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Abstract

Recent work in natural language processing
(NLP) has focused on ethical challenges such
as understanding and mitigating bias in data
and algorithms; identifying objectionable con-
tent like hate speech, stereotypes and offen-
sive language; and building frameworks for
better system design and data handling prac-
tices. However, there has been little discus-
sion about the ethical foundations that underlie
these efforts. In this work, we study one ethi-
cal theory, namely deontological ethics, from
the perspective of NLP. In particular, we focus
on the generalization principle and the respect
for autonomy through informed consent. We
provide four case studies to demonstrate how
these principles can be used with NLP systems.
We also recommend directions to avoid the eth-
ical issues in these systems.

1 Introduction

The 21st century is witnessing a major shift in
the way people interact with technology, and nat-
ural language processing (NLP) is playing a cen-
tral role. A plethora of NLP applications such
as question-answering systems (Bouziane et al.,
2015; Gillard et al., 2006; Yang et al., 2018)
used in diverse fields like healthcare (Sarrouti and
Ouatik El Alaoui, 2017; Zweigenbaum, 2009), ed-
ucation (Godea and Nielsen, 2018; Raamadhurai
et al., 2019), privacy (Ravichander et al., 2019;
Shvartzshanider et al., 2018); machine translation
systems (Cherry et al., 2019; Barrault et al., 2019;
Nakazawa et al., 2019; Liu, 2018), conversational
agents (Pietquin et al., 2020; Serban et al., 2018;
Liu et al., 2016), recommendation systems (Al-
harthi and Inkpen, 2019; Greenquist et al., 2019)
etc. are deployed and used by millions of users.
NLP systems have become pervasive in current hu-
man lifestyle by performing mundane tasks like
setting reminders and alarms to complex tasks like
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replying to emails, booking tickets and recommend-
ing movies/restaurants. This widespread use calls
for an analysis of these systems from an ethical
standpoint.

Despite all the advances in efficiency and opera-
tions of NLP systems, little literature exists which
broadly addresses the ethical challenges of these
technologies. Ethical theories have been studied for
millennia and should be leveraged in a principled
way to address the questions we are facing in NLP
today. Instead, the topic of “ethics” within NLP
has come to refer primarily to addressing bias in
NLP systems; Blodgett et al. (2020) provides a crit-
ical survey of how bias is studied in NLP literature.
The survey finds that research on NLP systems con-
ceptualize bias differently and that the techniques
are not well tied with the relevant literature outside
of NLP. This creates a gap between NLP research
and the study of ethics in philosophy which leaves
a rich body of knowledge untapped.

Our work bridges this gap by illustrating how
a philosophical theory of ethics can be applied to
NLP research. Ethics (or ethical theory), is a the-
oretical and applied branch of philosophy which
studies what is good and right, especially as it per-
tains to how humans ought to behave in the most
general sense (Fieser, 1995). As NLP research qual-
ifies as a human activity, it is within the purview
of ethics. In particular, we are using a prescriptive,
rather than descriptive, theory of ethics; prescrip-
tive theories define and recommend ethical behav-
ior whereas descriptive theories merely report how
people generally conceive of ethical behavior.

We select two ethical principles from the deon-
tological tradition of ethics and focus on how these
principles are relevant to research in NLP. Namely
we look at the generalization principle and respect
for autonomy through informed consent (Johnson
and Cureton, 2019; Kleinig, 2009). We select de-
onotology because it is reasonable, provides clear
ethical rules and comports with the legal idea of the
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rule of law in the sense that these ethical rules bind
all persons equally, rather than shifting standards
to effect a certain outcome.

We find that there are two main ways in which
ethical guidelines can be applied in NLP (or to any
other area of technology):

1. An ethical guideline can aid in deciding what
topics within a field merit attention; that is, it
answers the question “which tasks have im-
portant ethical implications?”.

2. An ethical guideline can aid in determining
how to address a problem; that is, it answers
the question “what factors and methods are
preferable in ethically solving this problem?”.

