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Abstract proved to be challenging (Musen and Van Der Lei,

We focus on a type of linguistic formal rea-
soning where the goal is to reason over ex-
plicit knowledge in the form of natural lan-
guage facts and rules (Clark et al., 2020). A re-
cent work, named PROVER (Saha et al., 2020),
performs such reasoning by answering a ques-
tion and also generating a proof graph that ex-
plains the answer. However, compositional
reasoning is not always unique and there may
be multiple ways of reaching the correct an-
swer. Thus, in our work, we address a new
and challenging problem of generating multi-
ple proof graphs for reasoning over natural lan-
guage rule-bases. Each proof provides a differ-
ent rationale for the answer, thereby improv-
ing the interpretability of such reasoning sys-
tems. In order to jointly learn from all proof
graphs and exploit the correlations between
multiple proofs for a question, we pose this
task as a set generation problem over struc-
tured output spaces where each proof is rep-
resented as a directed graph. We propose
two variants of a proof-set generation model,
MULTIPROVER. Our first model, Multilabel-
MULTIPROVER, generates a set of proofs via
multi-label classification and implicit condi-
tioning between the proofs; while the sec-
ond model, Iterative-MULTIPROVER, gener-
ates proofs iteratively by explicitly condition-
ing on the previously generated proofs. Exper-
iments on multiple synthetic, zero-shot, and
human-paraphrased datasets reveal that both
MULTIPROVER models significantly outper-
form PROVER on datasets containing multiple
gold proofs. Iterative-MULTIPROVER obtains
state-of-the-art proof F1 in zero-shot scenarios
where all examples have single correct proofs.
It also generalizes better to questions requir-
ing higher depths of reasoning where multiple
proofs are more frequent.

1 Introduction

Formal reasoning over explicit multi-sentence
knowledge (Newell and Simon, 1956) has often

1988), owing to the difficulty in creating logical
forms from such sentences, thereby restricting the
application of semantic parsers (Zettlemoyer and
Collins, 2005; Berant et al., 2013; Berant and
Liang, 2014). Thus, in a recent work, Clark et al.
(2020) bypass the creation of intermediate logi-
cal forms and show that transformers (Vaswani
etal., 2017) can act as “soft theorem provers" by an-
swering questions over natural language (English)
rule-bases, consisting of facts and rules. In or-
der to reliably interpret these predicted answers,
Saha et al. (2020) propose PROVER, a transformer-
based model that generates the corresponding proof
graph, thus emulating formal reasoning closely.
Consider the two example rule-bases with two ques-
tions and corresponding proofs in Figure 1, where a
proof is a directed graph consisting of the relevant
facts and rules from the corresponding rule-base.

PROVER shows good single-proof generation
accuracy but is designed and trained in a way to
generate only a single proof for each question. This
is not ideal because formal proofs are not always
unique and there may be multiple correct ways
of arriving at the answer. For example, J; and
Q- in Figure 1 have three and four correct proofs
respectively. Hence, in order to enhance the human-
interpretability of linguistic formal reasoning sys-
tems, it is desirable to develop methods that can
generate multiple proofs, each providing a differ-
ent rationale for the predicted answer. Such inter-
pretable methods, while possessing the flexibility
of operating over natural language, can also aid
in verifying claims when constructing proofs from
scratch is tedious or infeasible.

We find that PROVER (Saha et al., 2020), when
trained on all proofs as independent training ex-
amples (Eq. 2) and extended to generate top-p
proofs during inference (Eq. 3), fails drastically,
achieving a low proof precision of 34%. The sub-
sequent proofs are often incorrect because it is not
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Rules: Rules:

R1: White, round things are furry. > ¢ S

R2: All blue, young things are big. Lo 3@ :\
R3: If something is white and young, then it is blue. -7 prad
R4: If Dave is round then Dave is white. “
R5: If something is blue and white then it is round. <
R6: If Harry is big and Harry is white then Harry is red.

R1: Round things are nice.
R2: Nice things are young. B
R3: If something is big and not young then it is not white. @ ,, """
R4: If something is young and smart then it is round.
Rs5: All big things are young.

R6: If Bob is not white then Bob is big.

R7: All furry, red things are young. N R7: Young, nice things are quiet. R i \ :
R8: Red things are round. IR _ %, ' R8: If something is not big then it is nice. SED);
R9: If something is blue then it is red. - . R9: All white things are not quiet. @ » """
Facts: Facts:

F1: Bob is big. F2: Bob is blue.

F3: Bob is furry. F4: Bob is young. > PN
F5: Dave is red. F6: Fiona is white. RN
F7: Harry is big. F8: Harry is red. Ll ‘ ;
F9: Harry is round. F10: Harry is white. e L

Qu: Harry is furry. [Answer : T ]

F5: Harry is nice. F6: Harry is qunet
F7: Harry is smart.

F1: Anne is round. F2: Bob is smart.

F3: Fionna is nice. F4: Fiona is round. @ E _____ ” oo

Q2: Anne is not quiet. [Answer : F]

Figure 1: Diagram showing two rule-bases with rules, facts, questions, answers and all possible proofs. The first
question has three correct proofs while the second question has four correct proofs. MULTIPROVER answers both
questions correctly and also generates all the corresponding proofs accurately for each question.

trained jointly with all proofs and hence, is un-
able to exploit the inter-proof correlations and also
does not learn the correct number of proofs for
a question. Thus, we propose MULTIPROVER, a
transformer-based model that can generate a set
of proof graphs with appropriate cardinality for a
given question. Since multiple proofs can be gener-
ated in any arbitrary order, we pose this task as a set
generation problem over graphs and train MULTI-
PROVER jointly with a permutation-invariant Hun-
garian Loss (Zhang et al., 2019a,b) over all proofs.

