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Abstract 1 

Siamese Neural Networks have been 2 

widely used to perform similarity 3 

classification in multi-class settings. Their 4 

architecture can be used to group the 5 

clinical trials belonging to the same drug-6 

development pathway along the several 7 

clinical trial phases. Here we present an 8 

approach for the unmet need of drug-9 

development pathway reconstruction, 10 

based on an Enhanced hybrid Siamese-11 

Deep Neural Network (EnSidNet). The 12 

proposed model demonstrates significant 13 

improvement above baselines in a 1-shot 14 

evaluation setting and in a classical 15 

similarity setting. EnSidNet can be an 16 

essential tool in a semi-supervised 17 

learning environment: by selecting 18 

clinical trials highly likely to belong to the 19 

same drug-development pathway it is 20 

possible to speed up the labelling process 21 

of human experts, allowing the check of a 22 

consistent volume of data, further used in 23 

the model’s training dataset.  24 

1 Introduction 25 

Siamese Neural Networks (SNN) were developed 26 

in the early 1990s (Bromley et al., 1994) to obtain 27 

a similarity score from examples of signatures 28 

with the goal of identifying forgery. From then 29 

many applications used SNN, primarily on image 30 

recognition tasks (Chopra et al., 2005). The basic 31 

architecture of SNN consists of two identical 32 

networks able to learn the hidden representation 33 

of the inputs. A similarity function would then 34 

compare the inputs hidden representations. The 35 

similarity score was taken advantage of in 36 

contexts like 1-shot learning in multiclass-37 

classification problems, where a single example 38 

of a class was seen by the algorithm only once 39 

before making inference (Koch et al., 2015). 40 

Different architectures of SNN were developed in 41 

time: Simo-Serra and colleagues developed a 3-42 

inputs SNN (Simo-Serra et al., 2015), where the 43 

neural network learned to rank the outputs and 44 

identify whether the reference’s hidden 45 

representation is more similar to a positive or a 46 

negative sample.  47 

Another example involves the insertion of an 48 

intermediate stage between the similarity score 49 

layer and the final prediction layer (Subramaniam, 50 

Chatterjee, and Mittal, 2016), allowing to increase 51 

performance in person re-identification task 52 

despite partial occlusion and difference in point of 53 

view or illumination. 54 

The first applications of SNN were based on 55 

Convolutional Neural Networks (CNN) to obtain 56 

similarity score on images (Simo-Serra et al., 57 

2015), seeing SNN involved in different tasks 58 

such as patch identification (Simo-Serra et al., 59 

2015), person identification (Ahmed et al., 2015), 60 

image matching from different angles (Vo and 61 

Hays, 2016). SNN was also explored in Natural 62 

Language Processing (NLP) contexts in tasks like 63 

identifying sentence similarity (Mueller and 64 

Thyagarajan, 2016) and support relation for 65 

argumentation (Gema et al., 2017). These 66 

applications highlight the flexibility of SNN to 67 

identify similarities in different contexts. Here we 68 

apply this architecture on an unmet healthcare 69 

task: grouping clinical trials belonging to the same 70 

drug-development pathway. 71 

Before being released on the market a new drug 72 

needs to go through several expensive and time-73 

consuming experiments, involving testing the 74 

pharmacological characteristics of the drug in 75 
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biochemical, cellular, and animal models 76 

