al., 2019; Kasai

et al., 2020) that differs from the restricted left-to-

right generation in conventional LMs. Again, those

approaches largely depend on specialized architec-

tures and inference, making them difficult to be

integrated with the powerful pretrained LMs. The

prior studies have focused on generating short text.

Our proposed coarse-to-fine progressive generation

conceptually presents a non-monotonic process

built upon the pretrained monotonic LMs, which

permits fast adaptation to any target domain and

generation of much longer text.

Long text generation. Previous work has made

attempts to generate text of up to two or three hun-

dred tokens. Those methods often adopt the similar

idea of planning-then-generation as above (Shen

et al., 2019; Zhao et al., 2020; Bosselut et al., 2018;

See et al., 2019; Hua and Wang, 2020; Rashkin

et al., 2020). Another line of work instead focuses

on extending the transformer architecture (Vaswani

et al., 2017) to model longer text sequences (e.g.,

Dai et al., 2019; Wang et al., 2020; Choroman-

ski et al., 2021, etc). For example, Liu et al.

(2018) used a hybrid retrieval-generation archi-

tecture for producing long summaries; Dai et al.

(2019) showed long text samples qualitatively. Our

work systematically examines the pretrained LMs

in generating long domain-specific text, and pro-

poses a new approach that empowers pretrained

LMs for producing samples of significantly higher-

quality.

3 Progressive Generation of Text

One of the main challenges in generating long co-

herent passages is modeling long-range dependen-

cies across the entire sequences (e.g., 1000 tokens).

We propose a progressive generation approach that

is conceptually simple yet effective. Intuitively,

progressive generation divides the complex prob-

lem of generating the full passage into a series of

much easier steps of generating coarser-grained

intermediate sequences. Contrary to generating

everything from left to right from scratch, our pro-

gressive generation allows the model to first plan

globally and then shift attention to increasingly

finer details, which results in more coherent text.

Figure 2 illustrates the generation process.

3.1 Generation Process

Let y := [y1, y2, . . . , yT] be the output text, where

each yi is a token of language (a word or a sub-

word). The output sequences are generated either

conditionally on any other information x (e.g., gen-

erations of a story given a prompt), or uncondi-

tionally (in which case we assume x ≡ ∅ while

keeping the same notation).

Instead of generating the full passage y directly,

we propose to add multiple intermediate stages:

x → c1 → c2 · · · → cK → y, where for each

stage k ∈ {1, . . . ,K}, ck is an intermediate se-

quence containing information of the passage at

certain granularity. For instance, at the first stage,

c1 can be seen as a highest-level content plan con-

sisting of the most informative tokens such as key

entities. Then, based on the plan, we gradually

refine them into subsequent ck, each of which con-

tains finer-grained information than that of the pre-

ceding stage. At the final stage, we refine cK into

the full passage by adding the least informative

words (e.g., stop words). The generation process

corresponds to a decomposition of the conditional

probability as:

P (y, {ck}|x) = P (c1|x)
ΠK

k=2P (ck|ck−1,x)P (y|cK ,x) . (1)

As the above intuition, ck at early stages as the

high-level content plans should contain informa-

tive or important words, to serve as skeletons for

subsequent enrichment.

We next concretely define the order of genera-

tion, namely, which words should each stage gen-

erates. Specifically, we propose a simple method

4316

Condition

jeep dog
barking officer
skinny jeep
sandy …

s h o u t e d j e e p d o g
circles vehicle barking
officer yellow skinny
animal circling jeep
spit vehicle tumbling
rough sandy adjusting
gun proceeded canine
dog barking …

LM1`` Shut the dog up ,’’

shouted my head officer from the jeep . The dog was
running circles around our vehicle , barking at the people
inside . The officer tapped my shoulder and pointed to the
yellow , skinny animal circling our jeep . “ But sir.. , ” I
managed to spit out before he took both his hands and
pushed me out of the vehicle . I went tumbling out , and
landed on the rough sandy ground . I stood up adjusting the
gun hanging from my shoulder and proceeded to walk
towards the canine . The dog stopped its barking , and
shifted its black eyes to me . “ Come here little pup . Hey
come here , I ’ m not going to hurt ya , ” I said trying to coax
it nearer to me . Actually , I didn ’ t know if I was going to
hurt the little mutt or not yet . Reaching my hand towards
my waist , I pulled off a tiny bit of my rations . I held it out
my hand , with the ration laying on my open palm . The dog
perked it ’ s ears , and came a few inches closer to me. […]