A proof graph is generated through a node mod-
ule which selects the relevant facts and rules as part
of the proof and an edge module which determines
the edges between the chosen nodes. Similar to
PRover, we first enforce multiple structural con-
straints during training and inference to ensure that
a generated proof is valid. Next, in order to gen-
erate a set of proofs jointly, we propose our first
model, Multilabel-MULTIPROVER, a multi-label
classification framework which performs implicit
conditioning among the proofs and predicts p bi-
nary labels for each node and edge, denoting its
presence or absence in each of the p proofs that we
want to generate. It is efficient in terms of number
of parameters and training time and also achieves
a better proof F1 than PROVER. However, the
lack of explicit conditioning between the proofs is
not ideal because a question with multiple proofs
often has certain common sub-graphs across the
proofs. E.g., all the 3 proofs for )1 in Figure 1
have the sub-graph {F19p — R;} common. Thus,
in order to exploit these correlations which Mul-
tilabel-MULTIPROVER cannot capture explicitly,
we further propose an improved variant of MULTI-
PROVER, named Iterative-MULTIPROVER, which
generates appropriate number of proofs by stacking
multiple node and edge encoders, each of which

generates one proof at each time step by condi-

tioning on the previously generated proofs. This

enables the model to better learn the correlations
between multiple proofs for a given question. To
capture the set-based nature of the task, we train

MULTIPROVER using a permutation-invariant Hun-

garian Loss (Sec. 3.5), which solves an assignment

problem between a set of predicted and gold proofs.
Empirical evaluation on synthetic and human

paraphrased QA rule-bases (Clark et al., 2020)

show that both of our MULTIPROVER models

achieve a significantly higher proof F1 compared to

PROVER while retaining the QA accuracy. Further,

on a challenging hand-authored zero-shot dataset,

where all examples have single gold proofs, Itera-
tive-MULTIPROVER achieves state-of-the-art proof

F1. It also generalizes better to questions requir-

ing higher depths of reasoning with more multiple

proofs. Overall, our contributions are:

* We address a new and challenging problem of
generating a set of multiple logical proof graphs
for reasoning over natural language rule-bases by
proposing two set-based joint models, Multilabel-
MULTIPROVER and Iferative-MULTIPROVER.!

e [terative-MULTIPROVER’s joint training and ex-
plicit conditioning helps it to better learn the rela-
tive importance of rules and facts for a particular
question and uncover common subgraphs across
multiple proofs. Thus, compared to Multilabel-
MULTIPROVER and PROVER, it is able to trans-
fer well in zero-shot settings because it learns to
assign a soft prior over the rule-base.

e [terative-MULTIPROVER’s conditional genera-
tion also enables it to generalize better to ques-
tions requiring higher depths of reasoning where
the presence of multiple proofs is frequent.

'Our code and models are publicly available at https:
//github.com/swarnaHub/multiPRover.
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2 Related Work

The task of rule reasoning (Clark et al., 2020) is
related to other recently proposed tasks on QA (We-
ston et al., 2015; Yang et al., 2018; Lin et al., 2019;
Tafjord et al., 2019; Richardson et al., 2020) and
NLI (MacCartney and Manning, 2014). However,
most of these tasks require implicit reasoning rules
as opposed to explicit ones and the focus is either
on broad language understanding or on single rule
application. Below we discuss MULTIPROVER’s
relation to multiple areas of NLP and ML.

Structured Explanations: There is useful previ-
ous work on developing interpretable and explain-
able models (Doshi-Velez and Kim, 2017; Rudin,
2019; Hase and Bansal, 2020; Jacovi and Goldberg,
2020) for NLP. Explanations in NLP take three ma-
jor forms — (1) extractive rationales or highlights
(Zaidan et al., 2007; Lei et al., 2016; Yu et al., 2019;
DeYoung et al., 2020) where a subset of the input
text explain a prediction, (2) free-form or natural
language explanations (Camburu et al., 2018; Ra-
jani et al., 2019; Zhang et al., 2020; Kumar and
Talukdar, 2020) that are not constrained to the in-
put, and (3) structured explanations that range from
semi-structured text (Ye et al., 2020) to chain of
facts (Khot et al., 2020; Jhamtani and Clark, 2020;
Gontier et al., 2020) to explanation graphs (based
on edges between chains of facts) (Jansen et al.,
2018; Jansen and Ustalov, 2019; Xie et al., 2020).

Generating Multiple Outputs: Generating a set
of proofs can be viewed as a task of generating
multiple structured outputs (Prasad et al., 2014).
Multiple prior studies focus on generating diverse
unstructured texts (Gimpel et al., 2013; Dai et al.,
2017; Xu et al., 2018; Raffel et al., 2020). which
broadly span two categories — (1) using improved
decoding techniques like beam search with inter-
sibling ranking penalty (Li et al., 2016), iterative
beam search (Kulikov et al., 2018), diverse beam
search (Vijayakumar et al., 2018), and sentence
codes (Shu et al., 2019), (2) varying the hidden
representations or using multiple decoders (Dai
etal.,2017; Jain et al., 2017; Shen et al., 2019). Our
baseline, PROVER-top-p, which extends PROVER
to generate top-p proofs during inference falls in
the first category while MULTIPROVER falls in the
second category, where the multiple node and edge
encoders vary the node and edge representations
for generating multiple proofs.

Machine Learning over Sets: Set-based ML
models (Zaheer et al., 2017; Lee et al., 2018; Zhang
et al., 2019a; Kosiorek et al., 2020) have a wide
range of applications including generating multiple
image captions (Vinyals et al., 2015), generating di-
verse translations (Cho et al., 2014; Bahdanau et al.,
2015), enumerating rules in a logical inference sys-
tem (Gao et al., 2019). Set problems are challeng-
ing because the number of valid solutions for a set
of size n are n!, which increases faster than expo-
nential in n and ignoring the set structure produces
sub-optimal solutions (Zhang et al., 2019a). Thus,
we use a set-based Hungarian Loss (Zhang et al.,
2019a,b) for capturing the permutation-invariant
nature of generating a set of proofs.

3 Method

3.1 Task Description and Notations

The input to our task is a tuple of the form (C, Q),
where C is a rule-base context and Q is the ques-
tion. We want to predict a binary answer A €
{T'rue, False} for the question and generate a set
of proof graphs P = {P1,...,P,}, each of which
provides a diverse rationale for the answer (see
Figure 1). The context C consists of a set of facts
and rules, denoted by F and R respectively. Facts
F = {Fi,...Fy} are unambiguous statements,
while rules R = {Ry,...R,} are logical state-
ments, which can be used in conjunction with the
facts to arrive at a logical conclusion. Each proof
P; = (Vi, &) is a directed graph, with a set of
nodes V; C N and a set of edges & C V; x V;,
where N = FUR U {NAF} and k = |N|. Ifa
statement (E.g. “Anne is big”) cannot be deduced
from the context, then Negation as Failure (NAF)
contains the negation of that statement (E.g. “Anne
is not big”), which is considered true in a closed-
world assumption. See appendix for more details
of the syntax of proof graphs.

