
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2810–2823

June 6–11, 2021. ©2021 Association for Computational Linguistics

2810

Compositional Generalization for Neural Semantic Parsing
via Span-level Supervised Attention

Pengcheng Yin♠∗, Hao Fang♣, Graham Neubig♠, Adam Pauls♣,
Emmanouil Antonios Platanios♣, Yu Su♣, Sam Thomson♣, Jacob Andreas♣

♠Carnegie Mellon University ♣Microsoft Semantic Machines
{pcyin,gneubig}@cs.cmu.edu

{hao.fang,adam.pauls,anthony.platanios,
yusu2,samuel.thomson,jacob.andreas}@microsoft.com

Abstract
We describe a span-level supervised attention
loss that improves compositional generaliza-
tion in semantic parsers. Our approach builds
on existing losses that encourage attention
maps in neural sequence-to-sequence models
to imitate the output of classical word align-
ment algorithms. Where past work has used
word-level alignments, we focus on spans; bor-
rowing ideas from phrase-based machine trans-
lation, we align subtrees in semantic parses
to spans of input sentences, and encourage
neural attention mechanisms to mimic these
alignments. This method improves the per-
formance of transformers, RNNs, and struc-
tured decoders on three benchmarks of com-
positional generalization.

1 Introduction

Semantic parsers translate natural language ut-
terances (e.g., Schedule a meeting with Jean)
into executable programs (e.g., CreateEvent(
attendees=Jean)), and play a crucial role in ap-
plications such as question answering systems and
conversational agents (Liang, 2016; Gupta et al.,
2018; Wen et al., 2017). As in many language
understanding problems, a central challenge in se-
mantic parsing is compositional generalization
(Finegan-Dollak et al., 2018; Keysers et al., 2020).
Consider a personal digital assistant for which de-
velopers have assembled separate collections of
annotated utterances for user requests involving
their calendars (e.g., Schedule a meeting with Jean)
and their contact books (e.g., Who is Jean’s man-
ager?). An effective model should learn from this
data how to additionally handle requests like Sched-
ule a meeting with Jean’s manager, composing
skills from the calendar and contacts domains, with
little or no supervision for such combinations.

Neural sequence-to-sequence models, which pro-
vide the foundation for state-of-the-art semantic

∗ This work was mostly done during an internship at
Microsoft Semantic Machines.

parsers (Dong and Lapata, 2016; Yin and Neubig,
2017), tend to perform poorly at out-of-distribution
generalization of this kind (Lake and Baroni, 2018;
Furrer et al., 2020; Suhr et al., 2020). Methods
have been proposed to bridge the generalization
gap using meta-learning (Lake, 2019; Wang et al.,
2020) or specialized model architectures (Russin
et al., 2019; Li et al., 2019; Liu et al., 2020; Chen
et al., 2020). These have registered impressive per-
formance on small synthetic benchmark datasets,
but it has proven difficult to effectively combine
them with large-scale pre-training (Lewis et al.,
2020; Raffel et al., 2020) and natural data (Furrer
et al., 2020).

In contrast to this extensive literature on data
transformations and model architectures, the de-
sign of loss functions to encourage compositional
generalization has been under-explored. This pa-
per investigates attention supervision losses that
encourage attention matrices in neural sequence
models to resemble the output of word alignment
algorithms (Liu et al. (2016); Mi et al. (2016);
Arthur et al. (2016); Lyu and Titov (2018), inter
alia) as a source of inductive bias for composi-
tional tasks. Previous work has found that align-
ing program tokens (e.g., FindManager in Fig. 1)
to natural language tokens (manager) improves
model performance (Misra et al., 2018; Rabinovich
et al., 2017; Goldman et al., 2018; Richardson et al.,
2018; Herzig and Berant, 2020; Oren et al., 2020).
However, the token-level alignments derived from
off-the-shelf aligners are often noisy, and the corre-
spondence between natural language and program
tokens is not always a many-to-one map of the kind
returned by standard alignment algorithms. On the
other hand, programs also have explicit hierarchi-
cal structure, which could be useful to induce better
attention regularizers (Wang et al., 2019). Here we
investigate the use of span-level alignments, iden-
tifying sub-programs that should be predicted as a
unit and aligning all tokens in a sub-program to a

2811

CreateEvent

CreateEvent(

start=DateTime(date=Wednesday,time=NumberPM(2)),

attendees=FindManager(recipient=Jean))

start

DateTime

date

Wednesday

time

NumberPM

2
attendees

FindManager

recipient

Jean

Addme
etin

g
wit
h
Jea
n ‘s
ma
nag

er on

We
dne
sda
y at 2 PM

?x0

directed_by

?x1

edited_by

?x1

?x1

art_directed

M1

gender

female

Wh
at did M1 ‘sfem

ale art

dire
cto
r
dire

ct and edi
t

Utterance Token Vectors

[CLS] In which city did

...Piotr ’s

2007 Bangkok 1st

(a) Utterance-LISP Expression Alignments (b) Utterance-SPARQLAlignments

Block 1

Block 2

DISTINCT

SELECT

SELECT DISTINCT

?x0 { directed_by { ?x1 } edited_by { ?x1 } }

?x1 { art_directed { M1 } gender { female } }

Figure 1: Token and span level alignments (shown in Aᵀ
|u|×|z|) between utterances and programs in LISP-style expressions (a)

and SPARQL queries (b). Token alignments are marked in . Span-level alignments are marked using dashed bounding boxes
(alignment to program sketch tokens are marked in). Programs in matrices are simplified for presentation. We use simplified
SPARQL representation (Furrer et al., 2020) grouping relations (e.g., directed_by and edited_by) by subjects (e.g., ?x0).

corresponding natural language span (Herzig and
Berant, 2020).

