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Abstract

There is an emerging interest in the applica-
tion of natural language processing models to
source code processing tasks. One of the ma-
jor problems in applying deep learning to soft-
ware engineering is that source code often con-
tains a lot of rare identifiers, resulting in huge
vocabularies. We propose a simple, yet ef-
fective method, based on identifier anonymiza-
tion, to handle out-of-vocabulary (OOV) iden-
tifiers. Our method can be treated as a pre-
processing step and, therefore, allows for easy
implementation. We show that the proposed
OOV anonymization method significantly im-
proves the performance of the Transformer in
two code processing tasks: code completion
and bug fixing.

1 Introduction

Natural language processing (NLP) is widely used
for source code processing (SCP), e. g. for learn-
ing the meaningful vector representations of code
(Feng et al., 2020; Alon et al., 2019b; Azcona et al.,
2019), that can be used in various downstream
tasks, e. g. code summarization (Iyer et al., 2016;
Shiv and Quirk, 2019), code completion (Kim et al.,
2020), or bug fixing (Hellendoorn et al., 2020).

An important question, one should answer be-
fore building an SCP model, is how to create a
vocabulary? Karampatsis et al. (2020) underline
that modern source code datasets may incorporate
millions of unique identifiers, of which less than
1% occur in the dataset frequently, e. g. more than
5 times. The common practice is to crop the vo-
cabulary based on top-N identifiers and replace all
occurrences of out-of-vocabulary (OOV) identifiers
with an UNK identifier to avoid huge embedding
matrices and the meaningless embeddings of rare
tokens. But can one process rare identifiers in a
better way?
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Vocabulary: {np, sin }
Input: my_y = np.sin(my_x)
Standard OOV processing procedure:
UNK = np.sin (UNK) + UNK
Proposed OOV anonymization procedure:
VARl = np.sin(VAR2) + VAR2

+ my_x

Figure 1: Iustration of the proposed OOV anonymiza-
tion procedure. Out-of-vocabulary identifiers my_y
and my_x are replaced with anonymized identifiers
VAR1 and VAR2, while in-vocabulary identifiers np
and sin preserve their names.
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Figure 2: Results for Transformer in the variable mis-
use task: joint bug localization and repair accuracy,
mean value =+ standard deviation (over 3 runs). Mod-
els with the proposed OOV anonymization significantly
outperform the standard model (all OOV identifiers are
replaced with an UNK token). The numerical data for
the plots is given in Table 2 in Appendix.

There are two main directions in the NLP liter-
ature to tackle rare tokens: open vocabulary and
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copy-based approaches. An open vocabulary so-
lution implies splitting rare tokens into subtokens
(Sennrich et al., 2016). The copy-based approaches
are used in generation tasks and imply using the
pointer mechanism (Gulcehre et al., 2016) to copy
tokens from the input sequence.

We propose a new, simple, yet effective ap-
proach for processing OOV identifiers in source
code, namely OOV anonymization. Anonymiza-
tion implies replacing rare identifiers with unique
placeholders, i.e. VAR1, VAR2, VAR3 etc., while
preserving the names of frequent identifiers. An
example of OOV anonymization is shown in fig-
ure 1. The intuition behind using anonymization is
that it preserves the semantics of the algorithm that
the code snippet implements, i.e. renaming user-
defined identifiers does not change the underlying
algorithm. By contrast, replacing all rare identi-
fiers with an UNK identifier changes the algorithm.
We underline that we propose anonymizing only
rare identifiers, because frequently used identifier
names may serve as an additional source of infor-
mation, and neural networks are indeed capable of
capturing this information.

The proposed OOV anonymization strategy al-
lows for easy implementation as a preprocessing
step, thus no modification of model code is re-
quired. Another advantage of the OOV anonymiza-
tion is that it enhances both the encoder and the
decoder. The proposed approach significantly out-
performs the model with all rare identifiers being
replaced with an UNK, in code completion and
bug fixing tasks, with the Transformer (Vaswani
et al., 2017) architecture being used (see exam-
ple comparison in Fig. 2). Our code and data
split are available at https://github.com/
bayesgroup/code_transformers.

