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Abstract
The problem of detecting psychological stress
in online posts, and more broadly, of detecting
people in distress or in need of help, is a sen-
sitive application for which the ability to inter-
pret models is vital. Here, we present work
exploring the use of a semantically related
task, emotion detection, for equally compe-
tent but more explainable and human-like psy-
chological stress detection as compared to a
black-box model. In particular, we explore the
use of multi-task learning as well as emotion-
based language model fine-tuning. With our
emotion-infused models, we see comparable
results to state-of-the-art BERT. Our analysis
of the words used for prediction show that our
emotion-infused models mirror psychological
components of stress.

1 Introduction

As crises have begun to multiply worldwide, in-
cluding the COVID-19 pandemic and the resulting
economic downturn, psychological stress has risen
dramatically1. The problem of detecting psycholog-
ical stress, and more broadly, of detecting people
in distress and in need of help, is a sensitive appli-
cation; therefore, the ability to interpret the results,
in order to understand why, is vital. The conse-
quences of blindly trusting a black-box model and
mislabeling users’ stress levels could be serious in a
deployed application such as a therapeutic chatbot,
where some users may not receive the immediate
help they need. Furthermore, models that make de-
cisions based on psychology theory about factors
that impact stress will be easier for humans to un-
derstand, and their mistakes will be more obvious.
Researchers have recently begun to study psycho-
logical stress, but in this work, we propose a new
focus on examining the information our models use
to make decisions and finding ways to incorporate
psychological factors, like emotion, into them.

1https://www.apa.org/news/press/
releases/stress/2020/report-october

To approach the problem of stress detection,
which has much less labeled data than many pop-
ular classification tasks, we first note that stress
has been shown to interact with emotion (Lazarus,
2006; Thoern et al., 2016; Levenson, 2019), a task
that has far more publicly available labeled data.
For example, individuals who are stressed are likely
to express emotions such as fear, sadness, or anger
and unlikely to express emotions such as happiness.

Traditional multi-task learning would normally
be helpful in this situation, but there are no cur-
rently available datasets labeled with both stress
and emotion. Even if there were, it would be bene-
ficial to incorporate external information without
re-labeling new datasets for each new combination
of useful tasks. Here, we present work exploring
how to use semantically related tasks–here, emo-
tion detection–to create emotion-infused models
capable of equally competent, but explainable, psy-
chological stress detection as compared to a black-
box model. In particular, we explore the use of
multi-task learning as well as emotion-infused lan-
guage model fine-tuning, two existing frameworks
which we examine through the lens of interpetabil-
ity. Our code for this work is available at github.
com/eturcan/emotion-infused.

Our contributions in this work are as follows: (i)
consideration of factors suggested by psychologi-
cal theory in deep learning methods for predicting
stress, with a focus on emotion; (ii) an exploration
of three different approaches to emotion-infused
models, with experimental results showing com-
parable results to the state-of-the-art in all cases;
and (iii) a framework for interpreting our models
to show the impact of emotion and other factors in
our models.

2 Related Work

Researchers who use natural language approaches
for stress detection often rely on external resources
such as diagnostic questionnaires (e.g., Guntuku

https://www.apa.org/news/press/releases/stress/2020/report-october
https://www.apa.org/news/press/releases/stress/2020/report-october
github.com/eturcan/emotion-infused
github.com/eturcan/emotion-infused
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et al. (2018)) or techniques like pattern matching
(patterns such as “I am stressed”, e.g., Winata et al.
(2018); Lin et al. (2017)) to assign labels. Much of
the work that has been done on psychological stress
detection focuses either on establishing baseline
models with little advancement in computational
modeling, or on using external information about
the text (e.g., author, time of posting, number of
replies), which is usually, but not always available
and may differ in meaning or importance across
platforms and domains.

There has also been a substantial amount of work
on detecting related mental health concerns such as
anxiety (e.g., Shen and Rudzicz (2017); Gruda and
Hasan (2019); Jiang et al. (2020)), but these are
distinct from the generalized experience of stress.

The most similar work to ours is Turcan and
McKeown (2019), our prior work publishing a
dataset of psychological stress collected from the
social media website Reddit and labeled by crowd
workers, and presenting baselines with several ba-
sic non-neural and BERT-based models on this data.
We use this dataset in our current work; however,
we focus on exploring interpretable frameworks for
this sensitive task and connecting the stress detec-
tion task concretely with emotion detection.

The models we propose in this work rely on two
types of enhancements to the neural representation
learned by models like BERT: multi-task learning
and pre-training or fine-tuning. Multi-task learn-
ing is an increasingly popular framework in which
some parameters in a model are shared between
or used to inform multiple different tasks. Hard
parameter sharing (Caruana, 1993), the variant we
employ, uses some set of parameters as a shared
base representation and then allows each task to
have some private parameters on top and perform
their own separate predictions. Multi-task learn-
ing has been successfully applied to many domains
across NLP (Sun et al., 2019; Kiperwasser and
Ballesteros, 2018; Liu et al., 2019); we are espe-
cially interested in instances where it has improved
semantic and emotion-related tasks, such as Xu
et al. (2018), who perform emotion detection with
a suite of secondary semantic tasks including per-
sonality classification.

Pre-training and fine-tuning are another type of
transfer learning where multiple tasks are trained in
sequence rather than at the same time. Pre-trained
language models are perhaps the most widely used
example, where a large neural language model can

Dataset Size
Dreaddit 3,553

GoEmotionsA,E,S 58K
GoEmotionsFSJ 4,136

Vent 1.6M

Table 1: The datasets we use in this work and their rel-
ative sizes (in terms of total number of data points).

be fine-tuned for many different tasks (Devlin et al.,
2019). Additionally, continuing to pre-train the
language model itself on language from the target
domain has been shown to improve performance
(Howard and Ruder, 2018; Chakrabarty et al., 2019;
Gururangan et al., 2020) (also note Chronopoulou
et al. (2019), who perform this task at the same time
as the target task, in a form of multi-task learning).
This methodology has been successfully extended
to other domains, in which a model is first fine-
tuned on some large, broadly useful task and then
further fine-tuned for a smaller target task (e.g.,
Felbo et al. (2017), who first fine-tuned on emoji
detection and then fine-tuned on target semantic
tasks including emotion and sentiment detection).

It should be noted that the psychological stress
is much better studied in settings where researchers
have access to some physiological signals (e.g.,
Zuo et al. (2012); Allen et al. (2014); Al-Shargie
et al. (2016); Kumar et al. (2020); Jaiswal et al.
(2020)). This work is not as relevant to our task,
since we have only text data available when detect-
ing stress from online posts.

3 Data

A comparison of all the datasets we use in this
work can be seen in Table 1. The primary dataset
we use for this work is Dreaddit (Turcan and McK-
eown, 2019), a dataset of 3,553 segments of Red-
dit posts from various support communities where
the authors believe posters are likely to express
stress. The stress detection problem as expressed
in this dataset is a binary classification problem,
with crowdsourced annotations aggregated as the
majority vote from five annotators for each data
point. We note that this paper frames the stress
classification problem in terms of the author and
the time–i.e., a post is labeled stressful only if the
poster themselves is currently expressing stress.