We present a simple algorithm to derive span-
level alignments from token-level alignments. Our
approach is compatible with multiple models
(RNNs, transformers, and structured tree-based de-
coders), pretrained or not. In experiments, span-
based attention supervision consistently improves
over token-level objectives, achieving strong re-
sults on three semantic parsing datasets featuring
diverse formalisms and tests of generalization.

2 Span-level Supervised Attention

Neural Semantic Parsers A semantic parser
maps a natural language (NL) utterance u to an
executable program z. In this paper, we consider
neural parsers using token-based attentive decoders,
in which z is predicted as a sequence of consecu-
tive tokens {z|z|j=1} by attending to tokens in u =
{u|u|i=1}. Examples include sequence-to-sequence
models based on recurrent networks (Dong and
Lapata, 2016; Jia and Liang, 2016) or transform-
ers (Vaswani et al., 2017; Raffel et al., 2020), as
well as structured parsing methods that predict a
program following its syntactic structure (Dong
and Lapata (2018), see §3 for more details).

Supervised Attention Existing token-level su-
pervised attention approaches assume access to an
alignment matrix A|u|×|z| with entries ai,j , where
ai,j = 1 iff the i-th source (utterance) token ui

is aligned to the j-th target (program) token zj .
A|u|×|z| can be inferred using latent variable mod-
els (Brown et al., 1993; Och and Ney, 2003; Dyer
et al., 2013). During training, when the decoder
predicts a target token zj , supervised attention en-
courages the target-to-source attention distribution
patt(ui|zj) to match the prior alignment distribu-
tion pprior(ui|zj) = ai,j∑

k ak,j
, which is normalized

by the number of source tokens aligned to zj . We
use a squared error loss (Liu et al., 2016):

Lsup_att =
1

|z|

|z|∑
j=1

|u|∑
i=1

(
patt(ui|zj)−pprior(ui|zj)

)2
. (1)

Previous work has also used a cross entropy
loss (Rabinovich et al., 2017; Oren et al., 2020).

Sub-program-to-Span Alignment We present
a simple heuristic algorithm to extract span-level
alignments between programs and utterances from
existing token-level results (Algo. 1). Fig. 1 illus-
trates example span-level alignments for two types
of programs (LISP and simplified SPARQL). Simi-
larly to Dong and Lapata (2018), we assume each
program can be decomposed into a top-level sketch
and a set of sub-programs.1 For the LISP expres-
sion in Fig. 1a, the sketch contains the top-level
function call (CreateEvent(? , ?)) and sub-
programs are named arguments paired with values

1Unlike D&L, we allow sub-programs to include non-
consecutive (and possibly overlapping) spans of program to-
kens, e.g., {?x0 {edited_by {?x1}} in Fig. 1b. We also
permit non-disjoint sub-programs.

2812

Algorithm 1: Span Alignment Extraction
input :Utterance u, program z, token-level

alignment matrix A|u|×|z|
output :Span-level alignment matrix Aspan

|u|×|z|
1 Initialize set AS = ∅ to store span-level alignments
2 foreach sub-program zs do
3 Tzs = {ui|∃zj ∈ zs, ai,j = 1}, Uzs = ∅
4 . Case 1 (Consecutive Alignment):
5 m = mini{ui ∈ Tzs}, n = maxi{ui ∈ Tzs}
6 Uzs = {um:n}
7 . Case 2 (Nonconsecutive Alignment):
8 foreach consecutive span um:n ⊂ Tzs do
9 Add utterance span um:n to Uzs

10

11 foreach zp:q ∈ zs, um:n ∈ Uzs do
12 Add span alignment zp:q ↔ um:n to AS

. Generate sketch-utterance span alignments:
13 foreach unaligned span zp:q ∈ z and um:n ∈ u do
14 Add span alignment zp:q ↔ um:n to AS

15 Generate Aspan
|u|×|z|, such that aspan

i,j = 1 iff
∃zp:q ↔ um:n ∈ AS , i ∈ [m,n], j ∈ [p, q]

16 return Aspan
|u|×|z|

(attendees=FindManager. . .). For the SPARQL

expression in Fig. 1b, sketches include the query
form (e.g., SELECT DISTINCT) and sub-programs
hold individual subject-relation-object asser-
tions (e.g., ?x0 edited_by ?x1).2

In this paper, we use these program decompo-
sitions to guide span-level alignment. The under-
lying intuition is that every token in a sketch or
sub-program will get aligned to the same set of
utterance tokens. Algo. 1 extracts such set of utter-
ance spans aligned to a sub-program zs from the
set Tzs of NL tokens that are aligned to tokens in zs

