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Abstract

Conditional text generation often requires lex-
ical constraints, i.e., which words should or
shouldn’t be included in the output text. While
the dominant recipe for conditional text gener-
ation has been large-scale pretrained language
models that are finetuned on the task-specific
training data, such models do not learn to fol-
low the underlying constraints reliably, even
when supervised with large amounts of task-
specific examples.

We propose NEUROLOGIC DECODING, a sim-
ple yet effective algorithm that enables neu-
ral language models – supervised or not – to
generate fluent text while satisfying complex
lexical constraints. Our approach is power-
ful yet efficient. It handles any set of lexical
constraints that is expressible under predicate
logic, while its asymptotic runtime is equiva-
lent to conventional beam search.

Empirical results on four benchmarks show
that NEUROLOGIC DECODING outperforms
previous approaches, including algorithms
that handle a subset of our constraints. More-
over, we find that unsupervised models with
NEUROLOGIC DECODING often outperform
supervised models with conventional decod-
ing, even when the latter is based on consid-
erably larger networks. Our results suggest
the limit of large-scale neural networks for
fine-grained controllable generation and the
promise of inference-time algorithms.

1 Introduction

Text generation applications often need to incorpo-
rate semantic constraints, i.e., what words should
and shouldn’t appear in the output generation. Con-
sider the task of generating a recipe from a set of
ingredients (Kiddon et al., 2016), such as ‘garlic,’
‘steak’, and ‘soy sauce’ (Figure 1). A generated
recipe should cover all of those ingredients, without
hallucinating new ones (such as ‘pork’ or ‘beans’).
This restriction, like others in Figure 1 for other
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Scenario

food | table | sit | front

The man sat with his food at the front of the table
The food is in front of you sit at the table.
a table of food sits in front of three people

Concept-Set

COMMONGEN (Lin et al., 2019)

Constraints 
(food ⋁ foods) ⋀ (table ⋁ tables) ⋀
(sit ⋁ sits ⋁ sat ⋁ sitting) ⋀ (front ⋁ fronts)
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The physician told the baker that she had cancer.

Der Arzt sagte dem Bäckerin, dass er Krebs habe.

Evaluate Gender Bias in MT (Stanovsky et al., 2019) 

Bäckerin        Bäcker

Constraints (Ärztin ⋁ Arzt) ⋀ (Bäckerin ⋀ ¬ Bäcker)

Source 

Recipe Generation (Kiddon et al., 2016)
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Dish name 

2 tsp butter, 1 beef steak, 1/4 tsp soy sauce, 1 tsp 
parsley, 1/8 tsp salt , 1/2 tsp garlic

garlic butter steak
Ingredients

Constraints 
butter ⋀ (beef ⋁ steak ⋁meat) ⋀ soy sauce ⋀

.(parsley ⋁ herb) ⋀ salt ⋀ (garlic ⋁ vegetable) ⋀

.(¬ pork ⋀.¬ bean ⋀.¬… ) any extra ingredients

Recipe 
Mix 1 tablespoon butter, parsley, garlic and soy 
sauce. Sprinkle steak with salt. In a large skillet, 
heat remaining butter over medium heat. Add 
steak; cook until meat reaches desired doneness, 
4-7 minutes per side. Serve with garlic butter.

Figure 1: Overview of several constrained generation
tasks. For instance, generating a short description from
a set of concepts (COMMONGEN; Lin et al., 2020) re-
quires using each of those words at least once; this can
be expressed as a logical expression (here, ‘(food ∨
foods) ∧ . . .’). Our proposed NEUROLOGIC DECOD-
ING handles all predicate logic constraints efficiently,
yet with the same asymptotic runtime as beam search.

applications, can be modeled by a set of lexical
constraints expressed as a predicate logic formula.

The dominant paradigm today for performing
such constrained generation is to start with a pre-
trained language model, and then finetune it on a
dataset of task-specific examples. However, pre-
trained language models struggle at learning to
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follow these constraints, even when the finetun-
ing dataset is large. For example, for the afore-
mentioned recipe generation task, a GPT2 model
finetuned on hundreds of thousands of recipes still
hallucinates extra ingredients. In stark contrast,
humans need to see only a few examples (or even
none) to generate the desired output satisfying all
the logical constraints, e.g., writing a recipe that
mentions each ingredient (butter, steak, etc.) with-
out using new ones.

We hypothesize that this mismatch is due to a
fundamental under-specification of finetuning. If
we finetune one of today’s state-of-the-art language
models on a dataset, the likelihood of it generating
sequences from the same distribution should in-
crease. Yet there is no guarantee that this improve-
ment in likelihood will come from improvements
on the fundamental task of constrained generation,
as opposed to picking up on dataset-specific pat-
terns such as language style. In fact, we present
analysis suggesting that ‘worst-case’ learning be-
havior is common in practice: when we increase
the finetuning data fed to GPT2 by an order of mag-
nitude, constraint-satisfaction with standard beam
search shows only modest improvement.