Because this dataset is small for training a deep
learning model, we also experiment with larger
datasets to provide auxiliary information. We se-
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lect the GoEmotions dataset (Demszky et al., 2020),
which consists of 58,009 Reddit comments labeled
by crowd workers with one or more of 27 emo-
tions (or Neutral), for its larger size and genre
similarity to Dreaddit. In this paper, we refer
to the dataset in this form as GoEmotionsall or
GoEmotionsA. The authors also published two
relabelings of this dataset, achieved by agglom-
erative clustering: one where labels are clustered
together into the Ekman 6 basic emotions (anger,
disgust, fear, joy, sadness, surprise, neutral) (Ek-
man, 1992) (GoEmotionsEkman/E), and one into
simple polarity (positive, negative, ambiguous, neu-
tral) (GoEmotionssentiment/S). We run our experi-
ments with each version of this dataset.

We also explore the use of another social media
website, Vent. Vent is a platform more similar to
Twitter or Tumblr than Reddit, where users post
vents of any length and tag them as they like, and
other users react to them or post comments. The
benefit of Vent for this purpose is that posters self-
identify some emotion they are feeling from a large
list of pre-made emotions. The data we use is col-
lected by Malko et al. (2021)2. We select Vent data
that has been labeled with fear or sadness, which
we hypothesize to be related to stress, as well as joy,
for a contrast. We note that this dataset is strictly
single-class, whereas GoEmotions may have more
than one emotion label per data point. In all, there
are 1.6M vents in our dataset, much larger than
Dreaddit or GoEmotions; we randomly sample this
data in a stratified manner to create a training, de-
velopment, and test set with an 80/10/10 ratio. To
examine the effects of domain similarity, we also
select a subset of GoEmotions with the correspond-
ing emotion labels – we subsample the existing “all”
dataset to select only data points originally labeled
with fear, joy, or sadness, for a final set of 4,136
data points (3,342 of which are the train set). We
call this subset GoEmotionsFSJ , and we compare
it against Vent to see whether genre similarity or
data size is more important in this multitask setting.

4 Models

We experiment with three types of emotion-infused
models; that is, we present three different ways
to incorporate emotion information into our stress
detection models, divided into multi-task learning
and fine-tuning.

2Due to license and ethics policy restrictions, we currently
do not make this data publicly available.

4.1 Alternating Multi-Task Models

Our first multi-task models, which we refer to as
MultiAlt, are simply two single-task models shar-
ing the same base BERT representation layers. The
models are alternating in that we train them with
two datasets with two different sets of labels–i.e.,
we train the stress task with the Dreaddit data and
the emotion task with the GoEmotions or Vent
data. We refer to the variants with a subscript, i.e.,
MultiAlt

GoEmotionsA
(i.e., GoEmotions with all emo-

tions), MultiAlt
GoEmotionsE

(i.e., the Ekman GoEmo-
tions relabeling), MultiAlt

V ent (i.e., the Vent data),
etc. The MultiAlt models can be seen in Figure 1a.
One loss step for these models consists of only
one dataset and task, so they are trained with the
negative log-likelihood (NLL) loss for single-label
tasks (Dreaddit, Vent, GoEmotionsFSJ ) and the bi-
nary cross-entropy (BCE) loss for multi-label tasks
(GoEmotionsA,E,S).

4.2 Classical Multi-Task Models

We also experiment with a multi-task learning setup
where we perform the two tasks at the same time
on the same input data. We call this architecture
Multi. However, because the Dreaddit data is la-
beled only with stress, we first separately train
BERT models on the various versions of GoEmo-
tions and use them to predict emotion labels for
Dreaddit. We then take these emotion labels to
be “silver data” and train on them alongside stress.
The Multi model can be seen in Figure 1b. Since
stress detection is our main task in this work, we
focus on this task where we have gold labels for
stress, but note that it will be interesting in future
work to experiment with other task settings, such as
whether stress detection can improve emotion clas-
sification. In these models, the losses of the stress
task and the emotion task are summed together for
each batch using a tunable weight parameter, i.e.,
L = λLstress + (1− λ)Lemotion.

4.3 Fine-Tuning Models

We experiment with models in which we first en-
dow the BERT representation with knowledge of
the emotion task by fine-tuning and then apply
it to stress detection (as in Phang et al. (2018)).
We perform a sequential version of the MultiAlt

models, in which we fine-tune a pre-trained BERT
language model on another task, and then ex-
tract the language model parameters to initial-
ize a BERT model that we continue to fine-tune
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(a) The MultiAlt model. (b) The Multi model. (c) The Fine-Tune model.

Figure 1: The emotion-informed architectures we use in our experiments.

on Dreaddit. We denote these models as, e.g.,
Fine-TuneGoEmotionsA�Dreaddit for a model that
was first trained on GoEmotionsall and then on
Dreaddit (for space, we will abbreviate Fine-Tune
as FT). These fine-tuning models can be seen in
Figure 1c. These models are trained with the NLL
and BCE losses as in the MultiAlt models.

5 Experimental Setup and Results

5.1 Baselines

We present a re-implementation of the same BERT-
based fine-tuning model used in Turcan and McKe-
own (2019), where this model performed best on
Dreaddit. We report this as an average of 3 runs
with distinct random seeds, and our results are, on
average, lower than the single model reported, but
with high variance. Because of this, we assume
that the previously reported performance is from
the high end of this variance and use our average
score as our baseline in this work. This model is
a pre-trained BERT language model (released as
bert-base-uncased by Wolf et al. (2019); we
use this same pre-trained language model as the ba-
sis for all our models) followed by a dropout layer
and a dense classification layer. We also report a
recurrent neural network (RNN) model, which uses
either a long short-term memory network (LSTM)
(Hochreiter and Schmidhuber, 1997) or a gated re-
current unit (GRU) (Cho et al., 2014) in place of
the transformer from BERT and is otherwise the

same. These models are trained with the NLL and
BCE losses as with the MultiAlt models.

5.2 Training
We train all of our models with minibatch gradient
descent using the Adam optimizer (Kingma and
Ba, 2015) with a batch size of 16, given GPU space
constraints. We perform gradient clipping to 1.0
to prevent exploding gradients. When training any
model, we perform early stopping based on the F1
score on the Dreaddit development set and select
the model parameters from the epoch that achieved
the best development score for our final evaluated
model.

5.3 Hyperparameter Tuning
We tune hyperparameters for all our models us-
ing Bayesian Optimization from the Python library
ax3. All models train the initial learning rate of the
Adam optimizer and the dropout probability before
the final classification layer; the Multi models also
tune the loss weight parameter λ, and we also note
that the RNN model tunes additional parameters
such as the type of RNN, hidden dimension, etc.
For all models, we tune parameters based on the
F1 score on the Dreaddit development set; we train
an ensemble of three models with three different,
fixed random seeds and average their performance
for a given parameter setting. We report the mean
and standard deviation of three models, with three

3https://github.com/facebook/Ax

https://github.com/facebook/Ax
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Model Binary F1 Accuracy
RNN 67.58 ± 1.22 68.86 ± 1.10
BERT 78.88 ± 1.09 79.11 ± 1.32
MultiAlt

GEA
79.02 ± 0.35 79.72 ± 0.69

MultiAlt
GEE

80.24 ± 1.39 81.07 ± 1.13
MultiAlt

GES
79.46 ± 1.05 79.86 ± 0.50

MultiAlt
GEFSJ

79.17 ± 0.61 78.69 ± 1.86
MultiAlt

V ent 80.34 ± 1.39 79.67 ± 2.03
MultiDrS 78.97 ± 0.24 78.55 ± 0.07
MultiDrFSJ

78.90 ± 0.59 78.55 ± 0.07

Table 2: Results of our multitask models. The best re-
sult under each metric is bolded. GE is GoEmotions.