(line 3). We present two variants of this approach,
depending on the properties of the dataset (§3). In
the first case (lines 5-6), similar to bilingual phrase
extraction in machine translation (MT; Och, 2002),
we create a single consecutive utterance span um:n

via the outer bound of the aligned utterance tokens
in Tzs (e.g., Block 1, Fig. 1a). In the second variant
(lines 8-9), we find internally contiguous utterance
spans (subsequences) in Tzs and align them to zs.
For instance, the sub-program (?x1 art_directed
M1) in Block 2 of Fig. 1b aligns to two utterance
spans: M1 ’s and art director. While this case does
not have an exact analog in MT, it is reminiscent of
the model of Chiang (2005) which extracts trans-
lation rules with discontinuous phrase segments,
and could be useful in capturing long-range align-
ments of utterance subsequences to sub-programs

2As we explain in Appendix B, such program decompo-
sition could be easily generated using off-the-shelf syntax
analyzers provided by the programming language.

as in Block 2 (Andreas et al., 2013). Span-level
alignments for a sub-program are then generated by
pairing its program spans zp:q (spans with consec-
utive program tokens) with all its aligned utterance
spans (lines 11-12). Finally, we generate align-
ments for sketch spans in z by pairing them with
any utterance tokens that have not yet been aligned
to a sub-program (lines 13-14).

Algo. 1 leverages the explicit hierarchical struc-
tures of programs to generate alignments between
sub-programs and utterance spans. Such an idea
of using structural information for alignment ex-
traction has deep roots in statistical syntax-based
MT, which leverages the syntactic structure of
sentences to generate alignments between parse
trees and NL constituents (Galley et al., 2004;
Chiang, 2005; Liu et al., 2006). Our approach is
also broadly related to lexicon induction models
in semantic parsers based on probabilistic CCG
grammars (Kwiatkowski et al., 2011) or other for-
malisms (Jones et al., 2012), which learn mapping
rules between logical form templates and utterance
tokens.

3 Experiments

We evaluate span-level supervised attention on
three benchmarks of compositional generalization.

SMCALFLOW Compositional Skills (SMCAL

FLOW-CS) is a new dataset created in this study
based on the task-oriented dialogue corpus SM-
CALFLOW (Semantic Machines et al., 2020),
featuring real-world human-generated utterances
about calendar management. Like the motivating
story in §1, we create training data for skills S in-
volving event creation (e.g., Schedule a meeting
with Adam) and organization structure (e.g., Who’s
on Adam’s team?), while evaluating on examples
C featuring compositional skills (e.g., Add meet-
ing with Adam and his team). Utterances are an-
notated with LISP-style programs (Fig. 1a). Since
zero-shot compositional generalization is highly
non-trivial due to novel language patterns (e.g.,
Adam and his team) and program structures (e.g.,
usage of List(·) to specify multiple attendees) in
compositional examples, we consider a few-shot
learning scenario, where a handful of composi-
tional examples are included in the training set.
Readers are referred to Appendix A for details of
dataset construction.
Compositional Freebase Questions (CFQ) is a

2813

|Ctrain| 16 32 64 128
Domain S C S C S C S C

BERT2SEQ 82.8 ±1.0 33.6 ±7.2 82.8 ±0.6 53.5 ±10.3 83.7 ±0.6 64.2 ±4.9 83.0 ±0.8 71.3 ±2.3

+TS (Token-level Sup.) 83.4 ±0.7 39.7 ±1.3 83.2 ±0.3 59.9 ±1.6 83.7 ±0.6 65.7 ±1.5 83.4 ±0.4 73.2 ±0.7

+SS (Span-level Sup.) 83.9 ±0.2 46.8 ±1.2 83.5 ±0.7 61.7 ±2.2 83.6 ±0.7 66.9 ±1.0 83.5 ±0.9 74.3 ±0.7

COARSE2FINE (DL18) 83.0 ±1.0 40.6 ±7.0 83.6 ±0.6 54.6 ±6.8 83.8 ±0.3 65.7 ±3.2 83.4 ±1.2 72.9 ±0.6

+TS (Token-level Sup.) 83.7 ±0.5 44.6 ±1.5 83.1 ±1.0 60.7 ±2.5 83.7 ±0.8 67.1 ±1.4 83.3 ±0.7 74.1 ±0.9

+SS (Span-level Sup.) 83.8 ±0.4 47.4 ±2.1 83.7 ±1.0 61.9 ±1.8 83.0 ±0.8 67.5 ±1.4 83.5 ±0.8 75.0 ±1.2

Table 1: TEST. accuracies on the SMCALFLOW-CS Compositional Skills dataset w.r.t. the size of compositional examples
included in the training set. We report both the results on the in-domain single-skill examples (S) as well as the generalized
multi-skill examples (C). Results are averaged over five random random seeds. Bold results have p-values ≤ 0.05 when
comparing to other systems in the same category under a permutation test.

challenging compositional generalization dataset
of 130K synthetic utterances with SPARQL queries
(Fig. 1b). Training and evaluation splits are con-
structed such that they have different distribu-
tions of compositional structures, while the dis-
tributions of atomic language (e.g., director) and
program (e.g., film.director) constructs remain
similar (Keysers et al., 2020).
ATIS Text-to-SQL is a dataset of 3,809 SQL-
annotated utterances about flight querying (e.g.,
Flights from Seattle to Austin.). We follow Oren
et al. (2020) and use the query split (Finegan-
Dollak et al., 2018), where training and evaluation
programs do not overlap at template level.