We primarily address (1) and briefly touch on (2)
by presenting four case studies relevant to NLP.
In each case study we use an ethical principle to
identify an area of research that could potentially
conflict with it, and suggest NLP directions to miti-
gate it. Although we have selected two principles
from a deontological perspective, we are not inti-
mating that these principles can address all ethical
issues nor that deontological ethics is the only ethi-
cal framework in which our rules and case studies
could function (§6). Instead, we present the fol-
lowing as a starting point for NLP researchers less
familiar but interested in applicable ethical theory.

Our primary contributions are:

• Providing an overview of two deontological
principles along with a discussion on their
limitations with a special focus on NLP.

• Illustrating four specific case studies of NLP
systems which have ethical implications under
these principles and providing a direction to
alleviate these issues.

2 Related Work

2.1 Ethics
While there are a number of categories of prescrip-
tive ethical theories, including deontology (Kant,
1785), consequentialism (e.g., utilitarianism) (Ben-
tham, 1843), and virtue ethics (Aristotle, 350
B.C.E.), we are only addressing deontology. We do
not take a stance in this paper as to whether or not
there exists an objectively correct ethical theory,
but we offer a brief sketch of deontological ethics
and our reasons for using it. Deontology or deonto-
logical ethics refers to a family of ethical theories

which hold that whether an act is ethically good
or bad is determined by its adherence to ethical
rules (Alexander and Moore, 2016). These rules
can be agent-focused duties (e.g., duty to care for
one’s children) or patient-focused rights (e.g., right
to life). Such rules can also be formulated in modal
logic, allowing for more precise reasoning over sets
of rules (Hooker and Kim, 2018).

Deontology stands in contrast to another popular
framework of ethics: consequentialism. Conse-
quentialism holds the ultimate consequences of an
action to be the deciding factor regardless of the
nature of the actions taken to get there. We can
illustrate the difference between them by observing
how each of them might condemn something like
racially biased hiring in academia.1 A deontolo-
gist might say that this practice is wrong because
it violates the human right to equal treatment re-
gardless of race. A consequentialist on the other
hand, would argue that this is wrong because its
effect is stymieing academic creativity by reducing
intellectual diversity.

We ultimately select the deontological frame-
work in this work for the following reasons:

1. We find deontology to be convincing in its
own right, namely, its ability to delineate ro-
bust duties and rights which protect the value
of each and every person.

2. The universally applicable rules2 of deontol-
ogy provide a good basis for providing rec-
ommendations to researchers. Since rights
and duties (at their core) are not situation de-
pendent, they are tractable to address in NLP
applications. 3

3. The focus on rights and duties which apply to
everyone equally fits well with the widespread
legal concept of the rule of law which states
that every person is subject to the same laws.

2.2 Ethics in NLP

We appeal to the fact that problems should be an-
alyzed with a systematic framework, and ethical

1Note that we are presenting generic examples of deonto-
logical and consequentialist frameworks and that a variety of
nuanced theories in each category exist.

2While determining rules which apply universally across
all cultures is a difficult task, the existence of organizations,
such as the United Nations, presuppose the achievability of
identifying internationally applicable norms.

3In contrast to (action-based) utilitarianism which man-
dates evaluating the full consequences of each action.
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theories provide precisely these frameworks. Re-
search should not be based on preconceived notions
of ethics which can be overly subjective and incon-
sistent. To more rigorously determine what is right
and wrong, we rely on ethical theories. Card and
Smith (2020) present an analysis of ethics in ma-
chine learning under a consequentialist framework.
This paper is a kindred spirit in that we both seek
to make a philosophical theory of ethics concrete
within machine learning and NLP, yet the methods
of the paper are somewhat orthogonal. Card and
Smith (2020) provide a comprehensive overview of
how the particular nature of consequentialist ethics
is relevant to machine learning whereas we intend
to provide tangible examples of how deontological
ethical principles can identify ethically important
areas of research. Saltz et al. (2019); Bender et al.
(2020) advocate for explicitly teaching ethical the-
ory as a part of machine learning and NLP courses;
the case studies in this paper would be a logical ex-
tension of the material presented in such a course.

NLP research on ethics has primarily focused
on two directions: (1) exploring and understanding
the impact of NLP on society, and (2) providing
algorithmic solutions to ethical challenges.