…

GenerationProgressive Generation of Text

x yc
1

c
2

…

LM2 LMK

Figure 2: Progressive generation of long text y given any condition x. Each stage refines the results from the previous stage by
adding finer-grained details. Added content at each stage is highlighted in different colors.

that constructs a vocabulary Vk for each stage k,

based on the importance of words in the target

domain. Each particular stage k only produces

tokens belonging to its vocabulary Vk. By the pro-

gressive nature of the generation process, we have

V1 ⊂ · · · ⊂ VK ⊂ V . That is, V1 contains the

smallest core set of words in the domain, and the

vocabularies gradually expand at later stages until

arriving the full vocabulary V . Note that vocabular-

ies in later stages are supersets of those in earlier

stages. This allows the later stages to remedy and

polish potential mistakes made in earlier stages

when necessary. We discuss the construction of the

vocabularies in the below.

Stage-wise vocabularies based on word impor-
tance. Given a text corpus D of the target domain

with the full vocabulary V , we define the impor-

tance scores of words in V based on the TF-IDF

metric. We then rank all the words and assign the

top Vk words to the intermediate vocabulary Vk.

Here Vk is a hyper-parameter controlling the size

of Vk.

More concretely, for each word w ∈ V , we first

compute its standard TF-IDF score (Salton and

McGill, 1986) in each document d ∈ D, which

essentially measures how important w is to d. The

importance of the word w in the domain is then

defined as the average TF-IDF score across all doc-

uments containing w:

importance(w,D) =

∑
d∈D TF_IDF(w,d)

DF(w,D)
, (2)

where TF_IDF(w,d) is the TF-IDF score of word

w in document d; and DF(w,D) is the document

Algorithm 1 Training for Progressive Text Generation

Inputs:
Domain corpus D
Vocabulary sizes for K stages
K pretrained LMs (e.g. GPT-2 or BART)

1: Construct stage-wise vocabularies {Vk} based on word
importance Eq.(2)

2: Extract intermediate sequences {c∗k} using {Vk}; add
data noises (Sec 3.2)

3: Fine-tune all LMs independently (Sec 3.2)

Output: Fine-tuned LMs for generation at all stages in a
progressive manner

frequency, i.e., the number of documents in the

corpus that contain the word w.

Pretrained language models as building blocks.
Compared to many of the previous planning-then-

generation and non-monotonic generation methods,

one of the key advantages of our progressive gen-

eration design is the direct compatibility with the

powerful pretrained LMs that perform left-to-right

generation. Specifically, although our approach im-

plements a non-monotonic generation process that

produces importance words first, we can generate

intermediate sequences ck at each stage still in a

left-to-right manner. Thus, we can plug pretrained

LM, such as GPT-2 or BART, into each stage to

carry out the generation. As described more in

section 3.2, for each stage k, we can conveniently

construct stage-specific training data from the do-

main corpus D using the stage-wise vocabulary

Vk, and fine-tune the stage-k LM in order to gen-

erate intermediate sequences at the stage that are

pertaining to the target domain.

One can add masks on the pretrained LM’s to-

4317

ken distributions to ensure the stage-k LM only

produces tokens belonging to Vk. In practice, we

found it is not necessary, as the pretrained LM

can usually quickly learns the pattern through fine-

tuning and generate appropriate tokens during in-

ference. In our experiments we use BART for all

stages, since BART is an encoder-decoder model

which can conveniently take as inputs the resulting

sequence from the preceding stage and generate

new. (For the first stage in an unconditional genera-

tion task, we simply set x = ∅.) We note that GPT-

2, and other relevant pretraiened LMs, can indeed

also be used as a conditional generator (Radford

et al., 2019; Liu et al., 2018) and thus be plugged

into any of stages.