Models We apply span-level supervised atten-
tion to strong neural models on each dataset.
We evaluate two systems on SMCALFLOW-CS:
BERT2SEQ, a sequence-to-sequence model with a
BERT encoder and an LSTM decoder using copy
mechanism, and COARSE2FINE (Dong and Lap-
ata, 2018), which uses (a BERT encoder and) a
structured decoder that factorizes the generation
of a program into sketch and value predictions.
On CFQ, we use T5-BASE (Raffel et al., 2020),
and apply attention supervision on all the cross-
attention heads in the last decoder layer. For ATIS,
we take the best system from Oren et al. (2020) that
is tuned for better generalization on this dataset,
which is a sequence-to-sequence model with an
ELMO encoder and coverage-based attention mech-
anism (See et al., 2017).

We extract word alignments using IBM Model 4
in GIZA++ (Och and Ney, 2003), and canonical-
ize programs (e.g., remove parentheses) to improve
alignment quality. To extract span-level alignments,
we use consecutive alignments (Case 1) in Algo. 1
for SMCALFLOW-CS and ATIS, as those datasets
feature simple one-to-one mapping between sub-
programs and utterance spans. For CFQ, we use

nonconsecutive alignments (Case 2) to handle as-
sertions aligned to disjoint NL spans (Fig. 1b). We
apply Eq. (1) during model optimization using ei-
ther the token and span level alignment matrix for
token (+TS) and span (+SS) level supervised at-
tention, respectively. See Appendix B for details.

3.1 Results

Tab. 1 lists the evaluation results on SMCALFLOW-
CS with varying numbers of compositional exam-
ples in the training set (Ctrain).3 We report accura-
cies on both the in-domain single-skill examples (S)
as well as on the generalized compositional-skill ex-
amples (C). Both methods improve compositional
generalization for BERT2SEQ and COARSE2FINE,
while span-level supervised attention is more effec-
tive. Intuitively, span-level alignments could better
capture the correspondence between sub-structures
in utterances and programs, helping the parser to
correctly predict such sub-programs in composi-
tionally novel contexts by focusing on the corre-
sponding utterance span. Interestingly, in such a
low-resource learning scenario with only a hand-
ful of training compositional samples, span-level
supervised attention offers more gains in extreme
low-resource settings (|Ctrain| = 16), outperform-
ing the base BERT2SEQ model by 13% absolute
(33.6% v.s. 46.8% for BERT2SEQ).

Indeed, we found that more alignment-like
attentions are associated with more accu-
rate model predictions. For a BERT2SEQ

model with span-level supervision trained
on |Ctrain| = 64, when predicting sub-
programs for the attendees argument (e.g.,
attendees=FindManager(recipient=self))
on compositional samples in C, the model achieves
86% sub-program accuracy if it assigns a time-step

3We ran GIZA++ and extracted span-level alignments for
each training split separately.

2814

Split MCD1 MCD2 MCD3 AverageC R All C R All C R All

T5-BASE 55.8 ±4.8 77.4 ±4.7 62.4 ±4.5 34.8 ±2.9 29.4 ±2.5 33.0 ±2.4 21.6 ±8.6 34.4 ±2.8 23.0 ±1.7 39.5
+ TS 44.9 ±4.7 86.4 ±2.4 57.7 ±3.4 32.4 ±3.1 32.7 ±1.4 32.5 ±2.1 14.3 ±1.5 36.6 ±1.7 22.0 ±0.7 37.4
+ SS 48.2 ±4.4 80.5 ±2.2 58.2 ±2.8 34.8 ±2.3 36.4 ±2.8 35.4 ±1.6 14.6 ±2.1 40.1 ±3.5 23.8 ±1.0 39.1

Table 2: Mean Test Accuracies on CFQ MCD splits with 95% confidence interval, for Conjunctive, Recursive, and All the
samples. The last column lists averaged accuracies for the three splits. Bold results have p-values ≤ 0.01 when comparing to
other systems in the same category.

Model
Query Split i.i.d. Split

DEV. TEST. DEV. TEST.

Oren et al. (2020) 28.9 34.4 78.4 74.5
+ Token-level Sup. 31.2 ±1.2 34.5 ±0.9 76.7 ±0.6 72.5 ±1.6
+ Span-level Sup. 31.1 ±0.6 35.0 ±2.0 78.4 ±0.8 74.0 ±0.5

Table 3: Accuracies and standard deviation on the ATIS text-to-
SQL query (program template) and standard i.i.d. split splits.
Results averaged over five random runs.

average of at least 90% of its attention weights
over the aligned utterance spans (e.g., with my
manager) identified by Algo. 1. Otherwise, the
accuracy drops to 70% (more in Appendix C.1).