To address this issue, we propose NEUROLOGIC

DECODING, which effectively enforces the satisfac-
tion of given lexical constraints by controlling the
decoding stage of sequence generation. These con-
straints can be any predicate logic formula, which
crucially includes both positive constraints (the
word ‘butter’ must be generated somewhere) and
negative constraints (‘bean’ cannot be generated).
These simpler constraints can then be combined
through logical connectives to handle more com-
plex requirements such as inflection or synonyms
(‘beef’ or ‘steak’ both satisfy the constraint of re-
ferring to the steak). While beam search aims to
maximize the likelihood of the generated sequence,
our method searches for optimal output sequences
among the strings that also satisfy the given con-
straints. It does so efficiently: we convert the hard
logic constraints into a soft penalty term in the de-
coding objective, and use a beam-based search to
find approximately-optimal solutions; constraint
states are tracked to reuse computation. NEURO-
LOGIC DECODING thus effectively and efficiently
controls text generation without requiring any mod-
ification of the model structure or training pipeline.

We evaluate our method on four different text
generation tasks: generative commonsense reason-

ing (COMMONGEN; Lin et al., 2020), recipe genera-
tion (Kiddon et al., 2016), data-grounded dialogue
response generation (Wen et al., 2015), and reduc-
ing gender bias in machine translation (Stanovsky
et al., 2019). Empirical results demonstrate that
NEUROLOGIC DECODING ensures the satisfaction
of given constraints while maintaining high gener-
ation quality, in turn leading to new SOTA results
in both the supervised and zero-shot setting.

2 Method

In this section, we first rigorously define predicate
logic constraint, and then present in detail the NEU-
ROLOGIC DECODING algorithm.

2.1 Predicate Logic Constraint

Let us define a predicate D(a, y) to be a boolean
function indicating the occurrence of key phrase a
in a sequence y, where a can be either unigram or
multi-gram. D(a, y) will be true iff a occurs in y.

D(a, y) ≡ ∃ i, yi:i+|a| = a

NEUROLOGIC accepts lexical constraints in Con-
junctive Normal Form (CNF):(
D1 ∨D2 · · · ∨Di

)︸ ︷︷ ︸
C1

∧ · · ·∧
(
Dk ∨Dk+1 · · · ∨Dn

)︸ ︷︷ ︸
Cm

where each Di represents a single positive or neg-
ative constraint, D(ai, y) or ¬D(ai, y), restricting
whether key phrase ai should be strictly included
or omitted in y, respectively. Any propositional log-
ical formula can be converted to CNF, and thus
handled by NEUROLOGIC. Notationally, we will
refer to each individual constraint Di as a literal,
and the disjunction of literals as a clause, denoted
as Cj , with L being the total number of clauses.
Our method seeks optimal sequences in which all
clauses are satisfied:

ŷ= arg max
y∈Y

Pθ(y|x) where
L∑
i=1

Ci=L (1)

Past work on constrained optimization introduces
penalties (Fiacco, 1976) to approximate the con-
strained optimization problem with an uncon-
strained problem. Specifically, by adding a high-
cost penalty term for violated constraints:

ŷ = arg max
y∈Y

Pθ(y|x)− λ′
L∑
i=1

(1− Ci) (2)
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1 1
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0             0     

violate all
negative literals

satisfy 
one
positive 
literal

violate all negative literals

satisfy one
positive literal

Figure 2: Clause states and possible transitions. Di and
¬Di denote positive and negative literal respectively.

Intuitively, this objective balances sequence likeli-
hood (term 1) and constraint satisfaction (term 2).
The aim is to find sequences that do well at both
dimensions. While exhaustive search is intractable,
we use a beam-based search to find approximately-
optimal solutions for this objective.

2.2 Constraint States

When considering whether a generation hypothesis
satisfies some clause Ci during generation, there
are fundamentally 4 possible states (as in figure 2)
S1 reversible unsatisfaction: If an unsatisfied

clause Ci contains at least one positive literal,
Ci could be satisfied in the future by fulfilling
one of its positive literal(s).

S2 irreversible unsatisfaction: If an unsatisfied
clause Ci contains negative literal(s) only, Ci
will maintain unsatisfied in the future since
the violation of negative literals could not be
overturned.

S3 reversible satisfaction: If all satisfied lit-
eral(s) in a satisfied clause Ci are negative
literal(s), Ci could switch back to unsatisfied
in the future by violating all of its satisfied
negative literal(s).

S4 irreversible satisfaction: If satisfied literal(s)
in a satisfied clause Ci contains at least one
positive literal, Ci will maintain satisfied in
the future since the fulfilment of positive liter-
als is irreversible.

To track the states of literals and clauses efficiently,
we maintain two prefix tries. The first trie, T +,
tracks unsatisfied positive literals from all clauses
in states S1 and S3, while the other trie, T −, tracks
satisfied negative literals from all clauses in state
S3. We do not track anything from clauses in state
S2 or S4, as those are already irreversible.

If a positive literal is satisfied, its clause in state

S1 or S3 is henceforth irreversibly satisfied (state
S4), thus we remove all literals of that clause from
both tries and stop tracking. If a negative literal in
state S3 is violated, we remote it from the trie T −.
Once all negative literals of a clause in state S3 has
been removed, the clause switches back to unsatis-
fied (state S1 or S2). If it has unsatisfied positive
literal(s) in the trie T +, it becomes reversibly unsat-
isfied (state S1); otherwise it shall stay irreversibly
unsatisfied (state S2).