3.2 Training

Our approach permits straightforward training/fine-

tuning of the (pretrained) LMs at different stages

given the domain corpus D. In particular, we can

easily construct independent training data for each

stage, and train all LMs in parallel. Note that no

additional resources such as pretrained summariza-

tion or semantic role labeling models are requested

as in previous work, making our approach directly

applicable to a potentially broader set of domains

and languages. We plan to explore the use of our

method in multi-lingual setting in the future.

More concretely, for each stage k, we use the

stage vocabularies Vk−1 and Vk to filter all rel-

evant tokens in the documents as training data.

That is, given a document, we extract the sub-

sequence c∗k−1 of all tokens from the document

that are belonging to Vk−1, and similarly extract

sub-sequence c∗k belonging to Vk. The c∗k−1 and

c∗k are then used as the input and the ground-truth

output, respectively, for training the LM at stage

k with maximum likelihood learning. Therefore,

given the stage-wise vocabularies {Vk}, we can au-

tomatically extract training data from the domain

corpus D for different stages, and train the LMs

separately.

In the multi-stage generation, the intermediate

sequences are not natural language. Yet we found

that fine-tuning pretrained LMs (such as BART and

GPT-2) to generate the intermediate sequences is

indeed very efficient in terms of data and computa-

tion. We tried training other models such as small

sequence-to-sequence models and n-gram models

from scratch, which we found is much harder, re-

quiring more data, or yielding inferior performance.

This again highlights the importance of using pre-

trained LMs, as enabled by our simple method

design.

Stage-level exposure bias and data noising. In

the above training process, the outputs of each

LM are conditioning on the ground-truth input se-

quences extracted from the real corpus. In contrast,

at generation time, the LM takes as inputs the im-

perfect sequences produced at the previous stage,

which can result in new mistakes in the outputs

since the LM has never be exposed to noisy inputs

during training. Thus, the discrepancy between

training and generation can lead to mistakes in gen-

eration accumulating through the stages. The phe-

nomenon resembles the exposure bias issue (Ran-

zato et al., 2016) of sequential generation models

at token level, where the model is trained to predict

the next token given the previous ground-truth to-

kens, while at generation time tokens generated by

the model itself are instead used to make the next

prediction.

To alleviate the issue and increase the robustness

of each intermediate LM, we draw on the rich liter-

ature of addressing token-level exposure bias (Xie

et al., 2017; Tan et al., 2019). Specifically, during

training, we inject noise into the ground-truth in-

puts at each stage by randomly picking an n-gram

(n ∈ {1, 2, 3, 4}) and replacing it with another ran-

domly sampled n-gram. The data noising encour-

ages the LMs to learn to recover from the mistakes

in inputs, leading to a more robust system during

generation.

4 Experiments

4.1 Setup

Domains. We evaluate on two text generation do-

mains including: (1) CNN News (Hermann et al.,

2015) for unconditional generation. (2) Writing-
Prompts (Fan et al., 2018) for conditional story

generation. The task is to generate a story given

a prompt. The two datasets are chosen since they

both contain long documents, with CNN’s average

and maximum length being 512 and 926, and Writ-

ingPrompts’s being 437 and 942, respectively. To

demonstrate the data efficiency of our approaches

adapting to target domains, we sample 1,000 docu-

ments in each dataset for training.

Model configs. We use BARTs for all stages of

generation. Due to computation limitations, we ex-

periment models with 2, 3, 4-stages generations. In

4318

our 2-stage model, our first stage covers about 25%

of all content; in the 3-stage model, the first and

second stages cover 15% and 25% of all content,

respectively; and in the 4-stage model, our first

three stages cover 15%, 20%, 25% of all content.

For model training, we follow the same protocol as

(See et al., 2019) to fine-tune all pretrained mod-

els until convergence. To combat exposure bias,

we add noise to the training data as described in

Sec 3.2, with the probability of replacing 1,2,3,4-

grams 0.1/0.05/0.025/0.0125. In the generation

phase, we use top-p decoding (Holtzman et al.,

2020) with p = 0.95 to generate 1024 tokens

at maximum. Experiments were conducted with

RTX6000 GPUs. It took around 4 hours for model

fine-tuning and generation with a single GPU.