Moreover, supervised attention may be a suf-
ficient substitute for structured model architec-
tures in some cases. Despite the unstructured
BERT2SEQ model’s generally inferior performance
without supervised attention, it matches the accu-
racies of COARSE2FINE when both models are
trained with span-level supervision.4 We also re-
mark that span-based supervision maintains or
improves performance on in-domain single-skill
examples (S). For instance, the accuracy for
BERT2SEQ increases from 82.8% to 83.9% when
|Ctrain| = 16.

Next, on CFQ (Tab. 2), we report break-down
results based on the syntactic types of questions:
Recursive questions with chained multi-hop rela-
tions (e.g., ur :Was M1 influenced by a German
writer?), and Conjunctive ones with only conjunc-
tions of entities and relations and without chained
relations (e.g., uc :Was M1 directed and edited by
M2 and M3?). While supervised attention is effec-
tive on recursive questions, it struggles on conjunc-
tive ones. This may be because the model learns to
attend to discontinuous utterance spans (e.g., “M1
directed” and “M2 and M3” in uc) when predict-
ing a relation (e.g., directed_by) in a conjunc-
tion, which could be more sensitive to alignment

4We found that the sketch and sub-program decoders in
COARSE2FINE do not achieve their best DEV. accuracy at the
same iteration during training, which could hurt performance
in our few-short learning setting.

errors. Additionally, utterance spans aligned to
a sub-program in conjunctive questions are usu-
ally longer and more complex (e.g., having multi-
ple conjunctive entity mentions like Did M1 write
M2, M3, M4, and M5?), which might require more
fine-grained supervision than uniformly treating
every aligned utterance tokens equally as in Eq. (1).
More analysis is in Appendix C.2.

Finally, we present the results on the ATIS query
splits in Tab. 3, where span-level supervision is
comparable with token-level one, further improv-
ing upon an already-strong model that targets for
compositional generalization (ELMO with coverage
based attention). Interestingly, token-level super-
vised attention is slightly worse than the baseline
model on the standard i.i.d. splits, while span-level
supervision does not offer further improvements.
Empirically we observe that the utterance-SQL
alignments in ATIS are much noisier than other
two datasets due to redundant structures in SQL
queries (e.g.,Join statements with intermediary ta-
bles), whose aligned NL constituents are often not
well defined (See Appendix B for more details).

4 Conclusion

This paper demonstrated the effectiveness of span-
level supervised attention as a simple and flexible
tool for improving neural sequence models in a
diverse set of architectures and tests of generaliza-
tion. Future work might explore applications to
other prediction tasks and joint learning of align-
ments with sequence model parameters.

Acknowledgements

We thank the Semantic Machines team and anony-
mous reviewers for their valuable feedbacks.
Pengcheng Yin was supported in part by an IBM
Ph.D. fellowship.

2815

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proceedings of ACL.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
EMNLP.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2).

Xinyun Chen, Chen Liang, Adams Wei Yu, D. Song,
and Denny Zhou. 2020. Compositional generaliza-
tion via neural-symbolic stack machines. In Pro-
ceedings of NeurIPS.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of ACL.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of ACL.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of ACL.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of NAACL.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of ACL.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Scharli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. ArXiv, abs/2007.08970.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of HLT-NAACL.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir
Globerson, and Jonathan Berant. 2018. Weakly su-
pervised semantic parsing with abstract examples.
In Proceedings of ACL.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of EMNLP.

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization. In Proceedings of EMNLP.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of ACL.

B. Jones, Mark Johnson, and S. Goldwater. 2012. Se-
mantic parsing with Bayesian tree transducers. In
Proceedings of ACL.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
H. Buisman, Daniel Furrer, Sergii Kashubin, Nikola
Momchev, Danila Sinopalnikov, Lukasz Stafiniak,
Tibor Tihon, D. Tsarkov, Xiao Wang, Marc van Zee,
and O. Bousquet. 2020. Measuring compositional
generalization: A comprehensive method on realis-
tic data. In Proceedings of ICLR.

T. Kwiatkowski, Luke Zettlemoyer, S. Goldwater, and
Mark Steedman. 2011. Lexical generalization in
CCG grammar induction for semantic parsing. In
Proceedings of EMNLP.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of ICML.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In
Proceedings of NeurIPS.

M. Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, A. Mohamed, Omer Levy, Ves Stoy-
anov, and Luke Zettlemoyer. 2020. BART: De-
noising sequence-to-sequence pre-training for natu-
ral language generation, translation, and comprehen-
sion. In Proceedings of ACL.

Yuanpeng Li, Liang Zhao, JianYu Wang, and Joel Hes-
tness. 2019. Compositional generalization for prim-
itive substitutions. In Proceedings of EMNLP/IJC-
NLP.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Com-
mun. ACM.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of COL-
ING.

Qian Liu, Shengnan An, Jianguang Lou, B. Chen, Zeqi
Lin, Yan Gao, Bin Zhou, Nanning Zheng, and Dong-
mei Zhang. 2020. Compositional generalization by
learning analytical expressions. In Proceedings of
NeurIPS.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical machine
translation. In Proceedings of ACL.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of
EMNLP.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of ACL.

2816

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
In Proceedings of EMNLP.

Dipendra Kumar Misra, Ming-Wei Chang, X. He, and
Wen tau Yih. 2018. Policy shaping and generalized
update equations for semantic parsing from denota-
tions. In Proceedings of EMNLP.