2.3 Algorithm

Since exhaustive search to optimize the CNF con-
straints is intractable, NEUROLOGIC uses a beam-
based search to approximate. The high-level intu-
ition is that at each time step, NEUROLOGIC selects
generation hypotheses in consideration of both the
objective function and the diversity of the partially
satisfied constraints. We achieve such by 3 steps:
pruning, grouping, and selecting (illustrated in fig-
ure 3, and detailed below).

At each time step, the decoding model generates
a distribution over all vocabulary V for k hypothe-
ses in the current beam, resulting in a candidate
score matrix of size k×|V |. Along with generating
score matrix, we produce a constraint state for each
of the k × |V | new candidates h, based on the next
token considered.

Pruning step: We first discard any h with ir-
reversible unsatisfied clause (state S2) to focus
only on candidates that might satisfy all constraints.
Then, we filter candidates h to those in the top-tier
of both satisfied constraints and sequence likeli-
hood. Specifically, we drop any candidates not in
the top-α in terms of likelihood Pθ(yt|y<t), and
not in the top-β in terms of number of satisfied
clauses

∑L
i=1Ci. These are adjustable parameters,

corresponding to maximum tolerance to sequence
fluency and constraint satisfaction.

Grouping step: Next, we select the beam from
the pruned candidates. Naively selecting k best can-
didates with respect to the objective function would
not work well, since such greedy selection would
bias toward sequences with high likelihood and
easy-to-satisfy clauses at early timestep, which can
lead to struggling with remaining hard-to-satisfy
clauses later on. Therefore, the key intuition is to
consider diverse partial solutions early on with re-
spect to the set of irreversibly satisfied clauses, i.e.,
{Ci | Ci ∈ state S4}. We group candidates based
on this set and select (in the next step) the best ones
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Constraints 
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search tree score

3

1

4

2

0.18 + 0.1 * 0 = 0.18

0.12 + 0.1 * 0 = 0.12

0.15 + 0.1 * 0 = 0.15

0.11 + 0.1 * 
!
"

= 0.16

0.09 + 0.1 * 0 = 0.09

select notation

Pruning step: 
aaaaa denotes failure in top-ɑ filtering 
in term of likelihood , aaaaa denotes 
failure in top-β filtering in term of 
number of satisfied clauses

Aaaaaaa denotes the state for 𝐶!, 𝐶", 
𝐶#, 𝐶$ separately, aaaindicates 𝐶% is 
irreversibly stratified, aa otherwise.

Grouping step: 
aaaaa denotes candidate groups 
based on the shared set of irreversibly 
satisfied clauses

1 2 43

Selecting step: 
aaaa denotes the top-1 candidate 
within each group ranked by score 
function. Among these candidates, we 
selectaaa the top-k ones to fill in the 
next beam. 

clauseslikelihood

0.05

0.12

0.18

0.20

0.19

0.16

0.15

0.11

0.09

Figure 3: Illustration of the NEUROLOGIC decoding procedure. In this example, k = 3, α = 8, β = 2, λ = 0.1

from each group to fill the beam.
Selecting step: To select best ones from each

group, we first rank candidates within a group by
score function:

s = Pθ(yt|y<t) + λ · max
D(ai,y)
∈ state S1

|âi|
|ai|

(3)

where âi is ai’s matched prefix with ongoing gen-
eration. For example, for y = “The boy climbs an
apple” and constraint ai=“apple tree”, we have
âi=“apple”. The second term denotes maximal per-
centage of matched prefix in partially satisfied pos-
itive literals. Intuitively, this score function ranks
candidaites by likelihood and gives a partial reward
to candidates moving towards satisfying a positive
literal in an unsatisfied clause (state S1). λ is an ad-
justable parameter, controlling how much we favor
candidates towards fulfilling another unsatisfied
clause. We then proceed in rounds of filling the
beam, visiting each group and taking the best scor-
ing ones in rotation, until we reach k candidates.
The group traversing order follows the descending
order of the highest score in each group. In the end,
we take the hypothesis with highest likelihood from
the ones with maximal satisfied clauses.

3 Related Work

NEUROLOGIC distinguishes itself from past works
in constrained decoding in 3 fundamental ways.

• First, NEUROLOGIC generalizes to arbitrary
logical constraints by handling the full scope

of CNF constraint, while previous works only
allow a subset of this (typically conjunctions).

• Second, NEUROLOGIC effectively optimizes
objective function through efficient and di-
verse search over output space, while previous
works suffer from either myopic and narrow
or inefficient exploration of the search space.

• Third, the asymptotic runtime of NEURO-
LOGIC is O(Nk)1, same with beam search,
constant with respect to number of constraints
C. Some previous works suffer from exponen-
tial runtime, making applications infeasible.

A detailed comparison between NEUROLOGIC and
previous methods is provided in table 1.

3.1 Previous Constrained Decoding
Approach

Anderson et al. (2017) propose constrained beam
search (CBS), where constraint satisfaction is
tracked by a finite-state machine with 2C states (all
possible satisfaction status for C constraints). Beam
search is done over all states with k candidates per
state. This method has an exponential complexity
O(Nk2C), making many applications infeasible.