Comparison methods. We compare with a wide

range of baselines, categorized into two groups: (1)
The large pretrained LMs including BART (Lewis

et al., 2020) and GPT-2 in both small and large

sizes (Radford et al., 2019). The LMs generate text

in a standard left-to-right manner; (2) Progressive

generation with various strategies adopted in the

prior planning-then-generation work. Same as our

proposed method, each stage adapts a pretrained

BART for generation. Specifically, Summary first

generates a short summary text as the content plan

and conditioning on the summary produces the full

passage of text (Fan et al., 2019). For training,

summaries are obtained using the state-of-the-art

pretrained CNN news summarization model based

on BART; Keyword first generates a series of key-

words, based on which the full text is generated

in the next stage. Following (Yao et al., 2019),

the keywords are extracted with the RAKE algo-

rithm (Rose et al., 2010) for training; SRL follows

the recent work (Fan et al., 2019) by first generating

a sequence of predicates and arguments and then

producing the full text conditionally. The same

semantic role labeling tool as in the prior work is

used here to create training data. SRL+NER and

SRL+Coref further augment the SRL method by

an additional stage of generating entity anonymized

text conditioning on the predicates sequence prior

to the final stage (Fan et al., 2019). SRL+NER

uses an NER model to mask all entities, while

SRL+Coref applies coreference resolution to mask

all clusters of mentions. We use the same NER

and coreference tools as in (Fan et al., 2019). Fi-

nally, as a reference, we also present the results of

Human-written text (i.e., the text in the dev set).

4.2 Automatic Evaluation

4.2.1 Evaluation Metrics
To evaluate the generation quality for the domain-

specific open-ended generation as studied here, we

primarily measure the “closeness” between two

sets of text, one generated by the model and the

other the real text from the target domain. We eval-

uate with a broad array of automatic metrics, in-

cluding lexical-based quality metrics and semantic-
based quality metrics. We also evaluate the genera-

tion diversity.

MS-Jaccard (MSJ) is a lexical-based metric

(Montahaei et al., 2019), where MSJ-n measures

the similarity of n-grams frequencies between two

sets of text with Jaccard index.

TF-IDF Distance (TID) is defined as the dis-

tance between the average TF-IDF features of two

text sets. We use it as an additional lexical-based

quality measure.

Fréchet BERT Distance (FBD) is a semantic-

based metric (Montahaei et al., 2019) that measures

the Fréchet Distance in the BERT feature space be-

tween the generated and real text. By using the

BERT features from shallow (S), medium (M), and

deep (D) layers, we can compute FBD-S/M/D, re-

spectively.

Backward BLEU (B-BLEU) is a diversity met-

ric (Shi et al., 2018) measuring how well the gener-

ated text covers n-grams occurred in the test set.

Harmonic BLEU (HA-BLEU) (Shi et al., 2018)

is an aggregated quality and diversity metric that in-

corporates both the standard BLEU (i.e., precision)

and the Backward BLEU (i.e., recall).

4.2.2 Results
Figures 3 and 4 show the results of the various sys-

tems on the news and story domains, respectively,

measured with different metrics against test set. We

give more complete results in the appendix. We

can see that our progressive generation approach

consistently outperforms the standard, single-stage

LMs (GPT2-Small, GPT2-Large and BART)

by a large margin on almost all metrics in both

domains. Further, by increasing the number of pro-

gression stages, our method steadily achieves even

stronger performance. This highlights the benefits

of the flexible progressive generation strategy.

The various models using pretrained LMs with

previous planning-then-generation strategies show

4319

13.5

14.5

15.5

16.5

17.5

18.5

Baselines Ours

Human

25

27

29

31

33

Baselines Ours
Human

Lexical-based quality metrics Semantic-based quality metric

Diversity

25

26

27

28

29

30

31

32

Baselines Ours
Human

Aggregated diversity and quality

HA-BLEU4B-BLEU4

MSJ-4 TID FBD-D

0

20

40

60

Baselines Ours

Human

0

4

8

12

16

Baselines Ours

Human

Figure 3: Results on the CNN News domain measured by different metrics. For TID and FBD, the lower value the better. More
results (MSJ-n, B-BLEUn and HA-BLEUn with different n values, and FBD-S/M) are included in the appendix. The three
sets of comparison methods are shown in different colors, with our ProGen in red, standard large LMs in blue, and the various
models with previous planning strategies in green. Human results are shown as dashed lines, often indicating the best potential
performance (except for the diversity related metrics).