Franz Josef Och. 2002. Statistical machine transla-
tion: From single word models to alignment tem-
plates. Ph.D. thesis, RWTH Aachen University, Ger-
many.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1).

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Pro-
ceedings of EMNLP-Findings.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140).

Kyle Richardson, Jonathan Berant, and Jonas Kuhn.
2018. Polyglot semantic parsing in APIs. In Pro-
ceedings of NAACL-HLT.

Jake Russin, Jason Jo, R. O’Reilly, and Yoshua Ben-
gio. 2019. Compositional generalization in a deep
seq2seq model by separating syntax and semantics.
ArXiv, abs/1904.09708.

Abigail See, Peter Liu, and Christopher Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of ACL.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin
Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo
Lanman, Percy Liang, Christopher H Lin, Ilya
Lintsbakh, Andy McGovern, Aleksandr Nisnevich,
Adam Pauls, Dmitrij Petters, Brent Read, Dan Roth,
Subhro Roy, Jesse Rusak, Beth Short, Div Slomin,
Ben Snyder, Stephon Striplin, Yu Su, Zachary
Tellman, Sam Thomson, Andrei Vorobev, Izabela
Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang,
and Alexander Zotov. 2020. Task-oriented dialogue
as dataflow synthesis. Transactions of the Associa-
tion for Computational Linguistics, 8.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NIPS.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2020.
Meta-learning for domain generalization in seman-
tic parsing. arXiv:2010.11988.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.
Learning semantic parsers from denotations with la-
tent structured alignments and abstract programs. In
EMNLP/IJCNLP.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of ACL.

2817

Compositional Generalization for Neural Semantic Parsing
via Span-level Supervised Attention

Supplementary Materials

A SMCALFLOW Compositional Skills Dataset

SMCALFLOW (Semantic Machines et al., 2020) is a large-scale semantic parsing dataset for task-oriented
dialogue, featuring multi-turn utterances between a user and a dialogue agent that updates the user’s
schedule using LISP-style programs (see Fig. 1a for an example). In line with the motivating story in §1
about learning compositional skills for task-oriented semantic parsers, we created a new dataset based on
SMCALFLOW to evaluate a semantic parser’s ability to generalize to utterances that require compositional
skills when trained on examples of simpler ones.

Specifically, we extract all single-turn, context-free5 examples from SMCALFLOW in the domains of
EVENTCREATION (e.g., Add meeting with Adam 7→ CreateEvent(attendees=Adam)) and ORGCHART

(e.g., Who are in Adam’s team? 7→ FindTeam(recipient=Adam)), and divide the examples into
a training set S consisting of samples from single domains, and an compositional evaluation set
C with examples covering both of the two skills (e.g., Set up meeting with Adam and his team 7→
CreateEvent(attendees=List(Adam, FindTeam(recipient=Adam)))). We generate validation and
testing sets by evenly dividing the compositional samples in C, while including the same amount (|C|2) of
single-skill examples from S. Tab. 4 presents more examples in SMCALFLOW-CS.

Zero-shot generalization in this setting is highly non-trivial due to novel language patterns (e.g., Adam
and his team) and program structures (e.g., usage of List(·) to concatenate entities) in the compositional
evaluation set. We therefore consider a few-shot learning scenario, where we include a few compositional
examples {16, 32, 64, 128} into the training sets (denoted as Ctrain). To ensure the representativeness of
those handful of compositional examples used for training, we generate Ctrain using rejection sampling.
Specifically, we randomly splitting C into Ctrain and Cdev+test, and repeat this process until examples in
Ctrain cover a pre-defined list of NL patterns (e.g., “with Amy and her team”, “with Tom’s reports”, “with
my manager”, etc). The sizes of training (without compositional samples)/development/test splits are
25,404/1,325/1,325, respectively.

SEVENTCREATION

(24,763 Examples)

Schedule dinner with Adam tomorrow.
Please add dinner with Adam Wallen next Wednesday night at 6:00 PM.
Put a reminder on my calendar half an hour before my dinner.

SORGCHART

(641 Examples)

Who’s on Abby’s team now?
Who are the reports of Dan Schoffel?

COMPOSITIONAL

SKILLS (C)
(1,453 Examples)

Add a meeting with my manager after lunch.
Add Amanda and her boss to project meeting.
Right after I’m done with breakfast, put a meeting with Sally’s team.

Table 4: Examples from SMCALFLOW-CS

B Model Configuration and Alignment Generation

SMCALFLOW-CS All models use the BERT-base-uncased model as encoder. Both BERT2SEQ

and COARSE2FINE use two-layer LSTM networks as decoder, following the formulation in Luong
et al. (2015), with a hidden size of 256. For COARSE2FINE, we use a slightly different definition of
sketch-subprogram decomposition as in §2, where a sketch includes named arguments as well (e.g.,
CreateEvent(attendees=Jim) is decomposed to a sketch CreateEvent(attendees= ?)) and sub-
program (e.g., ? =Jim)). The sketch and sub-program decoders in COARSE2FINE share the same LSTM,
as we find this will improve its performance in our few-shot learning setting. During training, we use an

5Context-freeness could be determined by checking if a program has function calls that refer to previous dialogue context.