Hokamp and Liu (2017) propose grid beam
search (GBS), which groups together hypotheses
by number of constraints satisfied, giving C + 1

1N denotes sequence length and k denotes beam size.
In this paper, we the asymptotic runtimes is in terms of the
number of calls to a deep generator that scores Pθ(yt|y<t);
this is because calling the generator is the most expensive part
of decoding (as opposed to auxiliary bookkeeping).
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Feature Example CBS GBS Post and Vilar Hu et al. CGMH Sha NEUROLOGIC

AND oil ∧ pork X X X X X X X
Include oil and pork

Positive Set AND oil ∧ (pork ∨ beef) X X
Include oil and a protein

Any Predicate ¬oil ∧ (pork ∨ beef) X
Logic Formula Oil-free, include a protein

Runtime: O(Nk2C) O(NkC) O(Nk) O(Nk) O(E) O(E) O(Nk)

Table 1: Expressivity and runtime of various decoding methods. AND: Output includes all terms in a set; Positive
Set AND: Output includes at least one term from each set; Predicate Logic Formula: Any combination of positive
and negative constraints. E is the number of editing steps, usually much greater than the sequence length N .

groups altogether. Each group stores at most k can-
didates that are expanded at each timestep. GBS
has a faster runtime of O(NkC), but this approach
biases towards sequences satisfying constraints
greedily, and collapses into very similar search
paths that are often times globally sub-optimal,
which results in dropped language quality.

Post and Vilar (2018) propose dynamic beam
allocation to reduce GBS’s explicit dependence on
C. Beam search is done over a single beam, with the
k slots of this beam dynamically allocated over the
C+1 groups explicitly used by GBS. This approach
was made GPU-efficient by Hu et al. (2019a). Still,
the language quality issue of GBS remains, and
can be worse in practice as fewer hypotheses are
considered at each step.

Miao et al. (2019) propose Constrained Gener-
ation by Metropolis-Hastings Sampling (CGMH).
This approach begins by inserting all positive-
constraint keywords in random order. Edits are ran-
domly sampled to replace, insert, or delete words
to make the sentence fluent; the probability of each
action is computed on top of a language model.
Sha (2020) proposes using gradient of a objective
function to guide where and how to edit instead of
random sampling. These approaches have runtime
independent to number of constraints; yet they can
involve repeated deletions and insertions, reducing
efficiency. Generation quality is also sensitive to
initial keyword order and sampled edits.

3.2 Applications of Constrained Generation
Lexically constrained generation can be broadly
applied to prior conditional text generation tasks.
Examples include incorporating pre-specified lex-
ical constraints (Anderson et al., 2017; Post and
Vilar, 2018), user-provided terminology constraints
(Hasler et al., 2018; Dinu et al., 2019), noisy au-
tomatic constraints (Li et al., 2019) in translation
output. A major use case of lexical constrained de-

coding is paraphrase generation (Hu et al., 2019a;
Kajiwara, 2019; Hu et al., 2019b; Miao et al., 2019),
by negatively constraining words in the source to
enforce paraphrasing. Another use case is image
captioning, with novel scenes or out-of-domain ob-
jects (Anderson et al., 2017), or requiring explicit
grounding to objects in the scene (Ren et al., 2015;
Krause et al., 2016). In addition, Balakrishnan et al.
(2019) leverage constrained decoding to improve
semantic correctness for response generation.

4 Experiments I: Constrained
Commonsense Generation

COMMONGEN (Lin et al., 2020) is a benchmark
dataset designed as a test of generative common-
sense reasoning. Given a set of common concepts
(e.g., dog, frisbee, catch, throw); the task is to gen-
erate a coherent sentence describing an everyday
scenario using these concepts (e.g., “a man throws
a frisbee and his dog catches it”).

Problem Formulation The input is an un-
ordered set of n concepts x = {a1, a2, . . . , an},
where each concept ai is a common object (noun)
or action (verb). The expected output is a simple,
grammatical sentence y ∈ Y that describes a com-
mon scenario using all given concepts in x with
correct morphological inflections.

To apply NEUROLOGIC DECODING, we impose
that each ai must appear in output y under some
morphological inflection. Let ãi = {ãi1, . . . ãi|ãi|}
denote all inflections of ai. y covers concept ai, if
at least one of {ãi1, . . . ãi|ãi|} appears. Formally,

∀ ai ∈ x, ∃ ãij ∈ ãi, D(ãij , y)

where D(ãij , y) is a boolean-value function indicat-
ing whether y contains ãij or not, as defined above.2

2This gets converted into ∧ni=1

(
∨|ãi|
j=1 D(ãij , y)

)
.
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Model ROUGE - L BLEU - 3 & 4 METEOR CIDEr SPICE Coverage