(preclinical phase) and then on human volunteers 77 

(clinical stage). The clinical stage is divided into 78 

3 pre-approval phases (safety, efficacy, regulatory 79 

proof) and a fourth post-market phase (Corr and 80 

Williams, 2009). The experiments performed by 81 

research or pharmaceutical companies to study a 82 

drug in human subjects are called clinical trials. A 83 

drug-development pathway is defined as all the 84 

clinical studies performed on a drug for an 85 

indication to obtain approval from the regulatory 86 

agency. Example of a drug-development pathway 87 

is presented in Supplementary Table 1. From 88 

starting a phase 1 clinical trial to obtaining 89 

approval from a regulatory agency, a drug can be 90 

tested for over 10 years, and the process can cost 91 

hundreds of millions of dollars, involving 92 

thousands of subjects, including patients, doctors, 93 

nurses and other personnel, with an approval rate 94 

of around 10% (Wong, Siah, and Lo, 2019).  95 

Information on most clinical trials is publicly 96 

available. Pharmaceutical companies are asked to 97 

share their information on ClinicalTrials.gov, a 98 

U.S. National Library of Medicine resource. 99 

Other companies such as DrugBank (Wishart et 100 

al., 2006) or Citeline (Wong, Siah, and Lo, 2019) 101 

parse the information from ClinicalTrials.gov and 102 

add a hand-curation process in which human 103 

labellers cross-reference certain information and 104 

add additional labels to the trials, resulting in a 105 

similar but more accurate database.  106 

Although having information on the clinical 107 

trials related to the development of a drug may 108 

seem a very straightforward process, there are 109 

many confounding factors: 110 

• Very often several trials of the same phase 111 

are run, to obtain statistical power or on 112 

slightly different protocols (country, 113 

population, sample size, …) 114 

• The same trial can belong to two different 115 

phases (e.g. phase 1-2 or 2-3) 116 

• The company may not share on public 117 

databases the information of the trials it is 118 

performing, or may share partial 119 

information or not update them 120 

• Some phases may be skipped 121 

• Often subsequent trial phases from the 122 

same drug-development pathway may 123 

address slightly different diseases 124 

• The disease and the drug can be referred to 125 

from different nomenclatures in different 126 

trials 127 

Grouping of clinical trials to the same drug-128 

development pathway is a requirement for many 129 

different applications, such as analyzing the 130 

success of a pharmaceutical company performing 131 

trials and marketing new drugs, or calculating the 132 

probability of success of a drug for a therapeutic 133 

area, evaluating the number of pathway in a 134 

therapeutic area, and investigating the futility of a 135 

pathway. 136 

Although there is a strong need for a large 137 

freely-available dataset, only proprietary hand 138 

curated datasets exist (Wong, Siah, and Lo, 2019). 139 

A relatively small dataset of regulatory agency 140 

approved pivotal trials could be parsed from Food 141 

and Drug Administration Drug Trials Snapshots 142 

(FDA Snapshot) 143 

(https://www.fda.gov/drugs/drug-approvals-and-144 

databases/drug-trials-snapshots). The lack of 145 

large publicly available datasets may be one of the 146 

reasons why to our knowledge no algorithms to 147 

group clinical trials in drug-development 148 

pathways have been described in the literature. 149 

The contributions of this paper are: (a) a novel 150 

approach to group clinical trials in drug-151 

development pathways; (b) an iterative semi-152 

supervised learning pipeline to optimize the 153 

grouping of clinical trials to the pathway. 154 

The model proposed here is based on a SNN 155 

architecture. The model learned the similarity of 156 

trials belonging to the same pathway. The 157 

advantage of using the proposed model in a semi-158 

supervised learning pipeline would lead to 159 

decreased human-labelling effort; the proposed 160 

pipeline can work in a de-novo mode (fresh start) 161 

and in a primed mode (adding data to previously 162 

scored pathways).   163 

2 Methods 164 

2.1 Data used to train and validate model 165 

The ground truth pathways considered in this 166 

experiment were pathways extracted by the 167 

pivotal trials from the FDA Snapshot and 168 

manually identified pathways (hand-curated). For 169 

more details on the datasets composition and other 170 

methods considered here see Supplementary 171 

Methods. 172 

file:///C:/Users/lpagani/Documents/NAACL2021/Pagani_et_al_NAACL2021_appendix_final.docx%23Supplementary_Table_1
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2.2 Neural Network architectures 173 