Hovy and Spruit (2016) started the conversa-
tion about the potential social harms of NLP tech-
nology. They discussed the concepts of exclu-
sion, overgeneralization, bias confirmation, topic
under- and overexposure, and dual use from the
perspective of NLP research. A lot of work fol-
lowed this discussion and made contributions to-
wards ethical frameworks and design practices (Lei-
dner and Plachouras, 2017; Parra Escartín et al.,
2017; Prabhumoye et al., 2019; Schnoebelen, 2017;
Schmaltz, 2018), data handling practices (Lewis
et al., 2017; Mieskes, 2017) and specific domains
like education (Mayfield et al., 2019; Loukina et al.,
2019), healthcare (Šuster et al., 2017; Benton et al.,
2017) and conversational agents (Cercas Curry and
Rieser, 2018; Henderson et al., 2018). Our paper
does not focus on a particular domain but calls for
attention towards various NLP systems and what
ethical issues may arise in them.

Most of the work providing algorithmic solu-
tions has been focused on bias in NLP systems.
Shah et al. (2020); Tatman (2017); Larson (2017)
aim to study the social impact of bias in NLP sys-
tems and propose frameworks to understand it bet-
ter. A large body of work (Bolukbasi et al., 2016;
Sun et al., 2019; Zhao et al., 2019, 2017; Sap et al.,

2019; Hanna et al., 2020; Davidson et al., 2019)
directs its efforts to mitigate bias in data, represen-
tations, and algorithms. Blodgett et al. (2020) pro-
vide an extensive survey of this work and point out
the weaknesses in the research design. It makes rec-
ommendations of grounding work analyzing bias
in NLP systems in the relevant literature outside of
NLP, understanding why system behaviors can be
harmful and to whom, and engaging in a conversa-
tion with the communities that are affected by the
NLP systems. Although issues with bias are cer-
tainly within the scope of the principles we present,
we do not specifically write on bias because it has
already received a large amount of attention.

3 Deontological Ethics

There is a variety of specific deontological theories
which range from having one central, abstract prin-
ciple (Kant, 1785) to having a handful of concrete
principles (Ross, 1930). Rather than comprehen-
sively addressing one theory, we select two rules,
one abstract and one concrete, which can fit within
a variety of deontological theories. The general-
ization principle is an abstract, broad-reaching rule
which comes from traditional Kantian ethics. The
respect for autonomy is concrete and commonly
seen in politics and bioethics.

3.1 Generalization Principle
The generalization principle has its roots in Im-
manuel Kant’s theory of deontological ethics (Kant,
1785).4 The generalization principle states the fol-
lowing (Johnson and Cureton, 2019).

An action A taken for reasons R is ethical if
and only if a world where all people perform
A for reasons R is conceivable.

It is clearer when phrased in the negative.

An action A taken for reasons R is unethical
if and only if a world where all people perform
A for reasons R logically contradicts R.

The main utility of the generalization principle is
that it can identify unethical actions that may seem
acceptable in isolated occurrences but lead to prob-
lems when habitually taken by everyone.

For example, let us take making and breaking a
legal contract (the action) whenever it is convenient
(the reasons); implicit in the reasons for making a

4It is also referred to as the “universal law” formulation of
Kant’s categorical imperative.
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contract is that the other person believes we will
follow through (Johnson and Cureton, 2019). If we
universalize this and conceive of a world where ev-
eryone makes contracts which they have no intent
of keeping, no one would believe in the sincerity of
a contract. Hence, no one would make contracts in
the first place since they are never adhered to. This
is the sort of contradiction by which the generaliza-
tion principle condemns an action and the rationale
behind it.

Another example is plagiarism of research pa-
pers in conference submissions. Let us assume that
a top tier conference did not check for plagiarism
because they trust in the honesty of the researchers.
In this case, a researcher G decides to take an ac-
tion A of plagiarising a paper due to the following
set of reasons R: (1) G believes that they would
not get caught because the conference does not
use plagiarism detection software, (2) publishing
this paper in the said conference would boost G’s
profile by adding 100 citations, and (3) this would
increase G’s chances of getting a job. Plagiarism
in this case would be ungeneralizable and hence
unethical. If all researchers who want to boost their
profile were to submit plagiarised papers, then ev-
ery researcher’s profile would be boosted by 100
citations, and 100 citations would lose their value.
Hence, this would not increase G’s chances of get-
ting a job, contradicting R3. Thus, G’s reasons
for plagiarism are inconsistent with the assumption
that everyone with same reasons plagiarises.