GPT-2 40.3 → 42.8 34.2 → 36.7 24.7 → 26.7 27.6 → 30.2 13.4 → 14.7 27.1 → 30.3 82.2 → 97.7
BERT-Gen 42.4 → 43.8 37.5 → 38.9 27.0 → 28.2 29.5 → 30.9 14.9 → 15.5 29.8 → 31.4 89.2 → 97.3
UniLM 44.3 → 45.8 40.6 → 42.8 29.9 → 31.5 30.1 → 31.7 15.5 → 16.6 30.6 → 32.5 90.5 → 97.8
UniLM-v2 43.5 → 44.2 39.2 → 39.5 28.3 → 28.5 30.6 → 31.3 15.2 → 16.8 30.8 → 31.1 92.8 → 97.9
BART 43.3 → 44.7 39.9 → 41.3 29.1 → 30.6 30.4 → 31.0 15.2 → 15.9 30.6 → 31.0 95.0 → 98.7
T5 43.9 → 44.8 36.6 → 38.5 26.9 → 28.1 28.9 → 30.7 14.3 → 15.5 29.5 → 30.8 89.7 → 98.5

Table 2: Experimental results of different supervised models on the COMMONGEN test set. Under each column,
α → β shows the performance using the conventional beam search (α) compared to the enhanced performance
using NEUROLOGIC DECODING (β). NEUROLOGIC always improves the performance across all models and all
metrics — with no exception. The best models are bold and second best ones are underlined within each metric.

Domain Adaption Model ROUGE - L BLEU - 3 & 4 METEOR CIDEr SPICE Coverage

GPT 26.7 → 41.3 3.0 → 25.1 1.1 → 15.9 9.2 → 28.8 0.9 → 11.7 8.0 → 29.7 8.4 → 97.4
No GPT-2 19.7 → 42.9 4.1 → 34.4 1.5 → 23.5 11.2 → 30.7 0.4 → 13.6 7.1 → 31.4 8.3 → 96.0

Yes GPT-2 29.8 → 42.4 9.5 → 36.1 4.0 → 25.1 11.7 → 31.3 1.7 → 13.9 8.0 → 31.8 9.3 → 96.1

Table 3: Experimental results in zero-shot (unsupervised) setting on the COMMONGEN test set with and without
language domain adaption. Under each column, α → β shows the performance using the conventional beam
search (α) compared to the enhanced performance using NEUROLOGIC DECODING (β).

Decode Method ROUGE-L BLEU-3/4 METEOR CIDEr SPICE Coverage

Greedy Decoding 35.3 25.2 16.7 25.8 10.2 24.4 80.3
Top-k Sampling 33.8 22.5 14.4 24.9 9.2 22.7 79.4
Top-p Sampling 35.3 25.0 16.5 25.7 10.2 24.1 80.1
Beam Search 40.3 34.2 24.7 27.6 13.4 27.1 82.2

Hokamp and Liu 37.6 25.6 16.8 25.9 11.1 25.1 97.2
Post and Vilar 38.3 28.1 18.6 26.7 11.8 26.0 97.4
Hu et al. 38.2 27.8 18.4 26.7 11.7 26.1 97.4

NEUROLOGIC 42.8 36.7 26.7 30.2 14.7 30.3 97.7

Table 4: Performance of different decoding methods us-
ing supervised GPT2-L on the COMMONGEN test set.

Dataset The COMMONGEN dataset consists of
35,141 concept-sets (32,651 in train, 993 in val,
1,497 in test) associated with 77,449 sentences. The
average size of the concept-sets in the test set is
4.04, with an average of four sentences per concept-
set and an average sentence length of 13.34 words.

Approach and Baseline The standard pipeline
of approaching this problem is to consider it as a
conditional sentence generation task. We experi-
ment with several recent pre-trained language mod-
els, including GPT-2 (Radford et al., 2019), UniLM
(Dong et al., 2019), UniLM-v2 (Bao et al., 2020),
BERT-Gen (Bao et al., 2020), BART (Lewis et al.,
2020), and T5 (Raffel et al., 2019). All models
are finetuned with their default hyperparameters.
We compare with commonly used decoding meth-
ods, including beam search, sampling, and also
previously proposed constrained decoding meth-
ods. We use several widely-used automatic metrics
to automatically assess the performance, such as

BLEU, ROUGE, METEOR, which mainly focus
on measuring surface similarities. We also include
metrics specially designed for captioning task, such
as CIDEr, and SPICE. Following Lin et al. (2020),
we report the concept Coverage, which is the aver-
age percentage of input concepts that are present in
lemmatizatized outputs.

4.1 Results I: NEUROLOGIC vs Other
Decoding Methods

In Table 4, we first present comparisons across dif-
ferent decoding methods based on a supervised
sequence-to-sequence model, GPT-2. The key ob-
servations are:
1. NEUROLOGIC outperforms all other previous

decoding methods, both constrained and uncon-
strained, with respect to all metrics and often
with a significant margin.

2. NEUROLOGIC not only attains high constraint
satisfaction (COVERAGE), it also improves the
generation quality as quantified over ROUGE,
BLEU, METEOR, CIDEr, and SPICE.

3. In comparison, all previous constrained decod-
ing methods (Hokamp and Liu, 2017; Post and
Vilar, 2018; Hu et al., 2019a) attain high con-
straint satisfaction at the cost of generation qual-
ity; being outperformed here by conventional
beam search with a large margin.

The second and the third points above demonstrate
that the improved logical expressiveness of NEU-
ROLOGIC together with the effective search strat-
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1

Figure 4: Performance (y-axis) of supervised GPT2-L
on COMMONGEN, with a varying amount of training
data for supervision (x-axis). The orange line denotes
decoding with NEUROLOGIC, and the blue line de-
notes decoding with conventional beam search.