3.2 Baseline PROVER Model

PROVER (Saha et al., 2020) builds on top of
RoBERTa (Liu et al., 2019) and consists of a ques-
tion answering (QA) module, a node module and
an edge module where the node and edge modules
are used to predict a single proof graph. The in-
put to RoBERTa is the concatenation of the facts,
rules and the question. The QA module takes in
the representation of the [C'LS] token and predicts
a binary label for the question. The node mod-
ule computes the node embeddings N € RF*¢
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Figure 2: Plot showing the percentage of samples with
p > 1 proofs for different training datasets, DUO-DUS.

consisting of the representations of each fact, rule
and NAF where d is the embedding dimension.
The i** row n; of N denotes the embedding of
node i. A node classifier takes in these embed-
dings to output the node probabilities np; € R*
for each fact, rule and NAF being present in the
proof. The edge module computes the edge em-
beddings E € R¥**34 for every edge (i, j) through
the function ¢(i, j) = [ni;nj; (n; — n;)] where ;
is the concatenation operation and outputs prob-
abilities ep; ; € RF* of each edge being present
in the proof. PROVER is trained using the joint
cross-entropy loss over the QA, node and edge
modules. The authors pose inference as a Integer
Linear Program (ILP). Given a set of nodes and
the edge probabilities from the trained model, the
following global score over the edge probabilities
is maximized, subject to multiple structural con-
straints S that ensure the validity of a proof graph
(like checking for graph connectivity).

argmax Y epiyxei;+(1—epig)(1—ei;) (1)
ei,;€{0,1},s€S

4,J,17]

Extending PROVER to Generate Proof-Sets:
Since Saha et al. (2020) focus on generating one
proof per question, they also train their model with
one gold proof per question. For multiple proof
generation, an obvious extension is to treat each
proof for a question as a separate training example.
Formally, for each sample , given a context C, a
question Q', an answer A’ and a set of gold proofs
P!, where i € {1,...,p;}, the extended training
dataset can be defined as:

L
D= Let AP 2
g{(g AP L @)
Once PROVER is trained with this dataset, dur-
ing inference, we generate top-p proofs by first
selecting the top-p node sets according to Eqn. 3
and then choosing the corresponding edge sets us-
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Figure 3: Multilabel-MULTIPROVER.

ing the optimization function in Eqn. 1.

k

arg max g
VE{O,l}k i=1

np; *v; + (1 —np;) * (1 —v;) (3)

The top-p solutions of Eqn. 3 are v',...,v?

which indicate a node’s presence or absence in the
proofs. Although simple, this approach has two ma-
jor issues. First, the lack of coupling between the
proofs can potentially confuse the model as there
are multiple possible proofs for the same (question,
context) pair. Second, inference is inflexible and
always generates a fixed number of proofs for every
example, thus leading to the generation of many
incorrect proofs (Section 5.1). As shown in Fig-
ure 1, certain questions can have multiple possible
proofs. Figure 2 demonstrates this phenomenon sta-
tistically — the datasets we experiment with (Clark
et al., 2020) contain up to 13% of the samples with
> 1 correct proof. Thus, in the light of PROVER’s
limitations, we propose two novel architectures of
a proof-set generation model, MULTIPROVER.

3.3 Multilabel-MULTIPROVER

As described in the previous section, a desired prop-
erty for generating a set of proofs is to have the
proofs conditioned on each other as opposed to
treating them independently. Thus, we propose
Multilabel-MULTIPROVER (see Figure 3), which
poses the problem of generating a set of proofs as a
multi-label classification task over all the nodes and
edges corresponding to the set of p proofs. Each
training example is a tuple (Ql, cl AL {P! 1;1:1),
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consisting of a set of gold proofs {PZZ P | per exam-
ple. It consists of a QA module, a node module and
an edge module. Following PROVER (Section 3.2),
we obtain the node representations N € R**9 by
mean-pooling over the constituent ROBERTa repre-
sentations. These are then passed through a multi-
label node classifier, which consists of two linear
layers and produces the probabilities np; € RP of
a node being present in the p proofs. The node
embeddings n; and n; for a pair of nodes are trans-
formed by the function ¢(i, j), described in Section
3.2, to output the edge embeddings E € RF**3d,
We also have a multi-label edge classifier, which
takes in the edge embeddings to generate the prob-
abilities ep; ; € R? of an edge (i, j) being present
in the p proofs. Lastly, a question answering mod-
ule predicts a binary answer for the question. Fol-
lowing PROVER, during training, we mask certain
impossible edges like fact to fact, rule to fact and
non-nodes. Given the outputs from the three mod-
ules, we train our model jointly over all proofs
using a set-based Hungarian Loss.

This model is advantageous because there is im-
plicit conditioning between the proofs as all the
proofs are generated in parallel from the same node
embeddings and edge embeddings. Thus, it has
no additional time or memory overhead while also
generating proof-sets better than PROVER (Section
5.1). However, it suffers from two major draw-
backs. First, since the proofs are generated in par-
allel, the model is trained by padding empty proof
graphs. Hence for higher values of p, the model
has to learn more empty proofs, which makes the

B Common Nodes (CN) B Common Edges (CE) ® CN & CE
100

~
wv

% of samples
N 1%
v o

o

2 3 4 5
Number of Proofs

Figure 5: Plot showing the percentage of samples in
DUS with at least one common node, common edge or
both between the proofs for varying number of proofs.

learning problem harder. Second, the proofs are
not explicitly conditioned on each other. This moti-
vates us to propose Iterative-MULTIPROVER.

3.4 Iterative-MULTIPROVER

As a motivating example for why explicit condi-
tioning among proofs is necessary, consider the
proofs for ) in Figure 1 where the sub-graph
{F10 — R1} is common across all the proofs. F
and R; are essential for answering the question
and hence conditioning on the previously gener-
ated proofs will help the model adjust the relevance
of nodes and edges in the subsequent proofs. Quan-
titatively, we find that about 75% of the samples
with 4 proofs have at least one node and one edge
common across all the proofs (see Figure 5). Thus,
we propose Iterative-MULTIPROVER (see Figure
4), which broadly consists of a base PROVER ar-
chitecture, as in Figure 3 and an additional p node
and edge encoders for generating a maximum of p
proofs. The proofs are generated iteratively until
an empty graph is generated to denote the end.