Three architectures were compared in the current 174 

research, schematized in Supplementary Figure 1: 175 

pure Siamese Neural Network architecture (SNN) 176 

where only Siamese branches were present, a 177 

hybrid Siamese and Deep Neural Network (SiD 178 

NN) consisting of Siamese character-based 179 

branches and an additional input branch, and an 180 

enhanced version of the SiD NN, having a fully 181 

connected layer before the prediction layer 182 

(EnSidNet). Supplementary Methods contain the 183 

detailed description of the 3 architectures. 184 

2.3 Inputs of the model 185 

The input features of the networks were: the drugs 186 

used in the clinical trial (intervention), the disease 187 

considered (condition), the phase of the trial 188 

(phase), the countries where the clinical trial was 189 

conducted (country), the sponsors of the trial 190 

(sponsor), the start and end date of the trial 191 

(expressed in days compared to an arbitrary 192 

reference date, January 1st 2000). Details of the 193 

preprocessing of the inputs can be found on 194 

Supplementary Methods. 195 

2.4 Prediction Algorithm 196 

Algorithm 1 contains the pipeline to apply the 197 

Neural Network to group trials into pathways. 198 

The details of the pipeline are reported in 199 

Supplementary Methods. For schematic example 200 

of the matching pipeline see Supplementary 201 

Figure 2. 202 

3 Experiments 203 

In Supplementary Table 2 we report the number 204 

of parameters of the networks and training time. 205 

The three neural models have different number of 206 

parameters to train, and the complexity of SNN 207 

compared to the hybrid models made the training 208 

time per epoch longer. In terms of time per epoch 209 

the other two hybrid models had comparable time 210 

per epoch, despite the slightly higher complexity 211 

of EnSidNet compared to SiD NN. 212 

3.1 Balanced datasets 213 

Accuracy was tested on a balanced validation 214 

dataset (see dataset splitting for details on 215 

balanced dataset creation). It can be seen from 216 

Table 1 that the best performing algorithm was 217 

EnSidNet. 218 

3.2 32-way 1-shot evaluation performances 219 

One-shot evaluation was used to predict whether 220 

a new trial belongs to established pathways. 221 

The score expected from a random classifier is 222 

3.125, due to the unbalanced 1:32 ratio of positive 223 

couples versus negative. It can be seen in Table 2 224 

that all neural models scored significantly higher 225 

than a random classifier in a 32-way 1-shot 226 

evaluation assay.  227 

Algorithm 1  

Input: trials to group in pathways and previously 

scored pathways 

Output: pathways containing development trials 

1:  divide trials in therapeutic areas 

2:  for every therapeutic area do 

3:      for every existing pathway do 

4:          predict similarity between 2 trials of a present 

pathway and a new trial 

5:          if probability > 0.8 for both couples do 

6:              add trial to present pathway 

7:      sort trials (common lead sponsor or condition) 

8:      divide trials into batches 

9:      for every trial in batch do 

10:        match all versus all and predict similarity 

11:        if probability > 0.8 do 

12:            group the trials in a pathway 

13:    group pathways with common trial 

14:    select 1 trial per pathway and repeat steps 9-13 

15:  return pathways 

 
Algorithm 1 

  Balanced dataset 

 Accuracy 

SNN 0.763393 

SiD NN 0.907738 

EnSidNet 0.91369 

 
Table 1: Accuracy of the best model on a balanced dataset 

  32-way 1-shot evaluation assay 

 

Neural 

Network 

1-Nearest 

Neighbor 

Random 

Classifier 

SNN 66.67 81.82 6.06 

SiD NN 93.94 69.70 0 

EnSidNet 
96.97 69.70 3.03 

 
Table 2: Results of 1-shot evaluation assay 

file:///C:/Users/lpagani/Documents/NAACL2021/Pagani_et_al_NAACL2021_appendix_final.docx%23Supplementary_Figure_2
file:///C:/Users/lpagani/Documents/NAACL2021/Pagani_et_al_NAACL2021_appendix_final.docx%23Supplementary_Figure_2
file:///C:/Users/lpagani/Documents/NAACL2021/Pagani_et_al_NAACL2021_appendix_final.docx%23Supplementary_Table_2
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EnSidNet was the model with the highest 228 