Figure 5: Performance (y-axis) of GPT-2 with varying
model sizes (x-axis). The purple line and blue line de-
note decoding from a supervised model with and with-
out NEUROLOGIC DECODING respectively. The black
line denotes decoding with NEUROLOGIC in zero-shot
(unsupervised) setting.

egy leads to generation that is both higher quality
and satisfies the constraints the most effectively.

4.2 Results II: NEUROLOGIC across
Different Supervised Models

Table 2 presents experiments across various state-
of-the-art pre-trained language models. In this ex-
periment, all models are supervised on the COM-
MONGEN training dataset. Under each column,
α → β shows the performance using the conven-
tional beam search (α) compared to the enhanced
performance using NEUROLOGIC DECODING (β).

As before, NEUROLOGIC always improves the
performance across all models and all metrics with
no exception – both in terms of constraint satisfac-
tion as well as generation quality. The improvement
is especially substantial when the generation qual-
ity is relatively low due to smaller model capability
or less efficient model architecture or pre-training.

4.3 Results III: NEUROLOGIC with
Unsupervised Models

In this experiment, we test how well NEUROLOGIC

works with unsupervised pre-trained language mod-
els, with and without domain adaptation. Table 3
presents experimental results of zero-shot (i.e., un-
supervised) constrained generation. With uncon-
strained decoding, we have zero controllability over

the unsupervised language models, as they ignore
the problem input and generate irrelevant text. With
NEUROLOGIC, on the other hand, we can dramati-
cally improve the performance on all metrics. Fig
6 demonstrates some generated examples.

In zero-shot setting without any finetuning, the
language style of pre-trained LMs might differ
from that of COMMONGEN. To further improve
the performance, we conduct language domain
adaption by fine-tuning the language models on
the training-set COMMONGEN language – ignor-
ing all concept sets. We observe that after domain
adaption, NEUROLOGIC in zero-shot setting out-
performs unconstrained generation with supervised
finetuned LMs, which suggests that inference-time
algorithms can provide a more compute-efficient
avenue to draw better from neural models.

4.4 Results IV: Ablation

The amount of training data Figure 4 com-
pares the performance (y-axis) of supervised GPT-2
with NEUROLOGIC (orange line) and with con-
ventional beam search (blue line) as a function
of the increasing amount of training data (x-axis).
Notably, even after being supervised on 100% of
the training data, the supervised GPT-2 does not
successfully learn the COMMONGEN constraints
(‘Coverage’) and is even outperformed by the zero-
shot GPT-2 (i.e., using 0% training data) with NEU-
ROLOGIC.

The model size Figure 5 compares the perfor-
mance (y-axis) of GPT-2 with varying model sizes
(x-axis). Regardless of the model size, NEURO-
LOGIC (purple line and black line) boosts perfor-
mance considerably over conventional beam search
(blue line). More over, if using NEUROLOGIC, the
performance of unsupervised models (black line)
becomes comparable to that of supervised mod-
els (purple line). Remarkably, unsupervised mod-
els with NEUROLOGIC based on smaller networks
(black line) often outperform supervised models
with conventional beam search based on consider-
ably larger networks (blue line).

5 Experiments II: Recipe Generation

We next study cooking recipe generation, a
paragraph-level generation task. Given a dish name
and a list of ingredients, the task is to generate
cooking instructions for the given recipe.
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Decode Method ROUGE-L BLEU-3/4 METEOR Coverage Extra

Top-k Sampling 27.5 15.2 9.5 19.2 84.8 16.0
Top-p Sampling 28.7 17.6 11.7 19.4 86.4 15.4
Beam Search 29.4 17.4 12.0 19.7 86.5 14.3

Post and Vilar 26.1 13.6 8.8 16.5 89.6 1.15
Hu et al. 26.1 13.6 8.8 16.5 89.6 1.13

NEUROLOGIC 32.1 19.5 13.8 19.8 95.8 0.6

Table 5: Experimental results of different decoding
methods with RecipeGPT on the Recipe1M+ test set.
Coverage indicates the average percentage of ingredi-
ents that are covered in the generated recipe, while Ex-
tra corresponds to the average ratio of hallucinated in-
gredients over the number of given ingredients.

Problem Formulation The input is the recipe
title, an unordered set of ingredients E =
{e1, ..., e|E|} where ei can be a single- or multi-
word ingredient phrase (e.g., ‘onions’, ‘black pep-
per’). Let G denote the set of all ingredients. The
expected output is a paragraph y ∈ Y that describes
multi-step cooking instructions.

To apply NEUROLOGIC DECODING, we con-
strain output y to contain all given ingredients ei in
E, and no other ingredients, i.e. no ingredients in
G \E. Ingredients can be referred to with generic
terms (e.g., ‘vegetables’ may refer to ‘onions’, or
‘carrots’) and we denote the generic name for in-
gredient ei as eTi . Formally, the constraint is(

∀ei ∈ E,D(ei, y) ∨D(eTi , y)
)

∧
(
∀ei ∈ G \ E,¬D(ei, y)

)
Dataset, Approach and Baseline We use
Recipe1M+, a large-scale, structured corpus of
over one million cooking recipes. On average each
recipe has 118 words and 9 ingredients. RecipeGPT
(Lee et al., 2020) is a GPT-2 model fine-tuned
on Recipe1M+, for generating recipes. Its default
decoding algorithms are beam search and sam-
pling, which serve as the baselines for evaluating
our method. In addition, we compare against pre-
viously proposed constrained decoding methods
with RecipeGPT. Besides common evaluation met-
rics for generation task, we introduce explicit mea-
sures of given-ingredient coverage and usage of
extra/hallucinated ingredients.