30

31

32

33

34

35

36

37
Baselines Ours

Human

HA-BLEU4

15

16

17

18

19

20

21

22

Baselines Ours
Human

MSJ-4 FBD-D

Lexical-based quality metrics Semantic-based quality metric Aggregated diversity and quality

0

10

20

30

40

50

60

Baselines Ours

Human

Figure 4: Results on the story domain measured by different metrics. More complete results are in appendix.

mixed results across the different metrics. For ex-

ample, Summary achieves strong performance in

terms of the semantic-based quality metric FBD-D

(partially because the summaries are closer to the

real text in the BERT feature space), but signifi-

cantly falls behind other models in terms of diver-

sity (B-BLEU4) and other quality metrics like MSJ

and HA-BLEU. Similarly, the SRL-based methods

give only mediocre results in terms of the semantic-

based FBD-D. In contrast, our approach maintains

a relatively consistent performance level. In par-

ticular, our 4-stage model, ProGen-4, is steadily

among the best across all metrics, further validating

Fluency
Coherence

passage sentence (%)

BART 4.59 2.95 70.29
GPT2-Small 4.42 3.41 74.69

Summary 4.39 3.37 76.19
ProGen-4 (Ours) 4.46 3.83 86.22

Table 1: Human evaluation results on CNN.

the advantage of the proposed simple yet flexible

multi-stage generation.

These results also indicate the necessity of using

a large diverse set of automatic metrics for a com-

prehensive evaluation, and motivate human studies

for further assessment.

4320

Figure 5: Sample efficiency on the
story domain with the FBD metric
(the lower, the better).

FBD-D ↓ MSJ-4 ↑ HA-BL4 ↑
ProGen-2 39.94 16.50 30.45

-Noise 47.18 16.25 31.39

ProGen-3 38.30 16.68 30.64
-Noise 39.64 16.65 30.72

ProGen-4 36.49 16.96 31.32
-Noise 39.78 16.85 30.86

Table 2: Effect of noise on CNN.

FBD-D ↓ TID ↓
ProGen-2 39.94 6.2
GoldPlan 30.16 3.5

Human 25.63 2.6

Table 3: GoldPlan Results on CNN.

First Stage: beckham \n liverpool bayern chelsea \n beckham chelsea mancini \n liverpool \n club [...]
Second Stage: beckham newcastle \n footballer acquisition transfer liverpool bayern munich chelsea munich \n beckham
chelsea season italian siro gianluigi mancini season italy \n season liverpool season \n wembley club \n [...]
Final Stage:
(CNN) – England striker Ashley Beckham has joined Premier League strugglers Newcastle United. \n England Football
Association chairman Stephen McClaren confirmed the acquisition of the 20-year-old England international on Wednesday,
making the move official following a lucrative transfer agreement with Liverpool, Bayern Munich and Chelsea.\n Beckham
spent the first half of this year on loan at Chelsea and did not start a single match during the season at the Italian capital’s San
Siro despite being named the player of the season of the year by Italy. \n However, he played 17 times last season and 12
times this season for Liverpool, making 33 league appearances and scoring seven goals. \n He is currently third on the all-time
England goalscoring list behind only England manager Alex Ferguson and new club teammate Paul Gascoigne. [...]

Table 4: An excerpt of a 3-stage generated example by ProGen-3 on the CNN News domain.

4.3 Human Evaluation

In our human study, we asked three university stu-

dents who are proficient English speakers to eval-

uate the coherence and fluency of the generated

text. To better assess the coherence of the long

passages of text, we evaluate at both the passage

level and the finer-grained sentence level. More

concretely, for passage-level coherence, human

raters assign a coherence score to each full-length

text sample, on a 5-point Likert scale. For a more

detailed assessment, we further evaluate sentence-
level coherence, where human raters label each

sentence in the text passage with 0 or 1, indicating

whether the particular sentence is coherent with the

proceeding context in the passage. We then calcu-

late the average percentage of coherent sentences

in the generated text by each model. Human raters

also evaluate the language quality for a fluency
score on a 5-point Likert scale. We compare our

method with the systems that show highest gen-

eration quality in automatic evaluation, including

BART, GPT2-Small, and Summary. We evalu-

ated 50 examples for each comparison model on

the CNN domain. The Pearson correlation coeffi-

cient of human scores is 0.52, showing moderate

inter-rater agreement.