Model Binary F1 Accuracy
BERT 78.88 ± 1.09 79.11 ± 1.32
FTGEA�Dr 76.40 ± 0.50 76.83 ± 0.40
FTGEE�Dr 79.44 ± 0.29 79.53 ± 0.46
FTGES�Dr 79.75 ± 0.52 80.61 ± 0.40
FTGEFSJ�Dr 80.25 ± 0.24 80.98 ± 0.20

Table 3: Results of our fine-tuning models. The best
result under each metric is bolded. GE is GoEmotions,
and Dr is Dreaddit.

different random seeds, trained with the best hy-
perparameters. More details about hyperparameter
tuning can be found in the appendix.

5.4 Results
We report the results of our multi-task models in
Table 24. In general, our MultiAlt models perform
similarly, and outperform the Multi models; we
assume this is due to the introduction of noise in
labeling the silver emotion data. Of these models,
MultiAlt

V ent performs best. With regards to GoEmo-
tions, the 28-way classification of GoEmotionsA
naturally leads to lower numerical performance
than the tasks with smaller numbers of classes,
and we expect that GoEmotionsS may group too
many distinctly labeled emotions together under
the same emotion labels; it seems GoEmotionsE is
the happy medium for this model. We also note that
the MultiAlt

V ent and MultiAlt
GoEmotionsE

models per-
form equally well, which indicates that the genre
mismatch is not an issue for this problem, or that
Vent has a similar enough genre to Reddit that
it does not affect the results. Somewhat surpris-
ingly, MultiAlt

GoEmotionsFSJ
does not do as well as

4We did compute statistical significance by calculating the
majority vote of each of the models’ 3 runs and using the
approximate randomization test, but no model is significantly
different from BERT.

Dataset Macro F1
GoEmotionsA 48.98
GoEmotionsE 62.16
GoEmotionsS 69.65
GoEmotionsFSJ 91.87

Table 4: Performance of our fine-tuning BERT models
on the different GoEmotions labelings and datasets.

MultiAlt
V ent; however, the GoEmotions data is much

smaller than Vent, especially when subsampled to
select specific emotions.

We further report the results of our fine-
tuning models in Table 3. Because we ex-
pect that genre similarity should play a larger
role when the secondary task can offer no di-
rect training signal during the primary task fine-
tuning, we evaluate on GoEmotions here and not
Vent. Here, we observe that our best model,
Fine-TuneGoEmotionsFSJ�Dreaddit, scores at least
one standard deviation above BERT. We see
higher increases in performance for the sim-
pler classification problems in GoEmotionsS and
GoEmotionsFSJ and worsened performance for
GoEmotionsA, suggesting that in the sequential
paradigm, more complex tasks are not able to in-
teract appropriately with the main task and instead
interfere.

We also report the performance of the fine-tuning
BERT models we trained on GoEmotions in order
to label Dreaddit with emotion in Table 4; these re-
sults track well with the fine-tuning results reported
by Demszky et al. (2020). Because these models
are intermediates used for labeling, we report the
F1 scores of the single model we actually used for
labeling, although we tuned their parameters with
an average of 3 different instances as with all other
models. Many-way classification problems have
much more opportunity for error and noise in an
already-noisy process of labeling unlabeled data, so
we use only the two best-performing GoEmotions
models, which are those trained on the fewest-label
datasets, GoEmotionsS and GoEmotionsFSJ , for
our Multi models.

Overall, the inclusion of emotion information re-
sults in modest improvements, even though not sta-
tistically significant, as compared to BERT. How-
ever, our true goal in this work is to analyze the
explainability of all of these models, to which we
turn next.



2900

GoEmoA GoEmoE GoEmoS GoEmoFSJ*
Dreaddit (gold stress + pred. emotion) 0.3396 0.2554 0.0565 0.3207
GoEmotions (gold emotion + pred. stress) 0.1274 0.2668 0.2786 0.4115

Table 5: Correlations of the gold labels for each dataset with labels predicted by the other task’s classifier in a
MultiAlt model. GoEmotionsFSJ (abbreviated for space as GoEmoFSJ ) is starred because its emotion data is not
multi-label and therefore the correlation ratio η is used instead of the coefficient of determination R2 (which is
used for the other, multilabel GoEmotions variants).

GoEmotionsS GoEmotionsFSJ

neutral negative ambiguous positive fear sadness joy
Dreaddit -0.3960 0.6128 -0.0106 -0.2759 0.9697 0.7113 0.1386
GoEmotions -0.1021 0.4866 0.0751 -0.3323 0.9545 0.8921 0.0235

Table 6: Per-class scores of emotion and stress for Dreaddit (with gold stress and predicted emotion) and GoE-
motions (with gold emotion and predicted stress). For GoEmotionsS , these numbers are the Pearson correlation
r of each individual emotion label with the stress labels; for GoEmotionsFSJ , these are the average stress label
assigned to data points in each emotion category, where 0 is non-stress and 1 is stress.

6 Analysis

We perform three different analyses to probe our
trained models and discover what information they
learn to use. For our MultiAlt models, we investi-
gate the usefulness of the emotion prediction lay-
ers in explaining stress classifications, and for all
models, we use Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016) to show
that our emotion-infused models rely on meaning-
fully different types of words than BERT in order
to make their predictions.

6.1 Multi-task Knowledge
We perform an analysis of our MultiAlt models
to see what information they learn about emotion5.
We take the development sets of each of the datasets
(Dreaddit and GoEmotions) and predict their labels
under the other task (i.e., emotion for Dreaddit and
vice-versa). We report the correlation of these pre-
dicted labels with the gold labels in Table 56. In
this case, the GoEmotionsFSJ variant is a single-
label three-way classification problem, so we report
the correlation ratio η (Fisher, 1938). The other
GoEmotions variants are multi-label, so we report
the coefficient of determination R2 (Cohen et al.,
2015). We further present breakdowns of the cor-
relations per emotion category for the polarity and

5We did perform an equivalent analysis on the Multi mod-
els, which shows similar trends, but as MultiAlt shows better
performance, we omit it for space.

6We also note the possibility that different combinations
of emotions are relevant to stress; however, not enough of our
data is labeled with multiple emotion labels (4% of Dreaddit’s
silver labels from GoEmotionsS , 9% of GoEmotionsE) to test
this hypothesis in this work.

FSJ subsets of GoEmotions in Table 6 and include
the All and Ekman sets as well as the Vent data in
the appendix.