Result Table 5 presents the experimental results.
We can see that NEUROLOGIC outperforms all
baselines in all metrics. The delta is quite remark-
able on coverage of given ingredients and usage of
extra ingredients. With NEUROLOGIC, we are able

Supervised? Model ROUGE-L BLEU-4 METEOR

Yes GPT-2 70.5 | 72.6 87.6 | 92.4 60.0 | 64.0
Yes BART 72.9 | 70.2 89.5 | 87.0 60.2 | 54.2
Yes T5 70.9 | 69.9 82.4 | 79.7 54.6 | 50.4
Yes Kiddon et al. - 90.6 | 77.8 62.1 | 54.4

No GPT-2 + 73.9 | 71.8 94.8 | 90.8 66.6 | 62.0
NEUROLOGIC

Table 6: Experimental results of dialogue generation,
the right column is the performance for hotel system,
and the left column is for restaurant system.

to cover almost all ingredients in generated instruc-
tions and guarantee not to use any other ingredients,
which leads to more accurately controlled genera-
tion. By plugging NEUROLOGIC into existing gen-
eration system, we can get immediate boosts in
controllability and generation quality with no extra
computational cost.

6 Experiments III: Data-Grounded
Dialogue Response Generation

In dialogue response generation for hotel and
restaurant information systems (Wen et al., 2016),
we generate a natural language response given a
query type (e.g., informing or querying) and a list
of facts to convey (e.g., a hotel’s name and address).

Problem Formulation The input is a query type,
an unordered set of facts F = {f1, ..., f|F |},
where each fi contains attribute and value (i.e.
accepts_credit_cards=“yes”, name=“red victorian
bed breakfast”). The expected output is a dialogue
responses y ∈ Y containing given information.

The constraint here is that all given facts fi must
be included in responses y in proper natural lan-
guage form fNi . We use a very simple template to
turn fi to natural language form fNi . (i.e. the nat-
ural language form for accepts_credit_cards=“no”
is “doesn’t accept credit cards”). Formally,

∀ fi ∈ F, D(fNi , y)

Dataset, Approach and Baseline We use the ho-
tel and restaurant dialogue system corpus and the
same train-dev-test split from (Wen et al., 2016).
There are 8 query types and 12 attribute types.

The standard paradigm for dialogue generation
is to consider it as a conditional sentence gener-
ation task and finetune a seq2seq model. While
this pipeline works effectively with existing data,
once we have user queries with new query types
or new attribute types, the seq2seq model would
not be able to generate plausible responses. The
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Model Accuracy(%; ↑) ∆S (F1; ↓)
E

n-
D

e Google Translate 59.4 12.5
Microsoft Translator 74.1 30.2
Junczys-Dowmunt et al. 60.5 → 91.0 13.3 → 4.3
Junczys-Dowmunt et al.+GT Gender 60.5 → 95.0 13.3 → 2.4

E
n-

Fr

Google Translate 63.6 26.7
Microsoft Translator 44.7 29.7
Junczys-Dowmunt et al. 53.0 → 81.0 19.3 → 1.7
Junczys-Dowmunt et al. +GT Gender 53.0 → 89.9 19.3 → 1.5

Table 7: Performance of Gender Bias Removal on
WinoMT, adapted from Stanovsky et al.. Accuracy
refers to correctly translating a person’s gender, ∆S is
the difference in performance (F1) between stereotypi-
cal and non-stereotypical gender roles (lower is better).
The arrow (→) shows the performance before and after
NEUROLOGIC, where gender is either inferred from a
coreference model (default) or provided (GT Gender).

situation can happen frequently with a dialogue
generation system in application. Thus, we are in-
terested in zero-shot dialogue generation. We give
a hand-crafted initial prompt to a pre-trained LM
based on the query type and apply NEUROLOGIC

DECODING to force given facts to include in gen-
eration. The pre-trained LM we use here is GPT-2
(Radford et al., 2019).

The baseline we compare against is seq2seq fine-
tuned LMs with vanilla beam search, including
GPT-2 (Radford et al., 2019), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2019). We also com-
pare with previous SOTA (Kiddon et al., 2016) on
dialogue response generation.

Result Table 6 presents the experimental results.
We can see that zero-shot generation with NEURO-
LOGIC outperforms or matches supervised base-
lines. This suggests that plugging NEUROLOGIC

DECODING into pretrained LMs can lead to a pow-
erful dialogue generation system, we do not actu-
ally need massive finetuning with extra computa-
tional cost to do that.

7 Experiment IV: Reducing Gender Bias
in Machine Translation

Problem Formulation We adopt the task setup
and dataset of Stanovsky et al. (2019). The input x
is an English sentence describing a scenario with
human entities N = {n1, . . . , n|N |} who are iden-
tified by roles. The desired output is a translation
y which uses the correct gender inflections in the
target language (here, German or French).