performance in the test set. On the contrary, the 229 

SNN had the lowest performance between the 230 

neural models. Surprisingly the input format of 231 

SNN tested on the heuristic 1-Nearest Neighbor 232 

gave a relatively high performance. 233 

To understand the contribution of the different 234 

features on the final EnSidNet prediction a SHAP 235 

analysis was performed. As Supplementary 236 

Figure 3 shows the most important feature to 237 

distinguish between couples from the same or 238 

different pathway is the number of common 239 

sponsors. It is interesting to note that the most 240 

contributing features belong to the additional 241 

inputs branch of the NN, features that increased 242 

the performance of the 32-way 1-shot learning 243 

metric of almost 30% (see Table 2). 244 

3.3 Metrics on imbalanced dataset 245 

Table 3 shows the other metrics considered in this 246 

research, calculated on the 1:32 unbalanced 247 

dataset. 248 

SNN had the worst performance on all metrics. 249 

Despite Sid NN had performances comparable to 250 

EnSidNet on precision and recall, ROC AUC and 251 

PR AUC showed the higher performance of the 252 

Enhanced model. 253 

Figure 1 shows the probabilities associated to 254 

couples belonging or not to the same drug-255 

development pathway for EnSidNet. The figure 256 

shows that the algorithm can distinguish with 257 

great certainty whether the trials belong to the 258 

same pathway or not, and the higher recall than 259 

precision. 260 

3.4 Trials grouping in pathways 261 

Algorithm 1 for grouping the trials in possible 262 

pathways was applied to clinical trials present in 263 

the DrugBank database. The clinical trials 264 

included were those in phases 1, 2 and 3, with 265 

industry lead sponsors and ‘treatment’ as the 266 

purpose of the trial. Trials to match into drug-267 

development pathways were 34188. The 268 

algorithm took less than 4 hours to run. 269 

The therapeutic areas included in these 270 

pathways were 27. 271 

As presented in Table 4 the statistics of the 272 

possible pathways obtained from Algorithm 1 is 273 

overlapping with the statistics of the datasets used 274 

to train the neural networks (Supplementary Table 275 

3).  276 

Despite the input of Algorithm 1 was more than 277 

34,000 trials, less than 600 were matched in 278 

pathways. However, the possible pathways 279 

obtained were about 1.5 times the number of total 280 

pathways in the dataset, suggesting new possible 281 

pathways were discovered running Algorithm 1, 282 

highlighting the potential of this semi-supervised 283 

approach for the grouping of clinical trials in 284 

pathways.  285 

  Unbalanced dataset 

 F1 P R 

ROC 

AUC 

PR 

AUC 

SNN 0.16 0.09 0.76 0.85 0.61 

Sid NN 0.90 0.86 0.94 0.97 0.89 

EnSidNet 0.90 0.86 0.94 0.99 0.92 

 
Table 3: Metrics of the neural models. P = Precision, R = 

Recall, ROC AUC = area under Receiver Operating 

Curve, PR AUC = area under Precision-Recall curve 

 
# pathways per 

therapeutic area 

# trial per 

pathway 

min 0 2 

25 percentile 2.5 2 

50 percentile 7 2 

75 percentile 9.5 3 

max 26 49 

total 191 629 (583 unique) 

 

 

Figure 1: Predictions probability distribution. Blue bars 

represent couple of trials from different pathways, orange 

trials from the same pathway 

Table 4: Statistics of the possible pathways obtained by 

running EnSidNet 

file:///C:/Users/lpagani/Documents/NAACL2021/Pagani_et_al_NAACL2021_appendix_final.docx%23Supplementary_Figure_3
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A subset of the predicted pathways was given 286 

to human labellers for scoring. The 73 predicted 287 

pathways (2-49 trials long), for a total of 264 288 

trials, gave rise to 165 different trials (1-11 trials 289 

long). The different distribution of the predicted 290 

versus confirmed pathways can be seen in 291 

Supplementary Table 4. A total of 112 trials (42%) 292 

were confirmed being assigned by the algorithm 293 

to proper pathways. Only two of the trials selected 294 

for human scoring were found also on the ground 295 

truth datasets. Specifically, both trials belonged to 296 

the FDA snapshot dataset and were single-trial 297 

pathways. Interestingly, one of these trials was 298 

assigned to 2 other trials, and this 3-trial pathway 299 

was then confirmed by the human experts scoring. 300 

This is a good example of the capability of 301 

EnSidNet and the proposed algorithm to find the 302 

contributing trials to a drug-development 303 

pathway. 304 

4 Conclusion 305 

We present a new approach for the grouping of 306 

clinical trials into drug-development pathways. To 307 

meet this objective, we proposed 3 different 308 

neural network architectures. The best performing 309 

model was EnSidNet, an enhanced hybrid 310 

Siamese-Deep Neural Network. 311 

EnSidNet was used to develop a semi-312 

supervised learning pipeline using 1-shot 313 

evaluation and classification to group trials into 314 

existing or new pathways. Human scoring would 315 

lead to the increase of the training size with ad-316 

hoc positive and negative samples. 317 
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A. Supplementary Methods. 380 