We observe that our multi-task models gener-
ally learn a moderate correlation between the stress
labels and the emotion labels; they learn that neg-
ative emotions like fear and sadness are linked to
stress and neutral or positive emotions are linked
to non-stress, which makes intuitive sense. These
emotion predictions can help explain the stress clas-
sifier’s predictions; imagine, for example, showing
a patient or clinician that the patient’s social media
shows a strong pattern of fear and anger as a more
detailed explanation for places a stress classifier
detects stress. From a machine learning perspec-
tive, this correlation also suggests the potential for
using emotion data as distantly-labeled stress data
to supplement the small extant stress datasets.

6.2 LIWC Analysis
We also investigate the types of information each
model is using to make its decisions. In this sec-
tion, we use the Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2015), a hand-crafted
lexicon which collects words belonging to psycho-
logically meaningful categories like positive emo-
tion and cognitive processes, to categorize the in-
formation our different models use to predict stress.

We first analyze the unigrams our various mod-
els use to perform stress classification using LIME.
LIME accepts an input from our development set,
perturbs it in the bag-of-unigrams space, and runs
one of our classifiers on each perturbation to calcu-
late the importance of various unigrams; through
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LIWC BERT MultiAlt
GEE

MultiAlt
V ent MultiDrFSJ

FTGEFSJ�Dr

Affective Processes 19% 22% 19% 16% 22%
Positive Emotion 8% 10% 9% 9% 12%
Anger 31% 40% 30% 25% 31%

Cognitive Processes 16% 17% 17% 17% 17%
Certainty 8% 13% 12% 16% 11%

Perceptual Processes 17% 15% 14% 14% 15%
Biological Processes 15% 19% 17% 16% 17%
Achievement 17% 19% 19% 13% 17%

Table 7: A comparison of how often several of our models rely on words from several LIWC categories to make
their decisions, according to LIME. These numbers represent the percentage of available LIWC words each model
selected in the top 10 LIME explanations for the entire development set. Dr is Dreaddit, and GE is GoEmotions.

this process, we acquire the 10 unigrams with the
highest magnitude output by LIME for each devel-
opment example and consider them “explanations”.
We thus have 2,760 individual unigram explana-
tions for the entire development set to analyze.

We then use the word lists from LIWC 2015’s
72 psychological categories to see what types of
words each classifier tends to use to make decisions
of stress vs. non-stress. An abbreviated list of re-
sults showing our best models from each category
is shown in Table 77. We observe small but consis-
tent effects suggesting that, in comparison to the
basic BERT model, our emotion-enhanced models
broadly learn to use the following information:

Affective information. Most emotion-infused
models except for Multi learn to use affective infor-
mation, which includes both positive and negative
emotion words, more often. We see the largest
increase in anger, one of the emotions we had iden-
tified as relevant to stress, for MultiAlt

GoEmotionsE
,

which makes intuitive sense because anger is one of
the Ekman six basic emotions and thus, is explicitly
predicted by this model.

Cognitive processes. All models show some in-
crease in using words related to cognitive processes
as compared to BERT; however, its subcategory
Certainty, which includes words about absolute-
ness such as never, obvious, and clearly, shows
larger changes. For example, MultiDreadditFSJ

uses Certainty twice as often as BERT. These cog-
nitive words seem to target the mental aspects of
stress. Rumination and a focus on absoluteness are
known signs of anxiety disorders, an extreme form
of chronic stress (Nolen-Hoeksema et al., 2008;
Miranda and Mennin, 2007).

Additional differences. We observe other,

7More detail on the full table is available in the appendix.

smaller patterns among LIWC usage for these mod-
els. For example, the MultiAlt models use the most
achievement-oriented words (although most mod-
els show modest increases), suggesting that this
information, which includes words about success
and failure, is relevant to emotion and to stress.
This makes sense, since failing to achieve (e.g.,
failing a class) can be a major stressor. We also see
larger proportions of biological process words used
by all emotion-infused models. We suggest this is
because Dreaddit includes posts taken from Red-
dit communities about anxiety and PTSD, where
posters are likely to describe their physical and
mental symptoms while seeking help.

6.3 Salient Words
We then investigate the data itself for highly
significant words using the measure of rela-
tive salience proposed by Mohammad (2012),
RelativeSalience(w|T1, T2) = f1

N1
− f2

N2
. That

is, it measures the importance of a token w in two
different corpora T1, T2 by subtracting their two
relative frequencies (where f1, f2 are the counts of
token w in each corpus and N1, N2 are the total to-
kens in each corpus). We compute this measure for
all words in the Dreaddit training data, taking our
two corpora to be the subsets labeled stress and not-
stress. We take the top 200 unigrams for each label
(stress as opposed to non-stress and vice-versa) and
provide some examples in Table 8 with the full
list of words available in the appendix. We exam-
ine the words and divide them into related groups
in order to understand what types of information
should theoretically be most important to classify-
ing the data. For example, we see that different
sets of function words are actually among the most
important for both classes, with words like conjunc-
tions typically appearing more indicative of stress
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Category Example Words

Stress
Function Words and, but, how, like, no, not, or, where, why
Negative Sentiment awful, bad, cry, fear, hate, stress, stupid
Helplessness alone, can’t, nothing, nowhere, trying

Non-Stress
Function Words a, for, if, some, the, was, who, will, would
Positive Sentiment amazing, best, good, great, hope, nice
Support email, helped, support, thank, together, we

Table 8: Some examples of words identified by relative salience on the Dreaddit training data as indicative of stress
or non-stress. We group the words by hand into semantically meaningful categories for ease of understanding.

Label BERT MultiAlt
GEE

MultiAlt
V ent MultiDrFSJ

FTGEFSJ�Dr

Stress 33% 36% 32% 32% 33%
Non-Stress 15% 15% 19% 18% 17%

Table 9: A comparison of how often several of our models rely on words identified as salient for stress or non-stress
to make their decisions, according to LIME. These numbers represent the percentage of available relative salience
words each model selected in the top 10 LIME explanations. Dreaddit is Dr, and GoEmotions is GE.

(which echoes Turcan and McKeown (2019)’s find-
ing that stressful data is typically longer with more
clauses), while non-stress includes words express-
ing future-thinking like if, will, and would. We also
naturally find negative words for stress and posi-
tive words for non-stress, as well as a dichotomy
of isolation and helplessness for stress vs. support
and community for non-stress which is supported
by psychological literature (Grant et al., 2009).

We then look at the intersection between rel-
ative salience and LIME explanations, counting
how many LIME explanations are highly salient
words for stress or non-stress; abbreviated results
are shown in Table 9 and the full table is available
in the appendix. We see that our emotion-infused
models learn to rely more often on words identi-
fied as indicative of non-stress, the minority class,
instead of stress, the majority class.

6.4 Error Analysis

We note that the presented models do sometimes
make some new errors when incorporating emo-
tional information, and that while these methods
successfully incorporate such information with no
feature crafting, some further innovation may be
needed in order to use this information optimally.
For example, we reproduce an example from our
development set, with profanity censored:

And everyone was passive aggressive. The man-
ager tried to peg down my salary multiple times like
a f**king haggler at a market. Anyway, I decided
to go get some antidepressants and the bottle fell
out of my pocket, a coworker noticed and reported

it to my boss. Who smiled and asked if there was
anything I’d like to tell her. The passive aggressive
s**t really got to me, and then I realized that I was
being illegally paid.