Base PROVER architecture computes the first
level of node embeddings N! € R**? and edge
embeddings E! € RK**d_ These are passed respec-
tively through a node and edge classifier to generate
the node probabilities np! € R and edge proba-
bilities ep' € RF?, corresponding to the first proof.
In the next iteration, two transformer encoders gen-
erate the node and edge embeddings corresponding
to the second proof. Specifically, we condition
the generation of the next node embeddings N? on
the previous node (N') and edge (E') embeddings
simultaneously. Conditioning on both is crucial
because N captures the relevance of nodes for the
first proof, while E! contains information about the
strength of the connections between these nodes.
We condition E? only on E!, because the edge em-
beddings corresponding to the nodes predicted by
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N! are already updated in E'. Formally,

T  — W(I)EIW(Z)’ W(l) c kakQ’W(Z) c R39x4d
N = [NLTUW®, @) ¢ g2exd
N? = Transformer(N'); E? = Transformer(E")

These next set of embeddings, when passed
through the respective node and edge classifiers,
predict the node probabilities np? € R* and edge
probabilities ep? € R¥, denoting the likelihood
of their presence in the second proof. We repeat
this process of stacking up node and edge encoders
for generating a maximum of p proofs. Given the
node and edge probabilities corresponding to each
proof and a QA probability from the QA module,
we train Iterative-MULTIPROVER jointly with all
proofs using the Hungarian Loss, described below.

3.5 Permutation-Invariant Hungarian Loss

Unlike words in text generation, proofs can be gen-
erated in any arbitrary order. Consequently, com-
puting cross-entropy loss between the 7" predicted
proof and the i*" gold proof, i € {1, ...,p} will be
sub-optimal. Thus, we use a permutation-invariant
Hungarian Loss (Zhang et al., 2019a,b) which finds
the most optimal assignment between the predicted
proofs and the gold proofs such that the overall
loss is minimized. Formally, the Hungarian loss
L g and total loss £ are denoted as follows:

p
Ly frwnelgz CE(np',yn") + CE(ep',yr"™)
L=Loa+ Ly

where CE(.,.) is the cross entropy loss, np’ and
ep’ are the respective node and edge probabilities
for the i*" predicted proof while yz(i) c {0,1}*
and y*” € {0,1}*" are the respective true node
and edge labels for the gold proof = (i), where 7
is the most optimal permutation. The Hungarian
Loss is implemented by first summing the node and
edge cross-entropy loss matrices L™ € RP*P and
L € RP*P respectively, each entry (7, j) of which
corresponds to the proof loss between the i pre-
dicted proof and j** gold proof (see Figures 3 and
4). Then we find the best assignment between the
gold and predicted proofs through the Hungarian
algorithm (Kuhn and Yaw, 1955). Our final loss
sums the Hungarian proof loss and the QA loss.

3.6 Integer Linear Program (ILP) Inference

Following PROVER, we generate valid proofs dur-
ing inference using an ILP, subject to multiple

global constraints (see Saha et al. (2020)). For
each predicted proof, the predicted nodes and edge
probabilities from MULTIPROVER, we obtain the
corresponding predicted edges using Eqn. 1.

4 Experimental Setup

We experiment on synthetic, hand-authored zero-
shot, and human paraphrased datasets, following
Clark et al. (2020); Saha et al. (2020).

Datasets: The five synthetic datasets DUO-DUS
consist of 100k questions with their own train, val-
idation and test splits (70/10/20) and reasoning
depths up to D = 0,1,2,3,5. Each example in
these datasets is annotated with all possible proofs.
The second dataset is a Birds-Electricity dataset,
consisting of 5k hand-authored samples aimed at
evaluating the zero-shot performance of the mod-
els. Unlike the previous datasets, all examples
in this dataset have a unique gold proof. Third,
ParaRules is a human-paraphrased dataset, con-
sisting of 40k examples with all possible proofs,
where the facts and rules are paraphrased by crowd-
workers. Further details of the datasets and model’s
hyperparameters can be found in the appendix.

Evaluation Metrics: Following PROVER, QA
evaluation is done through accuracy. For proofs,
we compute the following metrics: (1) Node Pre-
cision, Recall, F1 (2) Edge Precision, Recall, F1,
(3) Proof Precision, Recall, F1, and (4) Full Ac-
curacy (FA). For each sample, given a set of gold
proofs and predicted proofs, node precision is com-
puted as the fraction of predicted proofs where
the predicted node set matches exactly with a gold
proof’s node set. Similarly, node recall for each
sample is computed as the fraction of gold proofs
where the corresponding node sets match exactly.
The overall node precision, recall and F1 are the
respective sample-wise precision, recall and F1
scores averaged over all the samples. Edge met-
rics are computed similarly but with respect to the
edges only and the proof metrics consider both
nodes and edges in conjunction. Our final metric,
full accuracy evaluates a sample as a whole and is
given by the fraction of samples where the answer
and all corresponding proofs are exactly correct.

S Results and Analysis
5.1 Comparison of PROVER variants with
MULTIPROVER

In Table 1, we compare ML-MULTIPROVER and
IT-MULTIPROVER with five variants of PROVER
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Node Edge Proof

QA P R F1 P R F1 P R F1 FA
PROVER (Sahaetal., 2020) 993 89.2 849 86.0 875 842 853 87.1 84.0 847 812
PROVER-all 993 879 838 849 871 836 846 89 828 837 803
PROVER-top-p 993 344 884 484 338 874 477 333 867 472 000
PROVER-top-p-classifier 99.3 857 844 838 848 84.1 835 839 834 826 773
PROVER-top-p-threshold 99.3 844 88.0 850 836 871 844 830 865 838 772
ML-MULTIPROVER 995 894 892 890 877 878 874 872 873 87.0 838
IT-MULTIPROVER 995 90.6 902 900 896 894 892 891 89.0 887 855

Table 1: Comparison of our MULTIPROVER models with PROVER variations on DUS test set. [ferative-

MULTIPROVER’s improvement in Full Accuracy over Multilabel-MULTIPROVER is statistically significant with

p < 0.001.

— (1) PROVER, as introduced in Saha et al. (2020),
trained with one proof per example and also gener-
ates a single proof, (2) PROVER-all, trained with
all proofs as separate examples and generates a
single proof per example, (3) PROVER-top-p, an
extension of PROVER-all, generating top-p proofs
for all examples, (4) PROVER-top-p-classifier, an
improvement over the vanilla top-p model, where
we first predict the number of proofs by training
a RoBERTa classifier with concatenated question
and context and then generate those many top proof
graphs, and (5) PROVER-top-p-threshold, another
improved model over vanilla top-p, where we use
the optimization score from Equation 3 to predict
the number of proofs to generate, i.e., we stop gen-
erating proofs when the score difference between
two consecutive proofs exceeds a certain thresh-
old (tuned on the validation set). All models are
trained on the DUS train set and tested on the corre-
sponding test set. Based on Figure 2 which shows
that 98% of the dataset contains samples with <
3 proofs, we set max-proofs, p = 3. 87% of the
examples in the dataset have a single gold proof,
thereby making PROVER a strong baseline.