Table 1 shows the results. All systems receive

close fluency scores. Our approach obtained signif-

icantly higher coherence scores at both passage and

sentence levels. In particular, over 86% sentences

in our model generations are considered as coher-

ent with the context, improving over other models

by at least 10 absolute percent.

4.4 Ablation Study and Analysis

Sample efficiency. We study how the progres-

sive generation could improve the sample efficiency

of large LMs fine-tuned to target domains. The

intuition is that by focusing on the subsets of in-

formative words, the early stages can more effi-

ciently capture the domain-specific characteristics

and then steer the subsequent refinement stages.

Figure 5 shows the results where we report the

FBD score averaged over FBD-S/M/D. We can see

our approach can make more efficient use of the

training data in learning to generate high quality

samples. For example, with only 1K training exam-

ples, our method achieves comparable results with

large LMs trained on 30K examples.

Generation with gold plans. To investigate the

importance of dividing the generation process into

stages and what the stages learn separately, we add

another set of text into our comparison. It is a 2-

stages model whose first stage is the ground truth

(gold plan) while the second stage kept the same

(a BART model), shown as GoldPlan in Table 3.

Note that with gold plan, our model greatly de-

creases the gap with human text in terms of lexical

(TID) and semantic (FBD-D) quality metrics. The

results highlight the importance of plans in text

4321

generation. The intermediate plans act as an in-

formation bottleneck, and high-quality plans could

lead to high-quality text generation.

Effect of data noising. We study the ablation of

data noising, to check whether the noising opera-

tion really helps reduce stage-wise exposure bias

(Sec 3.2) as we expected. Table 2 shows the com-

parison between models with and without noise in

training. The added noise generally brings perfor-

mance improvement in terms of various metrics.

Example generations. Table 4 shows an exam-

ple of text generated via three stages. We can see

our model first generates the key subject beckham
and the team name liverpool in the very first stage,

then adds more fine-grained details like acquisition,
transfer in the second stage and finally expands

the keywords into a full document describing Beck-

ham’s joining a new team.

5 Conclusion

We have proposed a new approach for domain-

specific generation of long text passages in a pro-

gressive manner. Our method is simple and effi-

cient by fine-tuning large-scale off-the-shelf lan-

guage models. We conduct extensive experiments

using a variety of metrics and human studies. We

demonstrate that our method outperforms a wide

range of large pretrained LMs with single-stage

generation or prior planning-then-generation strate-

gies, in terms of quality and coherence of the pro-

duced samples. The multi-stage generation also

opens up new opportunities to enhance controlla-

bility of text generation, which we would love to

explore in the future.

References
Antoine Bosselut, Asli Celikyilmaz, Xiaodong He,

Jianfeng Gao, Po-Sen Huang, and Yejin Choi. 2018.
Discourse-aware neural rewards for coherent text
generation. In NAACL, pages 173–184.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS, volume 33, pages 1877–1901.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. KERMIT: Gener-
ative insertion-based modeling for sequences. arXiv
preprint arXiv:1906.01604.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2021. Rethinking attention
with performers. ICLR.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In ACL, pages 2978–2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In ACL, pages
889–898.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In ACL.

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi,
and George E Dahl. 2018. The importance of gener-
ation order in language modeling. In EMNLP.

Gardian. A robot wrote this entire article. are you
scared yet, human?

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019.
Insertion-based decoding with automatically in-
ferred generation order. TACL, 7:661–676.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NeurIPS, pages 1693–1701.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. In ICLR.

Xinyu Hua and Lu Wang. 2019. Sentence-level con-
tent planning and style specification for neural text
generation. In EMNLP.

Xinyu Hua and Lu Wang. 2020. PAIR: Planning and
iterative refinement in pre-trained transformers for
long text generation. In EMNLP, pages 781–793.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In
ICML.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. In
EMNLP, pages 1173–1182.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In ACL, pages 7871–7880.