Training and evaluation of the models was run on 381 

a 4 CPU/32 GiB RAM machine, while Algorithm 382 

1 was run on an 8 CPU/64 GiB RAM machine. 383 

Pathway dataset 384 

Supplementary Table 3 shows the statistic of 385 

the pathways in the two ground truth datasets: 386 

FDA Snapshot and hand curated. 387 

Dataset splitting 388 

A 4 folds split was performed in this research: 389 

• Training and validation set: split in 80% for 390 

training and 20% for validation, it was 391 

composed of balanced couples of trials 392 

belonging and not belonging to the same 393 

pathway 394 

• 32-way 1-shot evaluation validation set: 395 

this dataset was composed by 1 couple of 396 

trials belonging to the same pathway and 31 397 

randomly coupled trials 398 

• 32-way 1-shot evaluation test set: similar to 399 

the previous dataset, this dataset contained 400 

only 1 couple belonging to the same 401 

pathway over 32 randomly chosen couples 402 

of trials 403 

Supplementary Table 5 shows an example of 404 

two couples of trials, one belonging to the same 405 

pathway and the other not. 406 

The balanced datasets had trials from 124 407 

unique pathways for a total of 2720 couples, while 408 

the 32-way 1-shot evaluation validation and test 409 

sets consisted of trials from 35 unique pathways 410 

each, resulting in 1056 couples for both datasets. 411 

Pathways consisting of only 1 trial were used to 412 

build couples not belonging to the same pathways. 413 

Negative labelled couples were formed also from 414 

other trials from different pathways. A scheme of 415 

the datasets’ composition and origin can be found 416 

in Supplementary Table 6.  417 

Trials data 418 

The trial information used for this experiment 419 

came from DrugBank. DrugBank contains 420 

information parsed from ClinicalTrials.gov. A 421 

step of hand curation is performed on the data 422 

before entering them to database. 423 

The DrugBank database contains over 142 k 424 

trials, out of which only 3277 trials started before 425 

2000. It also contains the information of 426 

completed / ongoing trials, and the purpose of the 427 

trial. 428 

Model inputs and preprocessing 429 

The inputs of the model were indication, 430 

condition, sponsor, phase, country, start date and 431 

end date of the trial. 432 

Character-based inputs: character-based 433 

inputs considered were indication, condition, 434 

country, sponsor. Indication and condition were in 435 

the form of lists. The list of text was joined to form 436 

the text input. Data augmentation was performed 437 

in this case in the form of shuffling the order of 438 

the elements of the list. 439 

The preprocessing of the character-based 440 

inputs consisted in the removal of stop words. 441 

Each input was tokenized at word-level, padded at 442 

1.2 times the maximum length of the training set. 443 

For the 1-shot evaluation baselines the input was 444 

also 1-hot encoded. 445 
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Numerical inputs: the numerical inputs 446 