2 Related Work

Handling OOV identifiers in source code.
Code processing often borrows ideas from NLP.
Source code can be represented as a sequence of
identifiers. In this case, identifiers can be further
split into subtokens using byte-pair encoding (BPE)
(Karampatsis et al., 2020; Sennrich et al., 2016)
resulting in an open vocabulary model. This ap-
proach has several drawbacks. Firstly, splitting
identifiers into subtokens increases the length of the
sequence several times. This substantially slows
down inference, e.g. vanilla Transformer’s for-
ward pass has a complexity quadratic w.r.t. the

input length. Secondly, splitting breaks one-to-one
alignment between identifiers and nodes in the pars-
ing tree, e. g. abstract syntax tree (AST), in other
words, several subtokens correspond to one node in
the AST, which makes it harder to apply structure-
aware models such as (Hellendoorn et al., 2020)
or (Alon et al., 2019a). To the best of our knowl-
edge, all SCP works, proposing structure-aware
models, either use entire tokens without subtok-
enization / BPE, or average the embeddings over
subtokens (this strategy provides only a slight qual-
ity improvement compared to the first one), and the
question of how to incorporate BPE in structure-
aware models needs further investigation. Taking
into account the described disadvantages of BPE,
we do not consider BPE in this work and do not
split tokens into subtokens.

An orthogonal direction for handling OOV iden-
tifiers in source code is the modification of the
computational graph. For the task of code genera-
tion, the pointer mechanism is widely adapted (Li
et al., 2018). Cvitkovic et al. (2019) also propose a
graph-structured cache for inferring the represen-
tations of the rare identifiers in source code. The
major drawback of the mentioned approaches is
that they are quite hard to implement.

Identifier anonymization in source code.
Chirkova and Troshin (2020) conduct an empirical
study of Transformers for source code in a setting
with all identifiers being anonymized and show that
Transformers can make meaningful predictions in
this setting. By contrast, we propose anonymizing
only OOV identifiers and show that it boosts the
performance of the model in the setting with
frequent identifier names being present in the data.
The anonymization of al// identifiers has also been
used in (Gupta et al., 2017) and (Xu et al., 2019)
for training recurrent neural networks. Ahmed
et al. (2018) replace variables with their types,
losing information about identifier repetition.

3 Proposed method

Consider a vocabulary of all identifiers in the train-
ing data. It could be a vocabulary of all tokens if
we treat input code snippets as text sequences, or a
vocabulary of all user-defined variables if we parse
the ASTs of code snippets. Let us now select the
vocabulary Vi, of frequent identifiers and call all
others OOV identifiers.

We propose an elegant way of tackling OOV
identifiers based on anonymization. Particularly,
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we propose replacing all OOV identifiers with
placeholders VAR1, VAR2, VAR3 etc. All occur-
rences of one identifier in one input sequence are
replaced with the same placeholder (anonymized
identifier), but different identifiers are replaced
with different placeholders. One identifier may
be replaced with different placeholders in different
input sequences. An example of OOV anonymiza-
tion is presented in figure 1.

We consider two strategies for the OOV
anonymization, namely ordered anonymization
and randomized anonymization. The ordered
anonymization implies assigning an anonymized
identifier VAR1 to the first seen rare identifier,
VAR2 to the next seen rare identifier, etc. For
example, the snippet from Fig. 1 is transformed
into VAR = np.sin(VAR2) + VAR2. The
randomized anonymization implies fixing the
placeholder vocabulary size |V, | and selecting a
random subset of anonymized placeholders VAR1,
..., VAR|V,, | for each code snippet. For example,
the snippet from Fig. 1 can be transformed into
VAR38 = np.sin(VAR801) + VARS8O01.
To ensure that we can always encode identifiers
in a code snippet injectively, the size |V,,| of
the placeholder vocabulary should not be fewer
than the maximum possible number of tokens per
snippet. We set |V, | to the maximum length of
code snippets.