4322

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summariz-
ing long sequences. In ICLR.

Elman Mansimov, Alex Wang, Sean Welleck, and
Kyunghyun Cho. 2019. A generalized framework of
sequence generation with application to undirected
sequence models. arXiv preprint arXiv:1905.12790.

MarketMuse. Gpt-3 exposed: Behind the smoke and
mirrors.

Ehsan Montahaei, Danial Alihosseini, and Mahdieh So-
leymani Baghshah. 2019. Jointly measuring diver-
sity and quality in text generation models. NAACL
Workshop.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In NAACL.

Roman Novak, Michael Auli, and David Grangier.
2016. Iterative refinement for machine translation.
arXiv preprint arXiv:1610.06602.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In AAAI, volume 33, pages 6908–6915.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Back to the future:
Unsupervised backprop-based decoding for counter-
factual and abductive commonsense reasoning. In
EMNLP, pages 794–805. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. ICLR.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. PlotMachines: Outline-
conditioned generation with dynamic plot state
tracking. In EMNLP, pages 4274–4295.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1–20.

Gerard Salton and Michael J McGill. 1986. Introduc-
tion to modern information retrieval.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D. Manning. 2019. Do
massively pretrained language models make better
storytellers? In CoNLL, pages 843–861.

Dinghan Shen, Asli Celikyilmaz, Yizhe Zhang, Liqun
Chen, Xin Wang, Jianfeng Gao, and Lawrence Carin.
2019. Towards generating long and coherent text
with multi-level latent variable models. In ACL,
pages 2079–2089.

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi Jaakkola. 2020. Blank language models. In
EMNLP, pages 5186–5198.

Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing
Huang. 2018. Toward diverse text generation with
inverse reinforcement learning. IJCAI.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible
sequence generation via insertion operations. In
ICML, volume 97, pages 5976–5985.

Bowen Tan, Zhiting Hu, Zichao Yang, Ruslan Salakhut-
dinov, and Eric P Xing. 2019. Connecting the dots
between mle and rl for sequence generation. ICLR
Workshop.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998–6008.

Sinong Wang, Belinda Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-
attention with linear complexity. arXiv preprint
arXiv:2006.04768.

Sean Welleck, Kianté Brantley, Hal Daumé III, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In ICML.

Ziang Xie, Sida I Wang, Jiwei Li, Daniel Lévy, Aiming
Nie, Dan Jurafsky, and Andrew Y Ng. 2017. Data
noising as smoothing in neural network language
models. In ICLR.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. MEGATRON-CNTRL: Control-
lable story generation with external knowledge us-
ing large-scale language models. In EMNLP, pages
2831–2845.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
AAAI, volume 33, pages 7378–7385.

Lili Yao, Yaoyuan Zhang, Yansong Feng, Dongyan
Zhao, and Rui Yan. 2017. Towards implicit content-
introducing for generative short-text conversation
systems. In EMNLP, pages 2190–2199.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe
Gan, Chris Brockett, and Bill Dolan. 2020.
POINTER: Constrained progressive text genera-
tion via insertion-based generative pre-training. In
EMNLP, pages 8649–8670.

4323

Liang Zhao, Jingjing Xu, Junyang Lin, Yichang Zhang,
Hongxia Yang, and Xu Sun. 2020. Graph-based
multi-hop reasoning for long text generation. arXiv
preprint arXiv:2009.13282.

Wanrong Zhu, Zhiting Hu, and Eric Xing. 2019. Text
infilling. arXiv preprint arXiv:1901.00158.

4324

Appendix: Complete Results

We include complete result numbers of experiments here.