2818

Adam optimizer using a batch size of 64 for 30 epochs, with separate learning rates for BERT (3× 10−5)
and the rest of the model parameters (0.001). We add supervised attention loss Eq. (1) to the model’s loss
function with a tuning weight of λ ∈ {2.0, 4.0} for BERT2SQL and λ ∈ {1, 0, 2.0} for COARSE2FINE.
For each training split with |Ctrain| compositional training examples, we perform grid search and chose
the λ that achieves the best DEV. accuracy on compositional samples C. We use beam search (beam size
of 5) for decoding.

CFQ We use T5-BASE, with a constant tuning weight of λ = 0.1 for the supervised attention loss. We
train the model using an Adafactor optimizer with a batch-size of 128 examples and a learning rate of 0.001
for 15 epochs (∼ 110K iterations). We warmup the learning rate using the first 1,100 iterations. Target
program sequences with a length longer than 300 after sentencepiece subtokenization are clipped. For
efficiency, we use greedy search for decoding.

ATIS TEXT-TO-SQL We use the original implementation and hyper-parameters provided by Oren et al.
(2020), and apply supervised attention loss with a tuning weight validated from {0.05, 0.1, 1.0, 2.0}.

Alignment Extraction We run GIZA++ to get token-level alignments. As noted in Oren et al. (2020),
raw alignments between program and utterance tokens generated by off-the-shelf word aligners are often
noisy, we therefore applied the following heuristics to improve alignment quality: On SMCALFLOW-CS,
we canonicalize programs by removing parentheses. We use the source-to-target direction alignments
generated by GIZA++, as we find alignments in this direction have better coverage and higher quality than
the results from the other direction. On CFQ, we use the union of the alignments for both directions,
and removed alignments to intermediary variables (e.g., ?x0, ?x1), as their alignments are often noisy.
For ATIS, we follow Oren et al. (2020) and canonicalize programs by removing punctuations. We use
the source-to-target direction alignments from GIZA++. To extract sub-programs from SQL queries in
ATIS for span-level alignment extraction, we define sub-programs in SQL as tables (e.g., Flight.ID)
and comparison statements (e.g., City.City_Name = "city_name0") in the SELECT and WHERE clauses,
respectively. We use this restricted strategy to extract sub-programs only from SELECT and WHERE clauses
because we find words alignments to other constructs in SQL queries (e.g., statements that specify tables
to be joined) are often noisy. For this reason, we do not generate span-level alignments for program sketch
tokens, as they as under-specified.

Finally, for all datasets, we remove alignments between non-content program tokens (e.g., the ‘=’ sign)
and stop words in utterances.

C Additional Results

C.1 Full Results on SMCALFLOW-CS
Quality of attention distribution w.r.t sub-program prediction accuracy In §3, we briefly described
the positive correlation between the “quality” of the attention distribution patt(ui|zj) (how concentrated
patt(ui|zj) is) over an utterance span (e.g., with my manager) and the prediction accuracy of its target
sub-program (e.g., attendees=FindManager(·)). Here we present more results. Specifically, we identify
compositional examples in the Dev. set for which a model predicts sub-programs zs for the attendees,
start, and location arguments in a CreateEvent function call (refer to Fig. 1a for the first two
arguments, location is used to specify event location). We compute the sum of the attention weights
over the “oracle” utterance span identified by Algo. 1, and averaged over the decoder’s time step when
predicting zs. We measure the sub-program prediction accuracy w.r.t. the attention weights, as illustrated
in Fig. 2. We observe that models trained with span-level supervised attention shows a stronger correlation
between the sub-program accuracy and the degree the attention focuses on utterance tokens within the
oracle span.

Results using a Previous Version of SMCALFLOW For completeness, we also report results
on another version of our SMCALFLOW-CS benchmark based on a previous version of the
SMCALFLOW dataset. Tab. 5 list the results. The main differences between this version of

2819

|Ctrain| 16 32 64 128
Domain S C S C S C S C

BERT2SEQ 82.8 ±1.0 37.7 ±1.0 82.8 ±0.8 57.4 ±7.1 82.4 ±0.2 71.1 ±2.7 81.8 ±0.9 75.8 ±2.0

+TS (Token-level Sup.) 82.9 ±0.5 47.1 ±4.0 82.5 ±0.7 65.1 ±1.8 83.1 ±0.4 72.1 ±0.9 82.3 ±0.6 77.5 ±1.5

+SS (Span-level Sup.) 83.3 ±0.7 54.9 ±3.4 83.4 ±0.6 67.5 ±2.0 82.8 ±0.6 76.0 ±1.3 82.6 ±0.3 78.7 ±0.9

COARSE2FINE (DL18) 82.5 ±0.8 44.7 ±4.9 83.0 ±1.0 60.0 ±4.2 82.5 ±0.4 72.4 ±1.4 83.0 ±0.9 75.0 ±0.9

+TS (Token-level Sup.) 83.0 ±0.3 51.0 ±4.6 82.9 ±0.9 64.2 ±1.8 82.6 ±0.6 74.0 ±0.5 82.8 ±0.4 78.1 ±0.9

+SS (Span-level Sup.) 83.1 ±0.4 54.2 ±3.0 83.1 ±0.5 66.6 ±1.6 83.5 ±0.9 74.8 ±1.1 82.9 ±0.4 78.2 ±0.5

Table 5: TEST. accuracies on the SMCALFLOW-CS Compositional Skills dataset w.r.t. the size of compositional examples
included in the training set. We report both the results on the in-domain single-skill examples (S) as well as the generalized
multi-skill examples (C). Results averaged over five random random seeds. Bold results have p-values ≤ 0.01 when comparing
to other systems in the same category using paired permutation test.