We observe that PROVER-all has a slightly lower
proof F1 than PROVER, because the model likely
gets confused with multiple possible proofs for
the same context and question. PROVER-top-p’s
huge drop in precision is unsurprising because the
subsequent non-empty proofs are always incorrect,
causing full accuracy to drop to 0%. When we
perform careful inference over PROVER either by
predicting the number of proofs or by thresholding
and do not generate a fixed p number of proofs
for all examples, we observe a boost in precision
over the vanilla top-p model, with very little drop
in recall. However, PROVER continues to be a
stronger baseline than all the top-p variants because
of a lot of single-proof examples in the dataset.

Both MULTIPROVER models improve signifi-
cantly on the state-of-the-art proof F1, while retain-
ing a near perfect QA accuracy. IT-MULTIPROVER
is a significantly stronger model because of its
explicit conditioning mechanism and obtains up
to a statistically significant’> (p < 0.001) 4% im-
provement on proof F1 and full accuracy. While
our model is expected to improve the proof recall
compared to PROVER and PROVER-all because
of the generation of multiple proofs, the improve-
ment in precision is particularly important as it
shows that the subsequently generated proofs by I'T-
MULTIPROVER are mostly correct. Similarly, its
improvement in proof recall compared to PROVER-
top-p also shows the strength of the model con-
sidering that PROVER-top-p generates the maxi-
mum number of proofs for every sample. Over-
all, IT-MULTIPROVER outperforms all other mod-
els in all metrics. In summary, careful inference
strategies over a single-proof generation model like
PROVER are largely ineffective for generating mul-
tiple proofs and an effective proof-set generation
model needs to exploit and learn the inter-proof
correlations during the training phase itself. Our
experiments on the ParaRules dataset demonstrate
similar findings, details of which and the effect of
varying p for MULTIPROVER is in the appendix.

Iterative-MULTIPROVER performs equally well
on the subset of questions where the context has
negations, achieving a high proof F1 of 90.8. As
part of error analysis, we find that 58% of Iterative-
MULTIPROVER’s wrongly predicted proofs have
more nodes and edges than those in the gold proof,
suggesting that our model tends to overestimate the
essential rules and facts and their inter-connections.
In the following subsections, we analyze MULTI-
PROVER'’s generalization capabilities in three dif-

>We use bootstrap test (Efron and Tibshirani, 1994) for
calculating the statistical significance score.
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Node Edge Proof
QA P R Fl1 P R F1 P R Fl1 FA
PROVER (Sahaet al., 2020) 86.5 81.3 81.3 81.3 814 814 814 80.7 80.7 807 807
PROVER-all 859 809 809 809 804 804 804 802 802 802 80.0
ML-MULTIPROVER 8.1 792 799 794 794 799 795 787 79.1 788 78.1
IT-MULTIPROVER 86.3 827 833 829 824 83.0 826 822 827 823 81.8

Table 2: Comparison of all models on the zero-shot Birds-Electricity dataset containing one gold proof per sample.
Iterative-MULTIPROVER’s improvement in Full Accuracy over PROVER is statistically significant with p < 0.001.

Proof F1 Full Acc QA Proof F1 Full Acc
d MP PR ML IT PR ML IT Count ML IT ML IT ML IT
0 72 938 978 982 926 96.7 97.0 10k 872 86.1 41,5 414 390 395
1 103 880 928 935 857 91.0 917 30k 977 982 743 749 712 720
2 157 808 861 871 765 81.8 83.7 50k 994 994 837 84,5 80.0 81.0
3 177 780 80.7 83.0 722 759 78.0 70k (All) 99.5 995 870 88.7 838 855
4 199 711 723 772 659 664 70.1
5 231 677 649 706 610 587 63.7 Table 4: Comparative study between the two MULTI-
- PROVER models with varying amount of training data
Table 3: Comparison of PROVER-all and MULTI-

PROVER models on the subset of samples in DUS5 test
set requiring d depth of reasoning.

ferent contexts — zero-shot settings, higher depth
questions and training with less training data.

5.2 Generalization to Zero-Shot Dataset with
Single Gold Proofs

The Birds-Electricity test-only dataset evaluates the
zero-shot performance. It contains examples with
single gold proofs; hence, if a multiple-proof gener-
ation model like MULTIPROVER transfers well to it,
this indicates strong generalization capabilities be-
cause along with generating correct proofs, it also
needs to infer the correct number of proofs. With
that motivation, in Table 2, we compare PROVER
and PROVER-all, both trained on DUS to generate a
single proof, with our MULTIPROVER models, also
trained on DUS and find that IT-MULTIPROVER
obtains state-of-the-art result on all proof-related
metrics, while retaining the QA performance. Note
that IT-MULTIPROVER has two important design
choices which explains its good performance on
out-of-domain transfer — (1) it trains on all proofs
jointly, (2) explicit proof conditioning. Both of
these, when combined, enable it to learn the corre-
lations between the proofs to identify the degree of
relevance of facts and rules, ranging from essential
to sometimes useful to irrelevant, for a given ques-
tion. Thus, on out-of-domain test data, it assigns
soft prior relevance scores to the context which
helps it to better learn the significantly smaller
space of correct proofs and be more accurate even
for a single-proof dataset.

on DUS. Count = number of training examples.

5.3 Generalization to Higher Depths

The DUS dataset consists of questions requiring
reasoning up to a maximum depth of 5. Thus, we
test the generalization capabilities of the MULTI-
PROVER models on higher depth questions. Specif-
ically, in Table 3, we compare the DU5-trained
models of PROVER-all, ML-MULTIPROVER and
IT-MULTIPROVER on the subset of DUS test ex-
amples with varying depths of reasoning (d). Each
row also shows the percentage of examples with
multiple gold proofs (MP) which, unsurprisingly,
increases as the depth increases. We observe
that much of IT-MULTIPROVER’s improvement
compared to ML-MULTIPROVER comes at higher
depths where the presence of multiple proofs is
a more frequent phenomenon. At depth-5, where
23% of the examples have > 1 correct proof, I'T-
MULTIPROVER obtains a 6% improvement over
ML-MULTIPROVER. This shows that joint training
with all proofs and explicit conditioning between
them leads to better generalization at higher depths.