considered in the network were phase, starting 447 

date and end date of the trials. These were 448 

calculated or inputted and standard scaled. 449 

Additional Inputs: additional inputs were 450 

used for the network. These were features 451 

preprocessed and concatenated to the absolute 452 

difference vector. The inputs were: 453 

• Difference of phases between the two trials 454 

• Days difference between start date of trial 1 455 

and end date of trial 2 456 

• Days difference between start date of trial 2 457 

and end date of trial 1 458 

• Difference between sponsor numbers 459 

between trial 1 and trial 2 460 

• Number of common sponsors between the 461 

trials 462 

• Difference between the number of countries 463 

involved in trial 1 and trial 2 464 

• Number of common countries 465 

These inputs, after they were calculated, were 466 

standard scaled on the training dataset. 467 

Neural Network models 468 

The Neural Network models consisted of different 469 

branches, depending on the input type (see 470 

Supplementary Figure 1 for a scheme of the 471 

architectures). These branches contained a single 472 

module that encoded trial 1 and trial 2 473 

independently.  474 

Character-based module: Input went 475 

through 3 layers of bidirectional (Bi) Long-Short 476 

Term Memory (LSTM) (dimension 128, 64, 32 477 

vector size). At the end of the 3 Bi-LSTM layers 478 

there was an attention layer, and a fully connected 479 

layer (64 nodes). 480 

Numerical branch: Inputs went through a 481 

single fully connected layer (64 nodes) and 482 

dropout. 483 

After the Siamese modules there was a 484 

concatenation layer, which concatenated all 485 

embedded inputs from trial 1 and all embedded 486 

inputs from trial 2. These concatenation vectors 487 

were passed through a layer that provided the 488 

absolute difference between the embedded trial 1 489 

and trial 2 vectors. 490 

Additional inputs module: Inputs went 491 

through a fully connected (32 nodes) layer and 492 

dropout. The output vector was concatenated to 493 

the absolute difference vector of trial 1 and 2. 494 

Pre-prediction module: an additional fully 495 

connected (64 nodes) and dropout layer that 496 

preceded the sigmoid activated prediction layer. 497 

Three models, schematized in Supplementary 498 

Figure 1, were used in this experiment: 499 

• A pure Siamese Neural Network model 500 

(SNN), consisting of all character-based 501 

inputs modules (indication, condition, 502 

sponsor, countries) and numerical inputs 503 

(phase, start date, end date). No pre-504 

prediction module was added to this 505 

architecture 506 

• A hybrid Siamese-Deep Neural Network 507 

(SiD NN) which had character-based inputs 508 

(indication and condition) and additional 509 

inputs (phase difference, difference 510 

between start date and end date of the trials, 511 

difference between number of sponsors, 512 

number of common sponsors, difference 513 

between number of countries, number of 514 

common countries) 515 

• An Enhanced hybrid Siamese-Deep Neural 516 

Network (EnSidNet) with an architecture 517 

similar to SiD NN but containing the pre-518 

prediction module 519 

1-shot evaluation baseline models 520 

As baseline models for 1-shot evaluation we used: 521 

1-Nearest Neighbor: calculated as the 522 

Euclidean distance between the inputs of the 523 

trials. The distance between all inputs was 524 

calculated by performing the absolute difference 525 

of trial 1 and trial 2, and then summed together.  526 

Random model: couples’ similarity was 527 

randomly scored. 528 

Metrics 529 

Metrics calculated in this experiment were 530 

Precision-Recall Area Under the Curve (PR-531 

AUC) and Area Under Receiver Operating Curve 532 

(ROC-AUC), F1-score, precision, recall. 533 

Accuracy was an additional metric calculated 534 

during the training, on the balanced validation set. 535 
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1-shot evaluation assay 536 