The annotators for Dreaddit label this post not
stress, presumably because there is not enough
context for how the poster feels about this story
presently, and the poster conveys more anger than
anything else. The LIME explanations for the
BERT model, which labels this correctly, include
some profanity, but largely focus on function words.
However, all four of our MultiAlt

GoEmotions models
misclassify this example as stressed and rely on
words like aggressive (from passive aggressive)
and the profanity to do so. Meanwhile, the emo-
tion classifiers of our MultiAlt

GoEmotions models are
misled by words like smiled and label this example
joy or positive. This is a difficult example; without
noticing that the event happened in the past, it is
easy to assume the poster is presently stressed. We
believe examples like this require some grounding–
for example, an understanding of what passive ag-
gressive means and some representation of the time-
line involved, that language models simply cannot
express in the traditional classification setup.

We also reproduce an anonymized example
where our emotion-infused models improve upon
BERT:

She comes crying to me and formulates a plan to
break up. She talks to <name> about their issues
and her will to leave him wilts. She stays with him.
Rinse and repeat, except it gets worse over time.
How can I break the cycle, or help her break the
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cycle?
BERT misclassifies this example, where the au-

thor is stressed about a friend’s situation, as non-
stressful, relying on words like break and help,
while our MultiAlt

GoEmotions models successfully use
the word crying to predict stress. We notice that
crying or worse is the highest-ranked explanation
for most of our emotion-infused models. These
results are promising for the development of mod-
els that focus on information that humans consider
intuitive.

7 Conclusion

In this work, we present a suite of emotion-
enhanced models that incorporate emotional infor-
mation in various ways to enhance the task of bi-
nary stress prediction. All three types of our models
achieve comparable performance to a state-of-the-
art fine-tuning BERT baseline, and, more impor-
tantly, we show that they result in more explainable
models. We also introduce a new framework for
model interpretation using LIME and show that our
emotion-enhanced multi-task models offer a new
dimension of interpetability by using the predic-
tions of auxiliary tasks to explain the primary task.
In our future work, we hope to expand these analy-
ses to tasks in other domains and devise model ar-
chitectures that can make more direct use of multi-
task learning to make and explain their predictions.

8 Ethical Considerations

Our intended use of stress detection is to help those
in distress. We envision systems such as therapeu-
tic chatbots or assistants that can understand users’
emotions and identify those in need so that a person
can intervene. We would urge any user of stress
detection technology to carefully control who may
use the system.

Currently, the presented models may fail in two
ways: they may either misclassify stress, or they
may use the wrong information to make their pre-
dictions. Obviously, there is some potential harm to
a person who is truly in need if a system based on
this work fails to detect them, and it is possible that
a person who is not truly in need may be irritated or
offended if someone reaches out to them because
of a mistake. In terms of explanations, we note that
previous work has shown that focusing on incor-
rect rationales can unfairly target some groups of
people (Zhong et al., 2019), although in this work
we see that function words truly differ across the

stressed and non-stressed populations and we do
not observe any language that we know to be repre-
sentative of minority groups in our explanations.

We emphasize our intention that emotional sys-
tems such as this be used responsibly, with a human
in the loop–for example, a guidance counselor who
can look at the predicted labels and offered expla-
nations for their students’ stress levels and decide
whether or not they seem sensible.

We note that because most of our data was col-
lected from Reddit, a website with a known overall
demographic skew (towards young, white, Ameri-
can men8), our conclusions about what stress looks
like and how to detect it cannot necessarily be ap-
plied to broader groups of people. We also note
that we have no way to determine the demographic
information of the specific posters in any of our
datasets and whether they differ from the overall
Reddit statistics. We hope that we, and other re-
searchers, can find ways to consider the specific
ways in which minority groups express stress as
well.

Acknowledgements

We thank our reviewers, as well as the members of
our Natural Language Processing research group
at Columbia University, for their insightful and
constructive comments.

References
Fares Al-Shargie, Masashi Kiguchi, Nasreen Badrud-

din, Sarat C. Dass, and Ahmad Fadzil Mohammad
Hani. 2016. Mental stress assessment using simul-
taneous measurement of eeg and fnirs. Biomedical
Optics Express, 7(10):3882–3898.

Andrew P. Allen, Paul J. Kennedy, John F. Cryan, Tim-
othy G. Dinan, and Gerard Clarke. 2014. Biological
and psychological markers of stress in humans: Fo-
cus on the trier social stress test. Neuroscience &
Biobehavioral Reviews, 38:94–124.

Richard Caruana. 1993. Multitask learning: A
knowledge-based source of inductive bias. In Pro-
ceedings of the Tenth International Conference on
Machine Learning, pages 41–48. Morgan Kauf-
mann.

Tuhin Chakrabarty, Christopher Hidey, and Kathy
McKeown. 2019. IMHO fine-tuning improves claim
detection. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

8https://social.techjunkie.com/
demographics-reddit

https://doi.org/10.1364/BOE.7.003882
https://doi.org/10.1364/BOE.7.003882
https://doi.org/10.1016/j.neubiorev.2013.11.005
https://doi.org/10.1016/j.neubiorev.2013.11.005
https://doi.org/10.1016/j.neubiorev.2013.11.005
https://doi.org/10.18653/v1/N19-1054
https://doi.org/10.18653/v1/N19-1054
https://social.techjunkie.com/demographics-reddit
https://social.techjunkie.com/demographics-reddit


2904

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
558–563, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Alexandra Chronopoulou, Christos Baziotis, and
Alexandros Potamianos. 2019. An embarrassingly
simple approach for transfer learning from pre-
trained language models. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2089–2095, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jacob Cohen, Patricia Cohen, Stephen G. West, and
Leona S. Aiken. 2015. Applied multiple regres-
sion/correlation analysis for the behavioral sciences,
3rd edition. Routledge.

Dorottya Demszky, Dana Movshovitz-Attias, Jeong-
woo Ko, Alan S. Cowen, Gaurav Nemade, and Su-
jith Ravi. 2020. GoEmotions: A dataset of fine-
grained emotions. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 4040–4054. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Paul Ekman. 1992. Are there basic emotions? Psycho-
logical Review, 99(5):550–553.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using mil-
lions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion and
sarcasm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9-
11, 2017, pages 1615–1625. Association for Compu-
tational Linguistics.

Ronald A. Fisher. 1938. Statistical methods for re-
search workers.

Nina Grant, Mark Hamer, and Andrew Steptoe. 2009.
Social Isolation and Stress-related Cardiovascular,
Lipid, and Cortisol Responses. Annals of Behav-
ioral Medicine, 37(1):29–37.

Dritjon Gruda and Souleiman Hasan. 2019. Feeling
anxious? perceiving anxiety in tweets using ma-
chine learning. CoRR, abs/1909.06959.

Sharath Chandra Guntuku, Anneke Buffone, Kokil
Jaidka, Johannes C. Eichstaedt, and Lyle H. Ungar.
2018. Understanding and measuring psychological
stress using social media. CoRR, abs/1811.07430.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 8342–8360.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Mimansa Jaiswal, Cristian-Paul Bara, Yuanhang Luo,
Mihai Burzo, Rada Mihalcea, and Emily Mower
Provost. 2020. MuSE: a multimodal dataset of
stressed emotion. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
1499–1510, Marseille, France. European Language
Resources Association.