3.2 Respect for Autonomy
Respect for autonomy generally addresses the right
of a person to make decisions which directly per-
tain to themselves. One of the primary manifes-
tations of this is the concept of informed consent,
whereby a person A proposes to act in some way
X on person B which would normally infringe on
B’s right to self-govern. Specifically, we use the
formulation of informed consent given by Pugh
(2020) based on Kleinig (2009):

1. B must be sufficiently informed with regards
to the relevant facts concerning X to under-
stand what X is (and what consequences are
likely to occur as a result of X).

2. On the basis of this information, B herself
makes the decision to allow A to do X.

Informed consent is an important idea in
bioethics where it typically applies to a patient’s

right to refuse treatment (or certain kinds of treat-
ment) by medical personnel. In routine medical
treatments this informed consent might be implicit,
since one would not go to the doctor in the first
place if they did not want to be treated at all, but in
risky or experimental medical procedures, explain-
ing the risks and benefits and obtaining explicit
consent would be mandatory. In this case, the pa-
tient’s autonomy specifically refers to opting out of
medical procedures, and informed consent is a con-
crete method by which to respect this autonomy.

A non-medical example of respect for autonomy
and informed consent would be hiring an inter-
preter A for a language that the user B does not
speak. Under normal circumstances, B’s auton-
omy dictates that she and only she can speak for
herself. But if she is trying to communicate in a
language she does not speak, she might consent
to A serving as an ad hoc representative for what
she would like to say. In a high-stakes situation,
there might be a formal contract of how A is to act,
but in informal circumstances, she would implicitly
trust that A translates what she says faithfully (X).
In these informal settings, A should provide nec-
essary information to B before deviating from the
expected behaviour X (e.g., if the meaning of a sen-
tence is impossible to translate). Implicit consent
is a double-edged sword: it is necessary to navi-
gate normal social situations, but it can undermine
the respect for autonomy in scenarios when (1) the
person in question is not explicitly informed and
(2) reasonable expectations do not match reality.

4 Applying Ethics to NLP systems

We apply the generalization principle in §4.1 and
§4.2 and respect for autonomy in §4.3 and §4.4.

4.1 Question-Answering Systems

Question-answering (QA) systems have made a
huge progress with the recent advances in large
pre-trained language models (Devlin et al., 2019;
Radford et al., 2019; Guu et al., 2020). Despite
these improvements, it is difficult to know how the
model reached its prediction. In fact, it has been
shown that models often obtain high performance
by leveraging statistical irregularities rather than
language understanding (Poliak et al., 2018; Geva
et al., 2019; Gururangan et al., 2018). The result
is that when a QA system is wrong it is difficult
for an end user to determine why it was wrong.
Presumably, the user would not know the answer
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(a) Micro-aggressive comment and its scores by
state-of-the-art hate speech detection and
sentiment analysis tools (Breitfeller et al., 2019).

(b) NLP system flagging the micro-aggressive comment as of-
fensive and generating the reasoning for flagging it (Sap et al.,
2020).

Figure 1: Examples of flagging micro-aggression comments by different NLP systems.

to the question in the first place, and so it would be
difficult to determine even that the QA system was
wrong.

The act of widely deploying such a QA system
is in conflict with the generalization principle. For
example, a QA system G is unsure of its predic-
tion A and does not know how it arrived at the
answer. Instead of notifying the user about its in-
ability to reach the prediction, G decides to return
the prediction A due to the following reasons R:
(1) G believes that the user does not know the an-
swer and hence (2) G believes that the user will
trust its answer and not ask for reasons for giving
the prediction. If all QA systems operate like this,
users will lose trust in QA systems being able to
answer their questions reliably and no longer use
them. This contradicts assumption R2, violating
the generalization principle. This issue goes deeper
than a matter of the (in)accuracy of the answer; ex-
plainability is still important for a near-perfect QA
system. First, the source of an answer could be fal-
lible (even if the content was interpreted correctly),
in which case it is important to be able to point
which sources were used. Second, answers can of-
ten be ambiguous, so a user might naturally ask for
clarification to be sure of what the answer means.
Finally, it is natural for humans to build trust when
working with a system, and explainability is an
important step in this process.