The proposed OOV anonymization can be seen
as a preprocessing step, thus no model parts change.
In the encoder, the embedding matrix contains em-
beddings for both anonymized and in-vocabulary
identifiers: {ey}vev,,,; U {eyari }lz‘;“f‘ In the
decoder, when generating the next identifier, the
softmax is computed over all anonymized and in-
vocabulary identifiers. We note that the ordered
OOV anonymization may need a more careful im-
plementation, e. g. of metric computation, see de-
tails in section 4.

4 Experiments

4.1 Experimental setup

We  conduct experiments  with  Trans-
former (Vaswani et al.,, 2017) on the code
completion (CC) and variable misuse (VM)
tasks, on Pythonl150k (Raychev et al., 2016a)
(the redistributable version of (Kanade et al.,
2020)) and JavaScript150k (Raychev et al., 2016b)
datasets.

We use the problem setup, metrics and loss

of Hellendoorn et al. (2020) for the VM task, and
of Kim et al. (2020) for the CC task. To validate our
implementation, we check that the quality we ob-
tain with the vanilla Transformer is the same as the
quality of this model reported in the corresponding
works, see details in Appendix B. As a base model,
we use the 6-layer Transformer equipped with the
relative attention mechanism (Shaw et al., 2018)
and applied over the depth-first traversal of the AST.
Chirkova and Troshin (2020) show that such an ap-
proach leads to high performance and outperforms
the vanilla Transformer and several techniques for
capturing AST structure in Transformer. The hy-
perparameters are given in Appendix A. Allamanis
(2019); Chirkova and Troshin (2020) emphasize
the importance of the thoughtful splitting data into
training and testing parts, which includes splitting
by repositories and removing duplicate code. We
follow the same strategy in our experiments (later
referred to as custom train-test split).

Variable misuse task. For the VM task, we
use the same setup as in (Hellendoorn et al., 2020),
below we briefly recap this setup. In the VM task,
given the code of a function, the task is to output
two positions (using two pointers): in what posi-
tion a wrong variable is used and which position a
correct variable can be copied from (any such posi-
tion is accepted). If a snippet is non-buggy, the first
pointer should select a special no-bug position. We
obtain two pointers by applying two position-wise
fully-connected layers, and softmax over positions
on top of the Transformer encoder outputs. We use
the joint accuracy to assess the model quality (the
portion of buggy examples for which the model
correctly localizes and repairs the bug).

To obtain a dataset for the VM task, we select all
top-level functions in Python150k dataset, includ-
ing functions inside classes, and filter out functions
longer than 250 AST nodes, and functions with less
than three positions containing user-defined vari-
ables or less than three distinct user-defined vari-
ables. The resulting training / testing set consists of
417K /231K functions (Python) and 202K / 108K
functions (JavaScript). One function may occur in
the dataset up to 6 times, 3 times with synthetically
generated bug and 3 times without bug. The buggy
examples are generated synthetically by choosing
random bug and fix positions from positions con-
taining user-defined variables. When using the
ordered OOV anonymization, we firstly inject a
synthetic bug and then perform anonymization, to
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Figure 3: Results for Transformer in the code comple-
tion task (value prediction): mean reciprocal rank +
standard deviation over 3 runs. The numerical data for
the plots is given in Table 3 in Appendix.

avoid data leak.

Code completion task. For the CC task, we
use the setup of Kim et al. (2020), and below we
briefly review it. The CC task implies predicting
the type and value of the next node based on the
prefix of the depth-first AST traversal. We predict
the next type and value using two fully-connected
heads on top of the Transformer decoder and opti-
mize the sum of cross-entropy losses for types and
values. While computing the loss, we skip the first
occurrences of anonymized values and special po-
sitions, i. e. UNK and PAD. We tie the embeddings
of input and output layers. In this task, we split the
large AST traversals into chunks with a maximum
length of 500, as described in (Kim et al., 2020).
The resulting dataset includes 186K / 100K train-
ing/testing chunks for Python and 270K /220K for
JavaScript.

We use mean reciprocal rank (MRR) to mea-
sure the quality of the model: MRR = 100% -
N1 sz\i 1 1/rank;, where N is the total number
of tokens in the dataset and rank; is a position of
the true token in the model ranking. We assign zero
scores (a) if the correct token is not in the top 10
predicted tokens, (b) if the correct token is a UNK
and (c) for the first occurrences of anonymized
identifiers.