Zhengping Jiang, Sarah Ita Levitan, Jonathan Zomick,
and Julia Hirschberg. 2020. Detection of mental
health from Reddit via deep contextualized represen-
tations. In Proceedings of the 11th International
Workshop on Health Text Mining and Information
Analysis, pages 147–156, Online. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Trans. Assoc. Comput. Linguistics, 6:225–
240.

Satish Kumar, A S M Iftekhar, Michael Goebel, Tom
Bullock, Mary H. MacLean, Michael B. Miller,
Tyler Santander, Barry Giesbrecht, Scott T. Grafton,
and B. S. Manjunath. 2020. Stressnet: Detecting
stress in thermal videos.

Richard S. Lazarus. 2006. Stress and emotion: a new
synthesis, 1st edition. Springer Publishing Com-
pany.

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.18653/v1/N19-1213
https://doi.org/10.18653/v1/N19-1213
https://doi.org/10.18653/v1/N19-1213
https://www.aclweb.org/anthology/2020.acl-main.372/
https://www.aclweb.org/anthology/2020.acl-main.372/
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/https://doi.org/10.1037/0033-295X.99.3.550
https://doi.org/10.18653/v1/d17-1169
https://doi.org/10.18653/v1/d17-1169
https://doi.org/10.18653/v1/d17-1169
https://doi.org/10.18653/v1/d17-1169
https://doi.org/10.1007/s12160-009-9081-z
https://doi.org/10.1007/s12160-009-9081-z
http://arxiv.org/abs/1909.06959
http://arxiv.org/abs/1909.06959
http://arxiv.org/abs/1909.06959
http://arxiv.org/abs/1811.07430
http://arxiv.org/abs/1811.07430
https://www.aclweb.org/anthology/2020.acl-main.740/
https://www.aclweb.org/anthology/2020.acl-main.740/
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://www.aclweb.org/anthology/2020.lrec-1.187
https://www.aclweb.org/anthology/2020.lrec-1.187
https://www.aclweb.org/anthology/2020.louhi-1.16
https://www.aclweb.org/anthology/2020.louhi-1.16
https://www.aclweb.org/anthology/2020.louhi-1.16
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://transacl.org/ojs/index.php/tacl/article/view/1338
https://transacl.org/ojs/index.php/tacl/article/view/1338
http://arxiv.org/abs/2011.09540
http://arxiv.org/abs/2011.09540


2905

Robert W. Levenson. 2019. Stress and illness: A
role for specific emotions. Psychosomatic Medicine,
81(8):720–730.

Huijie Lin, Jia Jia, Jiezhong Qiu, Yongfeng Zhang,
Guangyao Shen, Lexing Xie, Jie Tang, Ling Feng,
and Tat-Seng Chua. 2017. Detecting stress based
on social interactions in social networks. IEEE
Transactions on Knowledge and Data Engineering,
29(09):1820–1833.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4487–4496. Association for Computational Linguis-
tics.

Anton Malko, Cecile Paris, Andreas Duenser, Mervi
Kangas, Diego Mollá, Ross Sparks, and Stephen
Wan. 2021. Expressing and reacting to emotions in
a specialised online community. Technical report,
CSIRO.

Regina Miranda and Douglas S. Mennin. 2007. De-
pression, generalized anxiety disorder, and certainty
in pessimistic predictions about the future. Cogni-
tive Therapy and Research, pages 71–82.

Saif M. Mohammad. 2012. From once upon a time to
happily ever after: Tracking emotions in mail and
books. Decis. Support Syst., 53(4):730–741.

Susan Nolen-Hoeksema, Blair E. Wisco, and Sonja
Lyubomirsky. 2008. Rethinking rumination. Per-
spectives on Psychological Science, (5):400–424.

James Pennebaker, Ryan L. Boyd, Kayla Jordan, and
Kate Blackburn. 2015. The development and psy-
chometric properties of liwc2015.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "Why should I trust you?": Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144. ACM.

Judy Hanwen Shen and Frank Rudzicz. 2017. Detect-
ing anxiety through Reddit. In Proceedings of the
Fourth Workshop on Computational Linguistics and
Clinical Psychology — From Linguistic Signal to
Clinical Reality, pages 58–65, Vancouver, BC. As-
sociation for Computational Linguistics.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng,
Hao Tian, Hua Wu, and Haifeng Wang. 2019.
ERNIE 2.0: A continual pre-training framework for
language understanding. CoRR, abs/1907.12412.

Hanna A. Thoern, Marcus Grueschow, Ulrike Ehlert,
Christian C. Ruff, and Brigit Kleim. 2016. Atten-
tional bias towards positive emotion predicts stress
resilience. PLoS ONE, 11(3).

Elsbeth Turcan and Kathleen McKeown. 2019. Dread-
dit: A reddit dataset for stress analysis in social me-
dia. In Proceedings of the Tenth International Work-
shop on Health Text Mining and Information Analy-
sis LOUHI@EMNLP 2019, Hong Kong, November
3, 2019, pages 97–107. Association for Computa-
tional Linguistics.

Genta Indra Winata, Onno Pepijn Kampman, and Pas-
cale Fung. 2018. Attention-based LSTM for psycho-
logical stress detection from spoken language using
distant supervision. CoRR, abs/1805.12307.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho
Park, and Pascale Fung. 2018. Emo2vec: Learn-
ing generalized emotion representation by multi-
task training. In Proceedings of the 9th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, WASSA@EMNLP
2018, Brussels, Belgium, October 31, 2018, pages
292–298. Association for Computational Linguis-
tics.

Ruiqi Zhong, Steven Shao, and Kathleen R. McKeown.
2019. Fine-grained sentiment analysis with faithful
attention. CoRR, abs/1908.06870.

Xin Zuo, Tian Li, and Pascale Fung. 2012. A mul-
tilingual natural stress emotion database. In Pro-
ceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC-2012),
pages 1174–1178, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

https://doi.org/10.1097/PSY.0000000000000736
https://doi.org/10.1097/PSY.0000000000000736
https://doi.org/10.1109/TKDE.2017.2686382
https://doi.org/10.1109/TKDE.2017.2686382
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.1016/j.dss.2012.05.030
https://doi.org/10.1016/j.dss.2012.05.030
https://doi.org/10.1016/j.dss.2012.05.030
https://doi.org/https://doi.org/10.1111/j.1745-6924.2008.00088.x
http://arxiv.org/abs/1811.01088
http://arxiv.org/abs/1811.01088
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.18653/v1/W17-3107
https://doi.org/10.18653/v1/W17-3107
http://arxiv.org/abs/1907.12412
http://arxiv.org/abs/1907.12412
https://doi.org/10.1371/journal.pone.0148368
https://doi.org/10.1371/journal.pone.0148368
https://doi.org/10.1371/journal.pone.0148368
https://doi.org/10.18653/v1/D19-6213
https://doi.org/10.18653/v1/D19-6213
https://doi.org/10.18653/v1/D19-6213
http://arxiv.org/abs/1805.12307
http://arxiv.org/abs/1805.12307
http://arxiv.org/abs/1805.12307
https://doi.org/10.18653/v1/w18-6243
https://doi.org/10.18653/v1/w18-6243
https://doi.org/10.18653/v1/w18-6243
http://arxiv.org/abs/1908.06870
http://arxiv.org/abs/1908.06870
http://www.lrec-conf.org/proceedings/lrec2012/pdf/594_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/594_Paper.pdf


2906

Name Type Range
learning rate continuous [10−6, 10−3]
P (dropout) continuous [0, 1]
λ continuous [0, 0.9]
embedding dim. integer [32, 256]
hidden dim. integer [32, 512]
nlayers integer [1, 3]
RNN categorical {LSTM, GRU}

Table 10: Hyperparameter ranges for our models.
BERT-based models tuned the first two; the Multi mod-
els additionally tuned λ; the RNN additionally tuned
the remainder.