Attention weights have been widely used for ex-
plaining QA predictions. Attention weights learnt
by neural models denote the words or phrases in a
sentence that the model focuses on. Hence, words
or phrases with high attention weights are consid-
ered as explanations to the QA predictions. But
these weights do not reliably correlate with model

predictions, making them unsuitable for explain-
ability (Pruthi et al., 2020; Serrano and Smith,
2019; Jain and Wallace, 2019). Recently, gener-
ating natural language explanations (Rajani et al.,
2019; Latcinnik and Berant, 2020) for predictions
has gained traction. These methods train a lan-
guage generation model to generate explanations
for the QA predictions. Using a black-box model
for text generation, though, pushes the same prob-
lem further down the line. Part of the issue with
both of the aforementioned methods is that the
“reasoning” for the answer is determined after the
answer has been generated (i.e., reasoning should
inform the answer, not vice-versa).

The way forward: A method which reaches the
prediction through reasoning would be more in
line with the generalization principle. For exam-
ple, reaching the prediction through traversal of
a knowledge graph. This has been used in sce-
narios where a knowledge base exists (Han et al.,
2020; Jansen et al., 2018) for a QA system as well
as in dynamic graph generation to reach the pre-
diction (Liu et al., 2020; Rajagopal et al., 2020;
Bosselut and Choi, 2019). In these methods, the
reasoning is part of the process to generate the final
answer, which is more suitable in failing gracefully
and building user trust.

4.2 Detecting Objectionable Content
Social media platforms have made the world
smaller. At the same time, the world has seen a
surge in hate-speech, offensive language, stereo-
type and bias on online platforms. These online
platforms have traffic in the millions of textual com-
ments, posts, blogs, etc. every day. Identifying such
objectionable content by reading each item is in-
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tractable. Hence, building an NLP system which
can read textual data and flag potential objection-
able content is necessary. These systems can reduce
the burden on humans by reducing the number of
posts that need to be seen by human eyes.

The pivotal role NLP systems play in flagging
such content makes the ethical considerations im-
portant. Fig. 1a shows a microaggressive comment
and its scores by a state-of-the-art (1) hate speech
detection system and (2) sentiment analysis system.
Since these systems rely on surface level words or
phrases to detect such (overt) comments, they tend
to miss subtle (covert) objectionable content (Bre-
itfeller et al., 2019). If such NLP systems are used
universally, then the users of hate speech will dis-
cover ways to phrase the same meaning with dif-
ferent words (as illustrated above). Thus, the NLP
content flagging system will not be able to detect
objectionable content, and there will be no point in
deploying it. This contradiction suggests that NLP
systems must not make their predictions based only
on superficial language features but instead seek to
understand the intent and consequences of the text
presented to them. Hence, they should generate
reasons for flagging posts to facilitate the decision
making of the human judges and also to provide
evidence about the accuracy of their predictions.

The way forward: An example of objectionable
content is microaggression (Fig. 1). According to
Merriam-Webster, microaggression is defined as
a “comment or action that subtly and often uncon-
sciously expresses a prejudiced attitude toward a
member of a marginalized group (e.g. racial mi-
nority).” Microaggressions are linguistically subtle
which makes them difficult to analyze and quan-
tify automatically. Understanding and explaining
why an arguably innocuous statement is potentially
prejudiced requires reasoning about conversational
and commonsense implications with respect to the
underlying intent, offensiveness, and power differ-
entials between different social groups. Breitfeller
et al. (2019) provide a new typology to better un-
derstand the nature of microaggressions and their
impact on different social groups. Fig. 1b presents
such a comment and how we would like the NLP
systems to annotate such content. Sap et al. (2020)
perform the task of generating the consequences
and implications of comments which is a step to-
wards judging content based on its meaning and not
simply which words it happens to use. Although
such an aim does not automatically solve the prob-

lem, attempting to uncover the deeper meaning
does not result in an inconsistency or violation of
the generalization principle.

4.3 Machine Translation Systems

Machine Translation (MT) systems have reduced
language barriers in this era of globalization. Neu-
ral machine translation systems especially have
made huge progress and are being deployed by
large companies to interact with humans. But facil-
itating human-to-human interaction requires more
than just simple text-to-text translation, it requires
the system to interpret the meaning of the language.
This requires a greater sensitivity to style, intent,
and context on the part of MT systems.