5.4 Generalization with Less Training Data

Collecting proofs for supervised training is expen-
sive in most real-world scenarios. Hence, on top of
the zero-shot and depth generalization results pre-
sented so far, we ask if our MULTIPROVER models
can learn from less training data. Table 4 shows
that these models obtain near perfect QA accu-
racy with only 40% of the training data (30k exam-
ples). However, proof generation proves to be chal-
lenging and only improves with sufficient training
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Rules:

Ru: All green, white people are round.
R2: Quiet people are white.

R3: All green, young people are nice.
R4: If someone is quiet and green then they are kind.
R5: White people are nice.

R6: Quiet people are young.

R7: All green, white people are nice.

RS8: If someone is kind and white then they are green.
Ro: All nice, quiet people are kind.

Facts:

F1: Bob is quiet. F2: Bob is young.

F3: Charlie is quiet. F4: Charlie is young.

F5: Fiona is nice. F6: Fiona is quiet.

F7: Fiona is round. F8: Fiona is white.

Fo9: Gary is green. F10: Gary is nice.

F11: Gary is quiet. F12: Gary is young.
Q1: Fiona is not kind. [Answer : F ]

@ @) -E)

Rules:

R1: Cold, young people are red[@ » >

R2: Furry people are young.
R3: Young, big people are blue.
R4: Red, big people are quiet.
R5: Quiet people are furry.
R6: Blue people are red.

R7: Young people are big.

R8: All quiet, big people are furry.

R9: If someone is blue and furry then they are cold.

Facts:

F1: Anne is cold. F2: Bob is cold.
F3: Bob is young. F4: Fiona is big.
F5: Fiona is young. F6: Harry is big.
F7: Harry is blue. F8: Harry is cold.
Fo9: Harry is furry. F10: Harry is quite.
F11: Harry is red. F12: Harry is young.

Q2: Bob is not cold. [Answer : F ]

@®
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s @& @-F
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Figure 6: Figure showing all the proofs correctly generated by our Iferative-MULTIPROVER model for two ran-
domly chosen questions corresponding to two different rule-bases.

data. Another interesting observation is that while
both MULTIPROVER models perform comparably
with less training data, IT-MULTIPROVER starts
to outperform ML-MULTIPROVER upon training
with more examples. IT-MULTIPROVER consists
of more trainable parameters because of its mul-
tiple node and edge encoders, which get learned
better with more data. See appendix for runtime
and parameter space of these models.

5.5 Comparison of MULTIPROVER with the
Skyline Single-Proof Generation Model

We find that an ideal (skyline) single-proof gener-
ation model’s proof recall for the DUS5 dataset is
upper-bounded by 92% as it contains about 87%
of single-proof examples. This is computed by
considering exactly 1 correct proof per question.
Hence, we ask how well our MULTIPROVER mod-
els compare with this ideal performance (Figure 7).
Our results are encouraging, not only because I'T-
MULTIPROVER generates more correct proofs than
all other models but also because it almost matches
the performance of the skyline single-proof gener-
ation model. The PROVER model is 9.2% worse
as compared to the skyline single-proof genera-
tion model while IT-MULTIPROVER reduces this
gap to 3%. Given the dataset mostly contains
single-proof examples, the skyline is a strong upper-
bound on proof generation performance and IT-
MULTIPROVER significantly reduces the gap. See
appendix for ablations of IT-MULTIPROVER, in-
cluding the effect of Hungarian Loss.

6 Qualitative Analysis of MULTIPROVER

Fig. 6 shows the sets of proofs correctly gener-
ated by Iterative-MULTIPROVER for two randomly
chosen questions. For ()1, it generates all the pos-
sible proofs by identifying the common subgraph

95 92%

F o0 13%
& 9.2%
= 85
<}
ot
A~ 80
® Models = Skyline-Recall
75 t t t t 1

PR PR-all PR-top-p ML-MProver IT-MProver

Figure 7: Comparison of proof recall for all models
with that of the skyline single-proof generation model.

Fg — Ry. Q9 is interesting, because (i) the single-
node proof F3 is significantly different from the
other proofs in both structure and size, and (ii) the
two larger proofs have two distinct common sub-
graphs. Here, PROVER performs simple lookup
in the rule-base to generate the proof Fb, thereby
limiting our understanding of its reasoning capabil-
ities. However, MULTIPROVER, through its abil-
ity to also generate the larger and more complex
proofs enhances the transparency and verification
of its reasoning abilities, and hence is a crucial
step towards bridging the gap between neural and
symbolic approaches.

7 Conclusion

We proposed Multilabel-MULTIPROVER and Iter-
ative-MULTIPROVER, two variants of a proof-set
generation model where the former performs im-
plicit conditioning between the proofs to gener-
ate them in parallel while the latter generates a
proof-set through explicit conditioning on the previ-
ously generated proofs. Both models obtain strong
proof F1 improvements on synthetic and human-
paraphrased datasets and Iterative-MULTIPROVER
also obtains state-of-the-art proof F1 on a zero-shot
dataset with single proofs. MULTIPROVER’s mod-
eling is fairly generic and similar methods can be
used in generating a set of structured explanations
for other NLP tasks like multi-hop QA.
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Ethical Considerations

Despite the overwhelming success of pre-trained
language models for various NLP tasks, a common
criticism is their lack of interpretability. Generating
structured proofs from such models allows us to ex-
plain their reasoning capabilities and also bridges
the gap between neural and symbolic systems. In
this work, we take a step closer towards improv-
ing the interpretability of rule-based reasoning by
generating a set of multiple proofs, each provid-
ing a diverse rationale for the reasoning process.
We experiment with a wide variety of rule-bases
ranging from synthetic to hand-authored to human-
paraphrased rule-bases. Our results show good
generalization performance of our models across
three different aspects — (1) zero-shot settings, (2)
questions requiring higher depths of reasoning, and
(3) availability of less training data. We hope our
models and findings will inspire future work on
generating multiple structured explanations for dif-
ferent compositional reasoning tasks in NLP.
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Node

Edge Proof

QA P R

P R F1 P R F1 FA

PROVER (Saha et al., 2020) 993 90.0 853
PROVER-all 994 884 842
PROVER-top-p 994 344 88.6
PROVER-top-p-classifier 994 86.2 85.1
PROVER-top-p-threshold 994 85.0 884