We obtain indicators of people’s gender identity

through coreference resolution, linking each entity
with their gendered pronoun.3 We then constrain
the correctly-gendered human entities to appear in
output y. For a human entity ni, let nFi denote its
female inflection in the target language, and nMi
denotes its male inflection. Let F denotes the set of
human entities associated with female characters,
and M denotes the set of entities associated with
male. Formally, the constraint is(

∀ni ∈ F,D(nFi , y) ∧ ¬D(nMi , y)
)
∧(

∀ni ∈ M,D(nMi , y) ∧ ¬D(nFi , y)
)

Dataset We use Stanovsky et al. (2019)’s dataset,
which is built over the English-only coreference
gender-bias studies: Winogender (Rudinger et al.,
2018) and Wino-Bias (Zhao et al., 2018).

Result Our results are shown in Table 7. When
provided gender markers given by a coreference
model, NEUROLOGIC increases the accuracy of
handling gender correctly by 30.5 percentage for
German, and 28.0 percentage for French. This even
outperforms commercial translation systems – the
best result, over any language or system, is Mi-
crosoft Translator for German with 74.1% accu-
racy, whereas NEUROLOGIC enables the baseline
model to get 91% accuracy. The performance in-
creases again by an additional 4% (German) and
8.9% (French) when ground-truth gender markers
are used during constrained decoding. Last, the
diagnostic results also show that NEUROLOGIC

is particularly effective at reducing (over)reliance
on stereotypical gender roles, with a significant
decrease in performance difference ∆S between
stereotypical and non-stereotypical gender roles.
These results suggest that NEUROLOGIC DECOD-
ING is a plug-and-play approach for reducing gen-
der bias in existing translation systems.

8 Conclusion

We propose NEUROLOGIC DECODING, an effi-
cient and general method for generating with arbi-
trary predicate logic constraints. We demonstrate
its intuitive application to 4 different tasks as an
extension to existing models, showing broad and
consistent improvement to decoding quality.

3We could use any off-the-shelf coreference resolution
model for this. However, since the English examples in
Stanovsky et al. (2019) follow the Winograd schemas format,
we use a RoBERTa model finetuned on Winograd Schema
Challenge for this, with 78.4% accuracy.
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Concept-Set {throw, knife, stand, target, front}

[GPT-2]:  A man is holding a knife and standing in front of a target.
[UniLM]: A man stands next to a knife and throws it at the target .
[BART]: A man stands in front of a target and throws a knife.
[T5]: a man throws a knife in front of a target.

[GPT-2]:  A man stands and throws a knife in front of a target.
[UniLM]: A man stands next to a knife and throws it at the front of the target .
[BART]: A man stands in front of a target and throws a knife.
[T5]: a man stands in front of a target and throws a knife.

Decode with NEUROLOGIC

Decode with Beam Search

Supervised Setting

[GPT-2]: The girl’s target was standing in front of her, and she threw a knife at him.
[GPT]: the girl standing in front of him threw her knife at his target

Decode with NEUROLOGIC

Zero Shot Setting

Concept-Set {lose, board, balance, fall, ride}

[GPT-2]:  Someone loses balance and falls off his bike.
[UniLM]:  A man is trying to keep his balance as he falls off a board.
[BART]:  A man loses his balance and falls off the balance while riding a skateboard.
[T5]:  a man loses his balance on the board and falls.

[GPT-2]:  A man loses his balance as he rides a roller coaster and falls off the board.
[UniLM]:  Someone loses balance on the ride and falls off the balance board.
[BART]:  A man loses his balance on a ride and falls off the board.
[T5]:  a rider loses his balance and falls off the board.

Decode with NEUROLOGIC

Decode with Beam Search

Supervised Setting

[GPT-2]:  The boy lost his balance riding the bike, falling off the bike and hitting his head on the board.
[GPT]:  a woman lost her balance riding a horse, falling off the horse, and hitting her head on a board

Decode with NEUROLOGIC

Zero Shot Setting

Concept-Set {bell, bike, sidewalk, ride, ring}

[GPT-2]:  A man rides a bicycle down a sidewalk and rings a bell.
[UniLM]: A man rides his bike on a sidewalk and rings the bell on the sidewalk .
[BART]: A man rides his bike on the sidewalk and rings a bell.
[T5]: a ringing bell on a bicycle riding on the sidewalk

[GPT-2]:  A man rides his bike down a sidewalk and rings a bell.
[UniLM]: A man rides his bike on the sidewalk and rings the bell on his bicycle .
[BART]: A man rides his bike on the sidewalk and rings a bell.
[T5]: a man rides a bike on the sidewalk as the bell rings.

Decode with NEUROLOGIC

Decode with Beam Search

Supervised Setting

[GPT-2]: The child rings the bell, rides the bike, and then goes to the sidewalk.
[GPT]: the child’s bell rang, and the sidewalk began to fill with people riding their bikes

Decode with NEUROLOGIC

Zero Shot Setting

Figure 6: Generation examples of different models in supervised and zero-shot setting with and without NEURO-
LOGIC DECODING, on COMMONGEN.