A similarity score was assigned to the 32 couples 537 

in the batch. If the couple scored most similar was 538 

the only couple of trials belonging to the same 539 

pathway the batch assay was positive, otherwise 540 

negative. The final score was calculated as the 541 

percentage of positive hits. 542 

Analysis of the model’s feature contribution 543 

To identify the impact of each feature on the 544 

overall EnSidNet prediction, a SHAP analysis has 545 

been performed on a subset of 10 positive and 10 546 

negative test data.  547 

Prediction pipeline 548 

One of the greatest challenges in implementing a 549 

Siamese neural network setting to identify new 550 

drug-development pathway (de-novo or 551 

completing existing ones) is the number of trials 552 

that need to be matched. With more than 140,000 553 

trials, many of which started in the last 20 years, 554 

it would be impractical to compare all trials 555 

against each other. 556 

The first step of the proposed pipeline was the 557 

selection of relevant trials. Trials may be stratified 558 

based on the type of sponsor (research institute or 559 

pharmaceutical company), the purpose of the trial 560 

(e.g. treatment, diagnostic, basic science), phases 561 

(phase 4 trials are beyond the scope of this 562 

research, so they would be excluded). This first 563 

step can reduce the number of trials to match by a 564 

factor of 10. 565 

 The trials were then divided in buckets based 566 

on their therapeutic area. We follow the Medical 567 

Dictionary for Regulatory Activities (MedDRA) 568 

terminology. The MedDRA System Organ Class 569 

(SOC) term was used to represent the therapeutic 570 

area. It is rare for trials from the same pathway to 571 

include patients affected by pathologies from 572 

different MedDRA SOC terms. Dividing the trials 573 

into therapeutic area decreased the algorithm 574 

complexity. Trials belonging to multiple 575 

therapeutic areas were duplicated.  576 

If previous pathways exist for the therapeutic 577 

area the algorithm tried to expand them with new 578 

trials. 579 

Trial expansion was performed in a setting like 580 

1-shot evaluation. One unmatched trial was 581 

compared with 2 trials chosen randomly from all 582 

the pathways. The trial was considered to belong 583 

to the pathway if the prediction obtained for both 584 

trials was higher than a threshold (e.g. 0.8). 585 

Corner cases in which trial A and B were matched 586 

below the threshold but trial C matched with trial 587 

A above the threshold as well as trial B and trial 588 

C, were considered a pathway (consisting of trial 589 

A, B, and C); this assumption may increase the 590 

false positive rate trials in pathway but ensures 591 

that all possible clinical trials matching are 592 

grouped; the human labelling step would exclude 593 

the clinical trials not matching the pathway. 594 

The following step grouped the remaining trials 595 

into pathways. To increase the matching 596 

probability trials were sorted (for example based 597 

on popularity of lead sponsor or condition), then 598 

they were divided into batches (in the experiments 599 

the batches had 200 trials). Trials within a batch 600 

where completely matched. Positive matching 601 

was considered for the couples with predictions 602 

above a threshold (e.g. 0.8). Matched couples with 603 

one trial in common were then grouped into a 604 

possible pathway.  605 

To allow grouping of matched trials across 606 

batch 1 trial for all possible pathways was 607 

matched in an ‘all-versus-all’ setting, and inter-608 

batch grouping was performed again. 609 

The matching step was repeated 3 times, to 610 

ensure the maximum matching of trials. 611 

Once all possible pathways for all therapeutic 612 

areas were obtained, the results could be 613 

submitted to the human labelers for pathway 614 

confirmation. 615 

The false positive couples would be paramount 616 

for a second re/training of the algorithm. 617 

Human evaluation of predicted pathways 618 

A subset of the predicted possible pathways across 619 

the therapeutic areas (1-3 predicted pathways for 620 

each therapeutic area) was sent to human scorers. 621 

Trials in the correct pathway kept the drug-622 

development pathway identification number, 623 

while trials belonging to a different or new 624 

pathway changed the drug-development pathway 625 

identification number accordingly. The statistics 626 

of the predicted and confirmed pathways can be 627 

found in Supplementary Table 4. 628 
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B. Supplementary Tables. 629 

 
Number of 

parameters 

to train 

Average training 

time 

(seconds/epoch) 

SNN 2,074,497 185.525 

SiD NN 1,069,473 96.35 

EnSidNet 1,079,681 98.175 

 
Supplementary Table 2: Complexity of the models used for the experiment 

NCT ID Intervention Condition Phase Sponsor Lead Sponsor Countries 
Date (dd/mm/yy) 

Start End 

NCT02632708 cytarabine,  

AG-221, 

mitoxantrone, 

daunorubicin, 

etoposide, 

idarubicin, 

AG-120 

Newly Diagnosed 

Acute Myeloid 

Leukemia (AML), 

AML Arising From 

Myelodysplastic 

Syndrome (MDS), 

AML Arising From 

Antecedent 

Hematologic Disorder 

(AHD), AML Arising 

After Exposure to 

Genotoxic Injury, 

Untreated AML 

1 Agios 

Pharmaceuticals, 

Inc., Celgene 

Corporation 

Agios 

Pharmaceuticals, 

Inc. 

Germany, 

Netherlands, 

United 

States 

31/12/15 1/7/23 

NCT02073994 AG-120 Cholangiocarcinomas, 

Gliomas, 

Chondrosarcomas, 

Other Advanced Solid 

Tumors 

1 Agios 

Pharmaceuticals, 

Inc. 

Agios 

Pharmaceuticals, 

Inc. 

France, 

United 

States 

1/3/14 1/6/21 

NCT02489513 [14C]-AG-

120 

Healthy Volunteers 1 Agios 

Pharmaceuticals, 

Inc. 

Agios 

Pharmaceuticals, 

Inc. 

United 

States 

1/6/15 1/10/15 

NCT02677922 Azacitidine, 

AG-120, AG-

221 

Leukemia Acute 

Myeloid Leukemia 

(AML) 

2 Celgene Celgene Australia, 

Canada, 

France, 

Germany, 

Italy, 

Republic of 

Korea, 

Netherlands, 

Portugal, 

Spain, 

Switzerland, 

United 

Kingdom, 

United 

States 

3/6/16 31/10/21 

NCT02831972 Itraconazole, 

AG120 

Healthy Volunteers 1 Agios 

Pharmaceuticals, 

Inc. 

Agios 

Pharmaceuticals, 

Inc. 

United 

States 

1/6/16 1/10/16 

NCT02989857 AG-120 

matched 

placebo, AG-

120 

Metastatic 

Cholangiocarcinoma, 

Advanced 

Cholangiocarcinoma 

3 Agios 

Pharmaceuticals, 

Inc. 

Agios 

Pharmaceuticals, 

Inc. 