ML-MULTIPROVER 99.3 899 89.6
IT-MULTIPROVER-seq 994 885 86.8
IT-MULTIPROVER-nec 99.3 90.2 89.7
IT-MULTIPROVER 99.5 90.6 90.5

89.5
90.1

864 88.6 856 862 88.0 847 855 821
85.3
484 340 88.0
844 856 851 844 846 842 834 782
856 845 878 852 839 871 845
89.3

879 844 854 865 835 843 8l.1
48.0 334 873 474 00.0

78.0

883 883 880 877 876 873 839
872 874 860 863 867 853 856 8l.4
894 89.1 89.0 89.0 886 885 852
899 90.0 895 894 894 89.0 853

Table 5: Comparison of our final MULTIPROVER models with variants of PROVER and other ablations of IT-
MULTIPROVER on the validation set of DUS. IT-MULTIPROVER-seq = [terative-MULTIPROVER with sequen-

tial loss.

IT-MULTIPROVER-nec = Iterative-MULTIPROVER with no edge conditioning. The final Iterative-

MULTIPROVER model outperforms all other models across all metrics.

A Appendix

A.1 Experimental Setup

MULTIPROVER is developed on top of the Hug-
ging Face transformers library (Wolf et al., 2020).
Experiments with PROVER (Saha et al., 2020) are
performed using their publicly released code and
hyperparameters.* All MULTIPROVER hyperpa-
rameters are chosen based on the best Full Accu-
racy on the corresponding validation sets. We use
RoBERTa-large (Liu et al., 2019) as the pre-trained
language model. The batch size and maximum se-
quence length are set to 8 and 300 respectively. We
train all our models for a maximum of 7 epochs
using an initial learning rate of 10~°, a weight de-
cay of 0.1 and a dropout probability of 0.1. We
use a random seed of 42 across all our experiments.
All experiments are performed on one V100 Volta
GPU. Batch size and learning rate are manually
tuned in the range {8,16} and {107°, 2 x 107°}
respectively. For inference, we use PROVER’s ILP
optimization code, which is modeled using PuLP.’
In all the datasets, the maximum number of facts
and rules corresponding to a context is 25.

A.2 Datasets

Our experiments are conducted on the datasets in-
troduced in Clark et al. (2020).° These consist of
5 datasets with synthetic rule-bases, DUO-DUS, a
zero-shot test-only dataset called Birds-Electricity
and a dataset with human-paraphrased rules called
ParaRules. All datasets, except Birds-Electricity,

*https://github.com/huggingface/
transformers

*nttps://github.com/swarnaHub/PRover

5https://pypi.org/project/PuLP/

®https://rule-reasoning.apps.allenai.
org/

have their corresponding train, validation and test
splits.

DUO-DUS: Each of these consists of 100k ques-
tions with sythetic rule-bases and requires reason-
ing chains up to a maximum depth of D (D =
0,1,2,3,5). The number of train, validation and
test examples in each of the datasets are 70k, 10k
and 20k respectively. Further, each question in the
datasets is annotated with all possible proofs. The
total number of proofs in the DUS train set range
from 1 to 1350, with a mean and median of 1.45
and 1 respectively.

Birds-Electricity: The Birds-Electricity dataset
comprises of two test-only datasets where the con-
texts are about birds and electric circuits. The vo-
cabulary of the entities, attributes and predicates,
apart from is () are all new at test time, thus pro-
viding a benchmark for testing the generalization
capability of the models on out-of-distribution data.
Another interesting aspect of this dataset is that all
examples are annotated with a unique gold proof.

ParaRules: The ParaRules dataset is one where
the facts and rules are paraphrased by humans into
more natural language. It consists of a total of 40k
questions, with 28k, 4k, and 8k questions in the
train, validation and test splits respectively. This
dataset tests the model’s ability to reason over more
complex human-like language. Similar to the syn-
thetic datasets, each example is annotated with all
possible proofs.

A.3 Syntax of Proof Graph

Each proof P; = (V;, &;) is a directed graph, with a
setof nodes V; C AV and asetofedges & C V; x V.
Each node n; € N is either a fact ' € F or arule
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Node

p QA P R Fl P

2 994 905 89.1 892 89.3
3 993 899 89.6 89.3 883
4 993 89.1 892 888 878
5 992 886 89.1 885 872

Edge Proof

R F1 P R Fl1 PA
88.3 884 888 87.8 879 844
883 880 877 876 873 839
82.0 87.8 872 875 871 836
878 872 86.6 872 86.6 83.1

Table 6: Effect of varying maximum number of proofs (p) on Multilabel-MULTIPROVER. All models are trained
on the DUS training set and evaluated on the corresponding validation set. The proof metrics start to decrease

marginally with increase in p.

Node Edge Proof
p QA P R Fl1 P R Fl1 P R Fl1 PA
2 995 900 89.0 89.0 892 884 883 886 87.8 877 841
3 995 906 905 90.1 899 90.0 895 894 894 890 853
4 995 902 897 895 895 8.2 89.1 891 887 88.6 852
5 995 90.1 89.6 894 895 892 89.1 89.0 886 885 852

Table 7: Effect of varying maximum number of proofs (p) on Iterative-MULTIPROVER. All models are trained
on the DUS training set and evaluated on the corresponding validation set. Unlike Multilabel-MULTIPROVER, it is

significantly robust to variation in p.

R € R from the context or a special NAF node,
denoting “Negation as Failure". A NAF node in
a proof indicates the truthfulness of the negation
of statement(s) that cannot be proved using the set
of rules (under closed-world assumption). Edges
in the graph can be directed either from a fact (or
NAF) to a rule or between two rules. An edge from
a fact to a rule means that the rule applies on the
fact to generate a new fact. Similarly, an edge from
arule Ry € R to another rule Ry € R implies
the application of Ry on the fact generated by R;.
Proofs are either successful or failed. A successful
proof is one where the question statement can be
logically reached (to be either proved or disproved)
using the given rule-base while for failed proofs,
no conclusion can be reached, in which case the
shallowest branch of the proof tree that fails is
generated. For more details and examples of proofs,
we refer the readers to prior work (Saha et al., 2020;
Clark et al., 2020).