When an MT system acts as an interpreter for
a user, it is essentially speaking for the user when
conveying the translated message. Speaking for
one’s self is within one’s sphere of autonomy, but
by using the MT system the user has implicitly
consented to it representing the user. That being
said, the operating assumption for most users is
that the MT system will simply translate the source
language into the target language without chang-
ing the meaning. Yet on occasion, differences or
ambiguities between languages require either con-
textual knowledge or further clarification on what
is being said. If the MT system encounters such
ambiguities, the user must be informed of such oc-
currences so that she can consent to the message
which the system ultimately conveys. Moreover,
the user must also be informed of the failure cases
in the MT system rather than it producing an en-
tirely incorrect translation.

For example, when translating from English to
Japanese, there is a mismatch in the granularity
of titles or honorifics used to address people. In
English, “Ms.” and “Mr.” is an appropriate way
to address a schoolteacher who does not hold a
doctorate. On the other hand, in Japanese it would
be disrespectful to use the more common “-san”
honorific (the rough equivalent of “Ms.” or “Mr.”)
in place of “-sensei” which refers specifically to
teachers or mentors and shows them a special level
of respect. If the MT system cannot reasonably in-
fer how to resolve the ambiguity in such situations,
the English speaker should be informed about it.
The English speaker must be notified that such an
ambiguity needs to be resolved because there is a
risk of offending the Japanese speaker otherwise.

In general, there is a trade-off in translation be-



3790

tween literality and fluency in certain situations
like the translation of idioms. Idioms are especially
problematic when considering autonomy because
there are multiple strategies to translating them
which are not only difficult in and of themselves
to execute, but deciding which one to use requires
the interpreter (i.e., MT system) to understand the
intent of the user. Baker (1992, Ch. 3) identifies
five different methods for translating idioms:

1. Using an idiom of similar meaning and form;
directly translating the idiom achieves the
same effect

2. Using an idiom of similar meaning but dissim-
ilar form; swapping out an equivalent idiom
with a different literal meaning

3. Translation by paraphrase; simply explaining
the idiom plainly

4. Translation by omission

5. Translation by compensation; for example,
omitting idioms in certain locations and
adding them in elsewhere to maintain the
same overall tone

For example, in casual conversation, an MT sys-
tem may prefer strategies 1, 2, and 5 to maintain
a friendly tone, but in a high-stake business nego-
tiation, it would be more prudent to play it safe
with strategy 3. An MT system must be sensitive
to the user’s intent since choosing an inappropriate
translation strategy could violate her autonomy.

While para-linguistic conduct may fill the gaps
for in person interaction, if the interaction is hap-
pening only via the textual modality, then there
is minimal room for such conduct. The users in
this case may not be aware of the flaws of the MT
system representing the,. A recent study (Heinisch
and Lušicky, 2019) shows that 45% of the par-
ticipants reported that they expect MT output, in
professional and private contexts, to be useable im-
mediately without any further editing. However,
post-study, this expectation was not fulfilled. The
work further shows that the expectation of the type
of errors is also different from the errors in the
outputs of the MT system. For example: only 6%
of the participants expect that the output would be
useless, but after reading the output, 28% thought
that the output was useless. The participants in this
study had different levels of experience with MT
systems (frequent vs. rare users) and used MT sys-
tems for different functions (private, professional).

The way forward: Mima et al. (1997) drive the
early discussion on using information such as con-
text, social role, domain and situation in MT sys-
tems. DiMarco and Hirst (1990) advocate for
style and intent in translation systems. A study by
Hovy et al. (2020) finds that commercial transla-
tion systems make users sound older and more male
than the original demographics of the users. Re-
cent work (Niu and Carpuat, 2020; Sennrich et al.,
2016) has given specific focus to controlling for-
mality and politeness in translation systems. There
is also work directed towards personalizing MT
systems (Rabinovich et al., 2017; Michel and Neu-
big, 2018; Mirkin et al., 2015; Mirkin and Meunier,
2015) while preserving author attributes as well as
controlling structural information like voice (Ya-
magishi et al., 2016). This is a step in the right
direction, but we argue that to respect autonomy,
translation systems should also obtain explicit in-
formed consent from the user when necessary.