A Reproducibility

We report the contents of the NAACL 2021 Re-
prodicibility Checklist that apply to our work.

A.1 Training and Tuning

Our MultiAlt
V ent, MultiDreadditS , and

MultiDreadditFSJ
models were trained on

one Tesla V100 GPU with one CPU. All other
models were trained on one Nvidia P100 GPU
with one CPU.

Hyperparameter tuning was done the same way
for every model, with Bayesian optimization as im-
plemented by ax, with the F1 score on the Dread-
dit development set as the criterion to optimize.
MultiDreadditS and MultiDreadditFSJ

were given
35 trials for time constraints; all other models were
given 50 trials. All models were trained with a
patience of 5 epochs and a tolerance of 0.0001 for
dev set improvement, and allowed to run for a max-
imum of 20 epochs. All models tuned the initial
learning rate and the dropout probability, with the
Multi models also tuning the lambda weight param-
eter between their two task losses. Additionally,
the RNN model was initialized from scratch and
additionally tuned the embedding dimension, hid-
den dimension, number of layers, and type of RNN.
Our parameter ranges are shown in Table 10.

The selected values of learning rate and dropout
for all our models are shown in Table 11, rounded
to two decimal places. We also note the remaining
hyperparameters here: our RNN used a hidden di-
mension of 506, an embedding dimension of 137,
and a 2-layer GRU. Additionally, MultiDrFSJ

se-
lected λ = 0.90 and MultiDrFSJ

, λ = 0.67.
All of our models are similar in architecture and

therefore take similar runtimes and have a similar
number of parameters. Running our entire hyperpa-

Model Learning Rate P(dropout)
RNN 1.40×10−4 0.86
BERT 4.27×10−5 0.13
MultiAlt

GEA
8.47×10−6 0.40

MultiAlt
GEE

1.08×10−5 0.00
MultiAlt

GES
1.69×10−5 0.00

MultiAlt
GEFSJ

8.98×10−6 0.00
MultiAlt

V ent 4.44×10−5 0.00
MultiDrS 1.14×10−5 0.00
MultiDrFSJ

1.79×10−5 0.00
FTGEA�Dr 7.30×10−5 0.05
FTGEE�Dr 1.35×10−5 0.00
FTGES�Dr 1.95×10−5 0.09
FTGEFSJ�Dr 5.03×10−6 0.03

Table 11: Our models’ selected hyperparameters. So
that the table fits in a column, GE is GoEmotions, and
Dr is Dreaddit.

Model Binary F1 Accuracy
RNN 72.58 ± 0.50 74.15 ± 1.46
BERT 81.79 ± 0.45 82.97 ± 0.30
MultiAlt

GEA
81.31 ± 0.81 82.97 ± 0.51

MultiAlt
GEE

80.30 ± 0.85 82.25 ± 0.59
MultiAlt

GES
80.79 ± 1.31 82.00 ± 0.74

MultiAlt
GEFSJ

81.87 ± 2.21 82.61 ± 2.42
MultiAlt

V ent 82.30 ± 1.16 82.49 ± 2.01
MultiDrS 81.40 ± 1.54 82.49 ± 1.20
MultiDrFSJ

82.58 ± 1.11 83.21 ± 1.46
FTGEA�Dr 82.58 ± 1.53 82.13 ± 1.04
FTGEE�Dr 82.58 ± 1.53 83.57 ± 1.71
FTGES�Dr 80.87 ± 1.15 82.49 ± 0.68
FTGEFSJ�Dr 82.88 ± 0.92 84.54 ± 0.74

Table 12: Results of all our presented models on the
Dreaddit development set. So that the table fits in a
column, GE is GoEmotions, and Dr is Dreaddit.
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rameter tuning setup described above takes about
one day, and training one ensemble of three mod-
els takes about 25 minutes. BERT makes up the
vast majority of our models’ parameters, putting
all of them at about 109B parameters (aside from
the RNN, which has 7B).

Our performance for each model on the dev set
is shown in Table 12.

A.2 Evaluation

We note the standard equations of our reported met-
rics. For our Dreaddit models, we report binary F1,
i.e., the harmonic mean of precision and recall for
the positive class (here, stress): 2 · precision·recall

precision+recall =
TP

TP+ 1
2
(FP+FN)

, where TP represents the number of

examples that were correctly classified as stress
(true positives), FP those incorrectly classified as
stress (false positives), TN those correctly classi-
fied as non-stress (true negatives), and FN those
incorrectly classified as non-stress (false negatives).
We also report classification accuracy, which is
the fraction of samples classified correctly, i.e.,

TP+TN
TP+FP+TN+FN .

We note that Table 4 reports macro-averaged F1
in the multi-label and single-label cases. For both
of these, we calculate the macro-average F1, which
sums up TP, TN, etc. across all emotion labels
and then calculates F1 score. For a multi-label in-
put, we treat each label as a separate classification–
e.g., if the model is incorrect with respect to one
class but correctly identifies a second, the exam-
ple counts towards incorrect examples for the first
class and then again towards correct examples for
the second.

A.3 Data

Our data is all English social media data.
Dreaddit and GoEmotions are taken from
Reddit, and Vent from the social media plat-
form Vent. Dreaddit consists of 3,553 labeled
segments of posts taken from 10 subred-
dits: r/domesticviolence, r/survivorsofabuce,
r/anxiety, r/stress, r/almosthomeless, r/assistance,
r/food_pantry, r/homeless, r/ptsd, and
r/relationships. 52.3% of the data is labeled
stress, with the remaining 47.4% labeled non-
stress. We use the train-dev-test split of Turcan
and McKeown (2019) into 2,562 train, 276
development, and 715 test examples. GoEmotions
consists of 58,009 labeled Reddit comments
taken from non-disclosed selection of subreddits

Demszky et al. (2020). We refer the reader to the
original publication’s Figure 1 for details on the
label distribution; GoEmotions uses 28 labels with
a widely varying amount of data for each. We
use the label groupings that the authors provide
in order to evaluate on the Ekman labels and
sentiment labels; these schemes group several of
the 28 original labels together into smaller sets.

Our Vent data consists of 1.6 million Vents gath-
ered in collaboration with the Vent platform. A
much larger amount of data was collected, but we
select the data with self-labeled emotion tags re-
lated to joy, sadness, and fear. These data were
collected from 2013 to 2016; in their current form,
we do not retain metadata about the posters. A
group with whom we collaborate has collected this
data, and due to licensing and ethics requirements,
we are not able to release it publicly. We selected
sadness, fear, and happiness based on intuition that
they should be relevant to stress; we partitioned off
a label-stratified 10% of the data for development
and test each and the training set is 1.3 million
examples. The label distribution of this dataset is
24.0% fear, 36.0% sadness, and 40.0% happiness.