A.4 Ablation Analysis

In Table 5, we compare our baselines PROVER,
PROVER-all and PROVER-top-p variants with our
MULTIPROVER models on the validation set of
DUS dataset. Additionally, we also show two ab-
lations of IT-MULTIPROVER - in the first, we re-
place the Hungarian loss with a sequential loss,
which computes the cross-entropy loss of the ‘"
predicted proof with the i*"* gold proof and in the
second, we condition the node embeddings on the

previous node embeddings only instead of both
node and edge embeddings. All models, except
PROVER and PROVER-all, generate a maximum of
3 proofs. PROVER-top-p suffers from a huge drop
in proof precision due to the generation of many
incorrect proofs. Although carefully choosing the
value of p either by thresholding or through a clas-
sifier helps boost the proof precision, PROVER con-
tinues to be a superior baseline on this dataset due
to a high skew towards single-proof examples. ML-
MULTIPROVER improves upon PROVER’s proof
F1 and full accuracy (FA) which are further bet-
tered by IT-MULTIPROVER, owing to its explicit
conditioning mechanism between the proofs. Re-
placing the Hungarian loss with a sequential loss
leads to a significant drop in proof F1, thereby
showing the effectiveness of modeling multiple
proof generation as a set generation problem. Fi-
nally, conditioning the node embeddings on both
node and edge embeddings leads to marginal im-
provement in proof F1. Overall, IT-MULTIPROVER
outperforms all other models across all metrics.

A.5 MULTIPROVER with Varying Maximum
Number of Proofs

We analyze the effect of varying the maximum
number of proofs p on ML-MULTIPROVER and
IT-MULTIPROVER in Table 6 and 7 respectively.
All models are trained on the DUS training set and
evaluated on the corresponding validation set. Al-
though all models maintain the QA accuracy, we
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Node Edge Proof
QA P R F1 P R Fl1 P R F1 FA
PROVER-all 98.6 959 941 945 954 938 943 953 937 942 923
PROVER-top-p 98.6 393 96.6 550 389 960 546 389 959 545 00.1
ML-MULTIPROVER 989 967 964 964 964 962 962 962 96.0 96.0 952
IT-MULTIPROVER 989 973 972 972 972 97.0 97.0 96.8 96.7 96.7 96.1

Table 8: Comparison of models trained on DU3 and ParaRules training sets and evaluated on ParaRules validation
set. IT-MULTIPROVER outperforms all other models across all metrics.

Node Edge Proof
QA P R Fl1 P R F1 P R Fl1 FA
PROVER-all 982 953 928 935 947 927 933 944 924 93.0 905
PROVER-top-p 98.2 387 959 543 383 955 539 382 953 538 00.1
ML-MULTIPROVER 983 960 956 957 959 955 956 955 952 952 938
IT-MULTIPROVER 983 96.8 962 963 965 963 963 962 96.0 96.0 94.5

Table 9: Comparison of models trained on DU3 and ParaRules training sets and evaluated on ParaRules test set.
IT-MULTIPROVER outperforms all other models across all metrics.

find that the proof F1 for ML-MULTIPROVER starts
to decrease marginally with the increase in p. Note
that this model is trained with padding of empty
proof graphs since it generates all p proofs in paral-
lel. Thus, the amount of padding increases with the
increase in p, thereby leading to a harder learning
problem as the model needs to predict more num-
ber of empty graphs. IT-MULTIPROVER, on the
other hand, is significantly robust to such variations
in p, because it generates proofs iteratively with
one empty graph at the end, indicating end of set.

A.6 Evaluation on Human-Paraphrased
Rule-Bases

Following PROVER, we also test MULTIPROVER’s
effectiveness in generating proofs for more human-
like complex rule-bases. The ParaRules dataset is
constructed by first creating a set of fact groups
where each fact group consists of all facts in the
theory concerning a particular person and then para-
phrasing these fact groups into more complex lan-
guage. E.g., a fact group “Alan is blue. Alan is
rough. Alan is young.", may be re-worded into
“Alan is on the young side, but rough. He often
feels rather blue." Thus, unlike the DU datasets or
the Birds-Electricity dataset where the proof graphs
are composed of facts and rules, ParaRules proofs
are composed of fact groups and rules. Following
past work (Clark et al., 2020; Saha et al., 2020) we
train our models combining the DU3 and ParaRules
train sets, and evaluate on the ParaRules validation
and test set in Tables 8 and 9 respectively. We find
that similar conclusions to the DUS dataset hold for

# Parameters Time/epoch (in hours)

p PR ML IT PR ML IT
1 36IM 361M 48M 5.0 34 3.6
2 36IM 36IM 615M 5.0 35 4.0
3 36IM 36IM 742M 5.0 3.6 4.6
4 36IM 361IM 869M 5.0 3.7 5.1
5 36IM 36IM 996M 5.0 3.8 5.7

Table 10: Comparative study of the number of parame-
ters and training time per epoch (in hours) for PROVER-
all (PR), ML-MULTIPROVER and IT-MULTIPROVER
with varying number of maximum proofs (p).

this dataset as well - ML-MULTIPROVER achieves
a better proof F1 and full accuracy than PROVER,
which are further improved by IT-MULTIPROVER
due to its explicit conditioning mechanism between
the proofs.

A.7 Training Time and Size Comparison

Table 10 shows the number of trainable param-
eters and training times per epoch for the base-
line model PROVER and our proposed models,
ML-MULTIPROVER and IT-MULTIPROVER across
varying number of maximum proofs (p) per sam-
ple. Since ML-MULTIPROVER adopts the same
PROVER architecture but with multi-label clas-
sification, it has the same number of parameters
as PROVER, which also remains unchanged irre-
spective of the maximum number of proofs. The
number of parameters for IT-MULTIPROVER, how-
ever, increases with the increase in p because of
the presence of multiple node and edge encoders.
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While IT-MULTIPROVER has more parameters than
PROVER, our empirical findings reveal that just
having a similarly-sized, larger PROVER model
will not be sufficient and exploiting the correla-
tions between multiple proofs with a permutation-
invariant loss is necessary for the task of generating
a set of multiple proofs.

The training time of PROVER is more than
that of ML-MULTIPROVER because the former
treats each proof as a separate example, causing
an increase in the training data size from 70k
to 110k. ML-MULTIPROVER is the most time-
efficient model and its running time only increases
marginally with the increase in p. This is due to
the additional node and edge classifications that
the model has to perform corresponding to each ex-
tra proof. Unsurprisingly, IT-MULTIPROVER takes
longer to train but encouragingly for p < 4, still
has a comparable running time to PROVER.
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