GPT2-S GPT2-L BART Summ. RAKE SRL SRL-N SRL-C ProGen-2 ProGen-3 ProGen-4 Dev

B-BL2 72.84 71.89 71.51 73.28 69.78 70.25 74.50 74.71 72.25 74.10 74.57 75.82
B-BL3 48.53 47.48 47.55 49.26 45.39 46.54 51.19 51.40 48.44 50.38 51.06 52.08
B-BL4 28.64 28.55 28.11 29.31 26.09 27.25 31.04 31.06 28.88 30.32 30.96 32.29
B-BL5 15.87 15.62 15.57 16.35 14.01 14.88 17.58 17.41 16.08 17.09 17.53 19.35

HA-BL2 73.61 71.97 74.56 74.59 71.63 67.47 74.51 75.11 74.64 75.17 75.86 75.72
HA-BL3 49.26 47.83 50.27 50.32 47.34 44.51 50.87 51.18 50.64 51.07 51.88 52.01
HA-BL4 29.21 28.26 30.03 29.88 27.51 25.84 30.45 30.49 30.45 30.64 31.32 32.28
HA-BL5 16.22 15.77 16.77 16.52 14.84 13.91 16.94 16.87 17.09 17.18 17.63 19.40

MSJ-2 49.24 46.94 49.85 46.97 44.19 43.85 49.39 44.37 49.46 50.16 51.00 54.51
MSJ-3 28.79 27.29 29.43 27.99 26.01 25.90 29.58 26.92 29.54 30.04 30.56 32.54
MSJ-4 15.73 14.85 16.24 15.48 14.12 14.15 16.33 14.99 16.50 16.68 16.96 18.60
MSJ-5 8.38 7.91 8.72 8.25 7.36 7.43 8.68 8.02 8.90 8.95 9.10 10.87

TID 8.7 9.2 6.8 4.5 7.8 16.1 5.2 5.2 6.2 5.4 4.0 2.6

FBD-S 16.21 18.50 7.76 2.93 4.17 14.26 11.42 4.66 3.26 3.16 2.64 5.98
FBD-M 24.92 29.61 22.49 15.00 25.92 37.24 22.63 20.28 19.05 18.84 17.38 12.26
FBD-D 43.07 44.15 44.86 33.08 54.12 64.83 43.26 44.34 39.94 38.30 36.49 25.63

Table 5: Complete results on the CNN News domain.

GPT2-S GPT2-L BART Summ. RAKE SRL SRL-N SRL-C ProGet-2 ProGet-3 ProGet-4 Dev

B-BL2 78.38 77.43 76.96 77.19 76.97 77.98 77.90 77.62 78.64 78.73 78.41 79.20
B-BL3 55.51 54.18 54.45 54.45 53.86 55.67 55.49 55.09 56.44 56.50 56.25 56.02
B-BL4 33.41 32.20 33.02 32.88 31.95 33.83 33.75 33.36 34.46 34.62 34.52 34.08
B-BL5 17.59 16.79 17.55 17.53 16.47 17.93 17.98 17.63 18.32 18.49 18.57 18.40

HA-BL2 78.19 76.96 79.99 79.30 77.19 79.24 77.73 77.46 80.57 80.72 80.50 79.51
HA-BL3 55.39 54.33 57.86 56.83 54.71 57.00 55.71 55.14 58.11 58.38 58.35 56.39
HA-BL4 33.32 32.52 35.63 34.63 32.70 34.63 33.93 33.36 35.43 35.84 35.96 34.36
HA-BL5 17.46 16.94 19.16 18.47 16.86 18.26 18.03 17.60 18.72 19.14 19.30 18.55

MSJ-2 55.27 54.21 55.89 52.63 51..88 47.51 45.39 43.36 55.14 56.51 56.18 60.07
MSJ-3 34.48 33.70 35.46 33.46 32.59 30.88 29.51 28.22 34.81 35.80 35.74 37.42
MSJ-4 19.32 18.83 20.27 19.17 18.33 17.87 17.11 16.39 19.63 20.29 20.39 21.22
MSJ-5 10.16 9.90 10.73 10.27 9.57 9.54 9.21 8.82 10.16 10.60 10.76 11.34

TID 4.6 8.3 5.1 4.5 5.8 5.5 5.3 7.0 5.1 5.0 4.8 3.4

FBD-S 3.49 3.43 5.34 5.06 8.28 6.03 7.49 8.63 3.72 3.90 3.81 1.96
FBD-M 19.30 19.41 21.75 18.11 22.97 21.85 23.15 25.01 19.36 19.04 18.62 12.23
FBD-D 40.18 41.22 43.97 33.90 44.32 43.63 45.87 48.92 39.82 39.05 38.68 28.82

Table 6: Complete results on the story domain.