We do not filter or remove any examples. The
only preprocessing we perform is to apply the pre-
trained bert-base-uncased tokenizer from
Wolf et al. (2019).

B Extended Analysis

We include the full tables of per-emotion cor-
relations for MultiAlt

GoEmotionsA
in Table 13 and

MultiAlt
GoEmotionsE

in Table 14. We note that the
alternating multi-task models do not predict all
of their possible emotions on Dreaddit, although
all possible emotions do occur in the GoEmotions
development set. We also report the correlation
coefficients η and mean stress prediction for the
MultiAlt

V ent model in Table 15.
The full table of LIWC/LIME explanation

counts for every model is too large to fit comfort-
ably on a page, so we make a spreadsheet available
at www.cs.columbia.edu/~eturcan/
data/emotion_infused_explanations.
csv.

We include the top 200 relative salience uni-
grams (in order of relative salience) for stress and
non-stress from the Dreaddit train set here. These
are tokens as split by the Natural Language Toolkit
(NLTK). We reproduce these exactly as they ap-
pear, and caution that they may include explicit or

www.cs.columbia.edu/~eturcan/data/emotion_infused_explanations.csv
www.cs.columbia.edu/~eturcan/data/emotion_infused_explanations.csv
www.cs.columbia.edu/~eturcan/data/emotion_infused_explanations.csv
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neutral anger fear annoyance surprise
gold stress + pred. emotion -0.3761 – – – –
gold emotion + pred. stress -0.0728 0.2175 0.1066 0.1420 0.0188

gratitude desire optimism admiration confusion
gold stress + pred. emotion – – – – –
gold emotion + pred. stress -0.0663 -0.0288 -0.0388 -0.1036 0.0471

amusement approval caring embarrass. realization
gold stress + pred. emotion – – – – –
gold emotion + pred. stress -0.0195 -0.0788 -0.0095 0.0304 -0.0073

disappoint. grief sadness curiosity joy
gold stress + pred. emotion -0.1119 – – -0.2070 -0.0644
gold emotion + pred. stress 0.0465 0.0320 0.1075 0.0262 -0.0704

love excitement disapproval remorse disgust
gold stress + pred. emotion -0.2735 – – – –
gold emotion + pred. stress -0.0563 -0.0292 0.0342 0.0683 0.1142

relief pride nervousness
gold stress + pred. emotion -0.2070 – -0.1450
gold emotion + pred. stress 0.0026 -0.0222 0.0318

Table 13: Full emotion correlations for the MultiAlt
GoEmotionsA model.

neutral anger fear surprise joy sadness disgust
gold stress + pred. emotion -0.0419 – – – -0.4986 0.0565 –
gold emotion + pred. stress -0.0876 0.2936 0.1686 0.0276 -0.3286 0.2762 0.1548

Table 14: Full emotion correlations for the MultiAlt
GoEmotionsE model.

fear sadness joy correlation coefficient η
gold stress + pred. emotion 0.9697 0.7113 0.1386 0.3207
gold emtion + pred. stress 0.9545 0.8921 0.0235 0.4115

Table 15: Mean stress predictions by the MultiAlt
V ent model for given emotions in Dreaddit and GoEmotions, as

well as the correlation coefficient η for those predictions.

BERT Fine-TuneGEA
Fine-TuneGEE

Fine-TuneGES

stress 33.4% 31.9% 36.2% 33.8%
non-stress 15.1% 17.5% 15.5% 15.3%

Fine-TuneGEFSJ
MultiAlt

GEA
MultiAlt

GEE
MultiAlt

GES

stress 33.3% 33.1% 33.4% 31.9%
non-stress 17.3% 17.5% 16.5% 17.9%

MultiAlt
GEFSJ

MultiAlt
V ent MultiGES

MultiGEFSJ

stress 30.9% 31.5% 33.4% 32.0%
non-stress 17.6% 18.7% 17.4% 18.4%

Table 16: Full results for the relative salience analysis. So that the table fits on the page, GE is GoEmotions, and
Dr is Dreaddit.
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offensive language.

Stress. i, my, me, do, and, ’m, n’t, just, ’, feel,
because, like, am, what, even, ?, he, but, anxiety,
m, so, myself, this, know, ca, it, now, have, out,
get, no, about, t, feeling, up, bad, how, ’ve, scared,
not, him, over, going, all, tell, right, stop, want,
anxious, past, to, fucking, need, hate, s, really, why,
panic, where, happened, trying, still, when, days,
makes, job, tired, or, shit, hard, getting, day, life,
nothing, tl, dr, afraid, has, sorry, boyfriend, felt,
crying, school, worse, don, go, attacks, sick, leave,
deal, attack, anymore, being, work, im, having,
constantly, thinking, almost, feels, been, worried,
is, stress, which, family, due, fear, something, keep,
everything, enough, every, back, worst, ..., point,
home, sometimes, car, down, making, angry, lit-
erally, feelings, actually, cry, horrible, wo, think,
anyone, end, move, .., help, terrified, fuck, head,
then, pain, losing, situation, depression, depressed,
ve, made, money, coming, mom, safe, else, ev-
eryday, gets, honestly, thing, unable, turn, whole,
terrible, alone, room, heart, saying, wake, awful,
sleep, against, mentally, come, absolutely, night-
mares, stupid, remember, lot, without, does, abuse,
lose, class, sad, stuck, hell, suffer, cant, severe,
emotions, leaving, /, flashbacks, hospital, close,
memories, off, night, nowhere, abused, knowing,
issues, trigger, sexually

Non-Stress. „ you, the, a, her, she, we, for, ., in,
your, would, be, ), !, will, (, *, :, <, that, are, who,
>, as, was, url, more, if, years, -, first, were, their,
thank, us, met, people, his, them, our, an, they, said,
one, together, others, share, let, best, food, other, &,
person, interested, please, study, each, here, asked,
link, treatment, those, free, could, ”, take, great,
same, support, good, “, [, some, make, months,
may, older, finally, bit, research, online, experience,
little, through, hope, #, $, many, helped, edit, de-
cided, friend, see, took, few, homeless, wanted,
nice, information, thanks, around, ”, questions, any,
date, went, later, everyone, looking, guys, ask, than,
relationship, ago, ’ll, sister, post, complete, ’d, dat-
ing, year, both, current, mental, ’s, send, 18, moved,
amazing, community, provide, items, read, how-
ever, name, x200b (i.e., a zero-width space), world,
willing, different, guy, 3, turned, area, visit, health,
open, well, case, survivors, 10, hear, ’re, give, uni-
versity, own, ], hi, learn, couple, access, old, long,
eventually, choose, agreed, began, love, reading,
stories, loving, hey, experiences, include, prefer-
ences, forward, ;, write, sub, 1, posted, also, loved,

page, email, start, away, sleeping, note, app, liked,
helping, seemed, grateful, background, girl, talked,
based, amazon, 2

We believe the numbers appearing in the non-
stress list are indicative of financial posts where the
authors indicate some amount of money has been
raised or needs to be raised.

We include the full table of relative
salience/LIME explanation counts in Table 16.