For the next value prediction task, we add
the pointer mechanism to the Transformer for
comparison. We re-implement the pointer mech-
anism following the design choice of (Deaton,
2019). Given an input sequence [z1,...,Zy]
of length ¢, Transformer outputs two distribu-
tions: the distribution over the fixed vocabulary V/,
Pmodel(a),a € V, and the probability of copying
an input from position j, peopy(7),7 = 1,...,L.
Then both distributions are combined to obtain
the final distribution over the extended vocabu-
lafyi p(xf—i—l = a) = pgenpmodel(a) [CL € V} +
(1 — pgen) 2521 Peopy (7)[x; = al]. The switcher is
computed given the current input and the output of
the decoder as pgen (¢, hy) = a(w,{hg +wlxp +
bgen ). The cross entropy loss is computed over the
extended vocabulary.

4.2 Results

We compare the proposed anonymization of OOV
identifiers with the following baseline approaches:
(1) Standard: with all OOV identifiers being re-
placed with an UNK identifier; (2) training on
fully anonymized data, i.e. all identifiers are
anonymized. This baseline corresponds to the zero
vocabulary size in all plots. For the code comple-
tion task, we also include the baseline with the
pointer mechanism.

Figure 2 presents the results for the variable mis-
use task, for different frequent identifier vocabu-
lary sizes. We observe that the proposed approach,
with the anonymization of OOV identifiers (dark
blue and blue lines), performs substantially bet-
ter than the baseline models, particularly than the
standard approach with OOV identifiers being re-
placed with an UNK identifier (orange line). The
leftmost point in both blue lines corresponds to
the full anonymization baseline (zero vocabulary
size). The ordered OOV anonymization (dark blue
line) performs slightly better or similarly to the
randomized OOV anonymization (blue line). We
also experimented with the frequency-based OOV
anonymization, i. €. sorting rare identifiers by fre-
quencies in the code snippet and assigning VAR1
to the most frequent one, VAR2 to the next one etc.
We found that such a strategy achieves the same
quality as the ordered anonymization.

Increasing the vocabulary size for the standard
model does not help much and even hurts the per-
formance, i. e. the standard model with a vocabu-
lary of 50K identifiers outperforms the one with
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the largest possible vocabulary. The reason is that
the embeddings of rare identifiers are updated only
several times during the training and do not change
a lot after being initialized randomly. On the con-
trast, anonymized identifiers occur quite frequently
in the data, e. g. thousands of times, so their em-
beddings are updated regularly. As a result, it is
more beneficial to anonymize rare identifiers than
to include them in vocabulary.

The intuition behind why OOV anonymiza-
tion performs well is that it saves information
about variable repetition and thus does not
change the algorithm that the code snippet
implements. For example, in the buggy
snippet with open (myfnm) as myfp:
data = myfnm.read() (should be
myfp.read()), the model with OOV
anonymization detects that OOV variables
after as and before read are different and
correctly predicts the bug, while the model with
OOVs replaced with UNK does not distinguish
variables my fnm and my fp and cannot detect the
bug.

Figure 3 presents the results for code completion
(value prediction), for different frequent identifier
vocabulary sizes. In this task, the ordered OOV
anonymization again slightly outperforms the ran-
domized OOV anonymization, and they both sub-
stantially outperform the standard baseline and the
baseline with full anonymization. Moreover, the
proposed OOV anonymization surpasses the strong
pointer baseline for almost all vocabulary sizes.
The advantage of the proposed OOV anonymiza-
tion approach is that it helps the Transformer to
distinguish OOV identifiers in the input, while the
pointer mechanism enhances only the output layer.
Also, in contrast to the pointer mechanism, OOV
anonymization is much easier to implement. The
pointer mechanism and the OOV anonymization
could be straightforwardly combined, however, in
our experiments, this combination did not increase
the scores compared to the maximum score of
the OOV anonymization and the pointer. The re-
sults for type prediction are relatively the same as
for the value prediction and can be found in Ap-
pendix C. We visualize the t-SNE representations
of the learned embeddings in Appendix D.