United 

States 

1/1/17 1/8/20 

 
Supplementary Table 1: Example of a drug-development pathway. Different trials are conducted by pharmaceutical 

companies to obtain proof of safety and efficacy of the drug before submitting the results to regulatory agency for drug 

approval   
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   631 

 FDA Snapshot Hand-curated 

# of pathways 116 20 

# trial/pathway range 1 - 7 1 - 14 

25 percentile # trials 1 2 

50 percentile # trial 1 4 

75 percentile # trials 2 7 

 

Supplementary Table 3: Statistics on the datasets 

  Predicted Confirmed 

pathways count 73.000 165.000 

tr
ia

ls
 i

n
 p

a
th

w
a

y
s mean 3.616 1.600 

std 5.619 1.258 

min 2.000 1.000 

25 percentile 2.000 1.000 

50 percentile 2.000 1.000 

75 percentile 3.000 2.000 

max 49.000 11.000 

 
Supplementary Table 4: Difference in the distribution of the trial number in predicted vs human 

checked (confirmed) pathways  
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 632 

  # total 

couples 

# positive 

couples 

# positive couples’ 

pathways 

# positive couples 

from snapshot 

pathways 

# positive couples 

from oncology 

pathways 

Training and 

validation set 2720 1360 112 101 11 

32-way 1-shot 

validation set 1056 33 33 27 6 

32-way 1-shot 

test set 1056 33 33 29 4 

 

  

NCT ID Intervention Condition Phase Sponsor Lead Sponsor Countries 

Date 

(dd/mm/yy) 

Start End 

Matched 

NCT01340872 ST10-021, 

Placebo 

Comparator 

Ulcerative 

Colitis, Iron 

Deficiency 

Anemia (IDA), 

Inflammatory 

Bowel Diseases 

(IBD) 

3 Shield 

Therapeutics 

Shield 

Therapeutics 

Austria, 

United 

Kingdom 

1/8/11 1/10/14 

NCT02968368 Placebo, 

Ferric maltol 

Iron-Deficiency 

Anemias, Renal 

Insufficiency, 

Chronic 

3 Shield 

Therapeutics 

Shield 

Therapeutics 

United 

States 

1/12/16 1/8/18 

Not 

Matched 

NCT02946463 Eculizumab, 

Ravulizumab 

Paroxysmal 

Nocturnal 

Haemoglobinuria 

(PNH) 

3 Alexion 

Pharmaceuticals 

Alexion 

Pharmaceuticals 

France, 

Japan, 

Republic 

of Korea, 

United 

States 

20/12/16 1/1/23 

NCT01711359 Baricitinib, 

Baricitinib 

Placebo, 

Folic Acid, 

MTX 

Placebo, 

Methotrexate 

Rheumatoid 

Arthritis 

3 Eli Lilly and 

Company 

Eli Lilly and 

Company 

Argentina, 

Austria, 

Belgium, 

Brazil, 

Canada, 

Germany, 

Greece, 

India, 

Italy, 

Japan, 

Republic 

of Korea, 

Mexico, 

Portugal, 

Puerto 

Rico, 

Russian 

Federation, 

South 

Africa, 

Sweden, 

United 

Kingdom, 

United 

States 

1/11/12 1/8/15 

 
Supplementary Table 5: Example of a trial couple belonging to the same drug-development pathway (NCT01340872 and 

NCT02968368) and a trial couple belonging to different drug-development pathway (NCT02946463 and NCT01711359) 

Supplementary Table 6: composition and origin of the datasets 
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C. Supplementary Figures. 633 

 634 

635 

Supplementary Figure 1: Representation of the 3 Neural Network architectures and modules: numerical inputs 

in gold dashed rectangle (present in the architecture of SNN), additional inputs and a concatenation layer in  

green dashed rectangle (architecture of SiD NN) and the fully connected layer as last layer before prediction in 

dark purple dashed rectangle (together with the green dashed module constitute the EnSidNet architecture). 

BiLSTM = Bidirectional Long-Short Term Memory; FC = Fully connected. 
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Supplementary Figure 2: Scheme of the matching pipeline. Bold trials in pathways are selected to match to trials not in 

pathways (here for simplicity only one was selected, in the algorithm proposed they were 2) (1). Couples are built (2) 

and matching prediction is given (3). Matched trials are combined into existing (primed, e.g. Pathway 1 which included 

Trial C) or new (de-novo) pathways (e.g. Pathway 3 composed by Trials D and E) (4) 

 

Supplementary Figure 3: Feature contribution analysis 