Further research is required in the direction of in-
forming the users about the failure cases of the MT
system. For example, in case of ambiguity, textual
interfaces can provide multiple suggestions to the
addresser along with the implications of using each
variant. The user can select the option which best
fits their goal. In speech interfaces, the MT system
can ask a follow up question to the addresser of the
system in case of ambiguity or it can add caution-
ary phrases to the addressee informing them about
the ambiguity. Alternatively, if the system thinks
that the input sentence is ambiguous and cannot be
translated with reasonable confidence then it can
say “I am unable to translate the sentence in its
current form. Can you please rephrase it?”. An
example scenario where such clarification might
be needed is: while translating from English to
Hindi if the sentence refers to one’s “aunt,” the MT
system should ask a follow up question about ma-
ternal vs paternal aunt since they have two different
words in Hindi language.

4.4 Dialogue Systems

We can find a nuanced application of the autonomy
principle in the way that dialogue systems, espe-
cially smart toys or virtual assistants like Alexa and
Google Home, interact with children.

One expression of a parent’s autonomy5 is gen-
erally in deciding whom their child may interact

5This is technically heteronomy, but this examples com-
ports with the spirit of respect for autonomy.
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with. For example a parent would permit interac-
tion with a teacher but not a random stranger. In
the case of a parent purchasing and using a virtual
assistant at home, they are implicitly consenting
to their children interacting with the assistant, and
the issue arises from the fact that they may not be
informed as to what this interaction entails. To
an adult, a virtual assistant or dialogue-capable
toy may seem like just another computer, but a 7-
year-old child might view it as “more capable of
feelings and giving answers”—a step in the direc-
tion of assigning personhood (Druga et al., 2017).
Furthermore, while humans have had thousands of
years to learn about human-human interaction, we
have only had a half-century to learn about the ef-
fects of human-machine (and thus, child-machine)
interaction (Reeves and Nass, 1996).

We suggest two key areas which are important
for dialogue system researchers: (1) they must an-
swer the question of what unique social role do
dialogue systems fulfill—that is, in what respects
can they be regarded as human-like vs. machine-
like, and (2) the dialogue systems must have some
way of modeling the social dynamics and cues of
the interlocutor to fulfill the social role properly.

The way forward: There is a fair amount of re-
search on the social aspects of human-computer
dialogue both in general and specifically with re-
gards to children (Druga et al., 2017; Shen, 2015;
Kahn Jr et al., 2013). Although it is difficult to gain
a complete understanding of how dialogue systems
affect the development of children, the most salient
facts (e.g., children regarding virtual assistants as
person-like) should be communicated to parents
explicitly as part of parental controls. We advo-
cate for a “kids mode” to be included with these
virtual AI assistants which would provide the fea-
ture of parental control in accordance with respect
for autonomy. This mode would be aware that
it is talking to children and respond accordingly.
NLP can also help in selecting content and style
appropriate for children in these AI agents. Addi-
tionally, parents can be provided with fine-grained
control over the topics, sources and language that
would be generated by the agent. For example, the
parent can select for a polite language and topics
related to science to support their child’s devel-
opment efforts. Much research has focused on
controlling topics (Kim et al., 2015; Jokinen et al.,
1998), style (Niu and Bansal, 2018), content (Zhou
et al., 2018; Zhao et al., 2020; Dinan et al., 2019)

and persona (Zhang et al., 2018) of dialogue agents
which can be used for this purpose.