4.3 The influence of the anonymized
vocabulary size

The randomized OOV anonymization strategy com-
prises the hyperparameter |V, |, i. e. the size of the
anonymized vocabulary. It should not be less than
the maximum sequence length, to avoid using the
same placeholder for different identifiers, and we
select |Vgy,| as the maximum length of code snip-
pets. We tried using the larger values of |V/,,| and
observed the insignificant difference in quality in
the variable misuse task, and a slight drop in quality
in the code completion task, as shown in Table 1.

PY JS

Vil : 1k | 10k | 1k [ 10k
[Van| = 0.5K | 63.35 | 64.77 | 66.63 | 68.98
[Van| = 1K | 63.03 | 64.63 | 66.52 | 68.75
[Van| = 3K | 62.79 | 64.34 | 66.22 | 68.60

Table 1: Increasing the size |V, | of the anonymized
vocabulary for two frequent identifier vocabulary sizes
V¢wir, namely 1k and 10k, in the code completion task
(value prediction). Metric: MRR (%), all standard de-
viations are less than 0.3%.

5 Conclusion

In this work, we propose the -effective
anonymization-based encoding of out-of-
vocabulary identifiers, with two options, namely
ordered and randomized OOV anonymization.
Our preprocessing technique allows for easy
implementation, could be easily plugged into
various Transformer models and outperforms the
widely used standard approach by a significant
margin. The ordered anonymization performs
slightly better than the randomized anonymization
but requires a more careful implementation.
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A Implementation details

Passing ASTs to Transformer. To pass an
AST to the Transformer, we follow the strategy
of Chirkova and Troshin (2020). They converted
each input code snippet to the depth-first traver-
sal of the abstract syntax tree (AST), obtaining a
sequence of pairs (node type, node value). The
node types denote syntactic units of the program-
ming language, e.g. If or For, and come from a
small dictionary (up to 350 types), while the node
values denote user-defined identifiers, language-
specific identifiers, e. g. None in Python, and con-
stants. Some nodes do not store any values, we
insert <EMPTY> values in these nodes. We store
two embedding layers, one for types and one for
values, and sum the embedding of type and value
in each AST node. The OOV anonymization is
applied to the values. To train a model on the fully
anonymized data, we anonymize all values except
<EMPTY>.

Hyperparameters. We list hyperparameters for
the VM / CC tasks using slashes. Our Transformer
model has 6 layers, 8 / 8 heads, d,,0q4e1 €quals to
512/ 512. The number of parameters of our mod-
els (excluding embeddings) is 19M / 18M. We train
all Transformers using Adam with a starting learn-
ing rate of 0.00001 / 0.001 and the batch size of
32 for 20 epochs (CC), 25 epochs (VM PY), or
40 epochs (VM JS). In the CC task, we use co-
sine learning rate schedule (Loshchilov and Hutter,
2017) with a warmup step of 2000 and zero mini-
mal learning rate, and the gradient clipping of 0.2.
In the VM task, we use a constant learning rate.
We use residual, embedding and attention dropout
withp = 0.2 / 0.1. We use relative attention (Shaw
et al., 2018) with the maximum distance between
elements of 8 / 32.

B Validating our implementation

The numbers reported in our paper are not directly
comparable to the works we borrow setups from,
because we use our custom (and more correct) data
split rather than the commonly used split (see de-
tails in Sec. 4). We ensure the validity of our results
in two ways: by relying on the code of recently
published works, and by comparing our numbers
achieved for the commonly used data split to the
numbers in the corresponding papers. Particularly,
we use the model / loss / metrics and the code of
(Kim et al., 2020) for the CC task, and the model
/ loss / metrics of (Hellendoorn et al., 2020) for

the VM task (we rewrite line-by-line their code
for metrics and loss). For the vanilla Transformer
in the VM task, Hellendoorn et al. (2020) report
67.7% joint accuracy and we achieved 64.4% with
the similar model size. The results are close to each
other. For the vanilla Transformer in the CC task
(Python), for value / type prediction, (Kim et al.,
2020) report 58.0/87.3 MRR (“TravTrans” model),
and we achieve 60.0 / 89.1 MRR, again the results
are close.