5 Ethical Decision Making with NLP

So far we have discussed how NLP systems can
be evaluated using ethical frameworks and how
decisions made by such systems can be assisted
by these theories. NLP can also aid in making
decisions in accordance with the deontological
framework. Recall that the generalization princi-
ple judges the ethical standing of pairs of actions
and reasons; these pairs could be extracted with
various NLP techniques from textual content. In
the case of flagging objectionable content (§4.2),
extracting the deeper intents and implications cor-
responds to the reasons for the action of flagging
the content. Another example is building an au-
tomatic institutional dialog act annotator for traf-
fic police conversations (Prabhakaran et al., 2018).
These dialog acts contain the rationales of the two
agents in the conversation: the police officer and
the civilian stopped for breaking traffic rules. The
decision made by the police officer (the action)
can then be judged to be in accordance (or not)
with a human-selected set of ethically acceptable
action and rationale pairs. Similarly, for court hear-
ing transcripts, the rationales of the arguments can
be extracted and the verdict of the judge can be
checked using them (Branting et al., 2020; Aletras
et al., 2019). NLP tools such as commonsense
knowledge graph generation (Bosselut et al., 2019;
Saito et al., 2018; Malaviya et al., 2019), semantic
role labeling (Gildea and Jurafsky, 2000), open do-
main information extraction (Angeli and Manning,
2013) etc. can be used to extract rationales, entities
from text and also find relations between them to
better understand the underlying intent of the text.

6 Discussion

We provide a broad discussion on the limitations of
the principles chosen in this work and the issue of
meta-ethics. Moreover, we emphasize that ethical
research is not merely a checklist to be satisfied
by abiding to the principles mentioned here. It
requires our persistent attention and open-minded
engagement with the problem.

One limitation of this work is in the principles
that we choose.6 For example, the interaction of
machine learning and privacy is of huge ethical

6Kant would argue that the generalization principle can
account for all ethical decisions, but we make no such claim.
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importance. While the respect for autonomy may
address this issue in part, it would be more produc-
tive to utilize a deontological principle to the effect
of the right to privacy with which such matters can
be judged.

Another instance is that in this work, we have
not discussed the principle of interactional fair-
ness (Bies, 2015, 2001) which refers to the quality
of interpersonal treatment including respect, dig-
nity, and politeness. With the increasing amount
of interaction between humans and machine, the
natural language generation systems can be evalu-
ated with this principle. Systems which show re-
spect and dignity to users as well as generate polite
language can enhance the degree of interactional
justice, which can in turn enhance utility (e.g., trust,
satisfaction).

Additionally, there are broader limitations in us-
ing deontology as our ethical framework. In sce-
narios where there are no a priori duties or rights,
taking a consequentialist approach and optimizing
the effects of ethical guidelines could be more fe-
licitous. For example, the specific rights and duties
of autonomous AI systems are not immediately
clear. Thus, determining ethical recommendations
based on what leads to the most responsible use
of the technology would be clearer than selecting
appropriate rights and duties directly. Furthermore,
rule-based formulations of consequentialism make
ethical judgments based on rules, where the rules
are selected based on the consequences. Such theo-
ries combine some of the benefits of both deontol-
ogy and consequentialism.

The above difficulties are part of the larger issue
of metaethics, that is, the discussion and debate
on how to choose among different ethical theories.
Within deontology, there is no one standard set of
rules. And even within the generalization princi-
ple, there is considerable leeway to what “conceiv-
able world” or “logically consistent” mean and how
they could be applied to decision making. While
presenting a universally accepted ethical theory is
likely impossible, metaethical considerations can
still be relevant, especially in light of the applica-
tion of ethical theories. As the field of NLP gets
more accustomed with theories of ethics, it will be
fruitful to compare the strengths and weaknesses
of different ethical theories within the context of
NLP and machine learning.

7 Conclusion

Two principles of deontological ethics—namely
the generalization principle and respect for auton-
omy via informed consent—can be used to decide
if an action is ethical. Despite the limitations of
these principles, they can provide useful insights
into making NLP systems more ethical. Through
the four case studies discussed in this paper, we
demonstrate how these principles can be used to
evaluate the decisions made by NLP systems and
to identify the missing aspects. For each of the
case studies, we also present potential directions
for NLP research to move forward and make the
system more ethical.

We further provide a summary on how NLP tools
can be used to extract reasons and rationales from
textual data which can potentially aid deontologi-
cal decision making. Note that we do not advocate
deontological ethics as the only framework to con-
sider. On the contrary, we present this work as the
first of its kind to illustrate why and how ethical
frameworks should be used to evaluate NLP sys-
tems. With this work, we hope the readers start
thinking in two directions: (1) using different ethi-
cal frameworks and applying the principles to NLP
systems (like the case studies in §4), and (2) explor-
ing the directions mentioned in the case studies of
this paper to improve current NLP systems.
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