C Experiments with type prediction

In Fig. 4, we report the results for type prediction,
code completion task. Overall, the anonymization
of rare identifiers again performs better, compared
to the standard Transformer with rare identifiers
replaced with an UNK, and also improves over the
pointer baseline for almost all vocabulary sizes.

Python150k dataset (custom train-test split)
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Figure 4: Type prediction for code completion task for
Transformer: mean reciprocal rank + standard devia-
tion over 3 runs.

D Visualization of embeddings

In this section, we visualize the embeddings
learned in the code completion task on Python
dataset, vocabulary size 1k, OOV identifiers are
anonymized randomly. We use t-SNE (van der
Maaten and Hinton, 2008) with default hyperpa-
rameters and cosine metric to visualize the embed-
dings in a 2-dimensional space, see Figure 5. We
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observe that the embeddings of anonymized identi-
fiers form a well-separated cluster in the embedding
space. We also measured the inter-cluster / intra-
cluster cosine similarities: the average cosine sim-
ilarity between pairs of embeddings in one clus-
ter / two different clusters. We observe the inter-
cluster similarity for in-vocabulary / OOV identi-
fiers of 0.09 / 0.05, and the intra-cluster similarity
between in-vocabulary / OOV clusters of —0.06,
which shows that these two clusters occupy differ-
ent subspaces of the embedding space.

E Numerical data for the plots in the
paper

Table 2 lists the numerical data for Figure 2 and
Table 3 lists the numerical data for Figure 3.

For the code completion task, we also report ac-
curacy scores of the best performing models for val-
ues prediction. We mark UNK prediction as wrong.
Our random / ordered / pointer / baseline models
achieve 59.31/59.71/ 58.88 / 50.41 accuracy (%)
on the Python dataset, and 64.08 / 64.13 / 63.58 /
58.48 on the JavaScript dataset.
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Figure 5: t-SNE visualization of Python150k embeddings.

vocabulary embeddings (right cluster).
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Variable Misuse task, Joint localization and repair accuracy (%)

PY JS
|Viwu| | Ordered | Random | Standard | Ordered | Random | Standard
1 81.93 81.26 0.00 78.80 77.69 0.00

20 84.08 83.72 40.28 79.45 78.69 6.89
100 85.29 84.96 54.71 81.63 80.40 33.66
300 86.26 85.33 64.72 82.01 80.47 50.61
1000 86.76 86.10 72.36 83.05 82.62 62.87
10000 | 87.72 86.66 79.36 82.68 82.80 73.36
25000 | 87.29 86.85 81.01 82.66 82.65 74.27
50000 | 87.02 86.82 81.42 82.16 82.62 76.33
Max N/A N/A 80.16 N/A N/A 73.68

Table 2: Numerical data for Figure 2. Max denotes the vocabulary without any filtering: 622K for PY and 266K
for JS. The standard deviations for all models are approx. 0.5%.

Code Completion task, Values Prediction, MRR (%)
PY IS
| Vil | | Random | Ordered | Pointer | Standard | Random | Ordered | Pointer | Standard
1 57.00 58.61 54.77 N\A 57.93 60.77 56.61 N\A
10 58.40 59.52 56.01 N\A 59.81 61.60 57.55 N\A
50 59.45 60.74 57.68 N\A 61.81 63.19 59.63 N\A
100 60.35 61.41 58.53 N\A 62.88 64.09 60.92 N\A
200 61.31 62.26 59.72 N\A 64.23 65.25 62.36 N\A
500 62.55 63.29 61.45 N\A 65.69 66.43 64.34 N\A
1000 63.12 63.90 62.38 N\A 66.53 67.24 65.61 N\A
2000 64.05 64.51 63.28 46.0 67.46 68.04 66.53 51.85
10000 64.77 65.25 64.94 51.8 68.76 69.34 68.51 58.41
100000 | 63.91 64.27 65.09 55.07 69.87 70.05 70.05 63.9

Table 3: Numerical data for Figure 3. The standard deviations for all models are approx. 0.3%.
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