(90, 100] (80, 90] (70, 80] (60, 70] (50, 60] (40, 50] (0, 40]
Sum of in-span attention weights

0.5

0.6

0.7

0.8

0.9

Su
b-

pr
og

ra
m

 a
cc

.

Span-Level Sup. Token-Level Sup.

Figure 2: Sub-program prediction accuracy w.r.t. the sum of attention weights over oracle utterance spans. Models are trained on
|Ctrain| = 32. Results averaged over three runs.

SMCALFLOW-CS and the one used in Tab. 1 are (1) ordering of named arguments in LISP expres-
sions (e.g., CreateEvent(attendees= ? , start= ? , subject= ?) v.s. CreateEvent(subject= ? ,

attendees= ? , start= ?)), and (2) some “cosmetic” changes to simply the domain-specific LISP

programs. Interestingly, compared with the results in Tab. 1, we find that both the token and span-level
supervised attention methods are sensitive to such changes in the representation of programs. While we
didn’t observe significant changes of quality in the underlying word alignments produced by GIZA++, we
leave investigating these results as interesting future work.

C.2 Complementary Span-level Supervised Attention Loss

In §2 we present span-level supervised attention, which minimizes the mean-squared error loss between the
decoder’s attention distribution p(ui|zj) and the prior alignment distribution derived from the span-level
alignment matrix (§2). Models trained with such a loss function learns a uniform attention distribution
over tokens in an utterance span.

An alternative loss function is to relax the uniform attention constraint, and let the model to decide how
to allocate the attention mass over tokens inside a predefined utterance span. Specifically, we consider
a masked version of the main-squared error loss in Eq. (1), where we only apply the loss on utterance
tokens ui that are not aligned to zj according to the alignment matrix (i.e., ai,j = 0):

Lsup_att =
1

|z|

|z|∑
j=1

|u|∑
i=1

(
‖patt(ui|zj)− pprior(ui|zj)‖ai,j=0

)2
. (2)

where ‖ · ‖ai,j=0 , patt(ui|zj) − pprior(ui|zj) iff ai,j = 0. Intuitively, Eq. (2) forces zero attention to
tokens outside an aligned utterance span, while leaving the model with the freedom to attend to any tokens
inside the span. We term this loss function the complementary span-level supervised attention loss.

We first compare complementary and standard span-level supervised attention on SMCALFLOW-CS.
Results are listed in Tab. 6. We didn’t report on all the training splits since in our pilot study we observe

2820

Model S C

BERT2SEQ 82.6 (∆ = 1.9) 55.2 (∆ = 6.2)
+ Complementary 82.1 (∆ = 2.3) 63.0 (∆ = 8.3)
+ Span Attn. Sup. 83.3 (∆ = 0.3) 67.3 (∆ = 2.6)

Table 6: Complementary vs standard span-level supervised attention on SMCALFLOW-CS with 32 compositional training
examples averaged over three runs. ∆ indicates the difference between the best and worse results.

Split MCD1 MCD2 MCD3

C R All C R All C R All

T5-BASE 55.6 75.6 61.7 35.3 28.1 32.8 17.7 33.4 23.2
+ TS 43.5 88.1 57.2 33.1 32.6 33.0 14.3 36.2 21.9
+ SS 46.1 80.1 56.6 34.8 35.1 34.9 15.0 39.2 23.4
+ Complementary TS 58.3 79.3 64.7 35.4 32.1 34.3 17.5 33.2 22.9

Table 7: Test Accuracies on CFQ MCD splits, for Conjunctive, Recursive, and All the samples, averaged over three restarts.

that complementary span-level attention supervision does not perform well on SMCALFLOW due to its
high variance. We hypothesize that is because complementary attention allows the model to freely attend
to any utterance tokens within a predefined span boundary, as long as the attention weights for the tokens
within the span sum up to 1. Therefore, it is possible that the attention distribution becomes sparse and
degenerates to the scenario with token-level supervision, as illustrated by the example in Fig. 3.

Next, we evaluate complementary supervised attention on CFQ, with results listed in Tab. 7. Inter-
estingly, we observe the standard span-level objective is more effective on recursive (R) splits, and the
complementary objective on conjunctive (C) splits. First, we find models trained with the complementary
objective are better at handling questions with long conjunctive entity lists (e.g., Who directed, produced,
wrote, and edited M1, M2, and M3?). This is probably due to that the model has the freedom to attend
to specific utterance tokens (e.g., an entity mention M1) in an utterance span that are most relevant to
predicting a target token (e.g., the entity variable M1 in z), while enforcing uniform distribution as in the
standard span-level supervision will cause the model to “lose focus”.

Fig. 4 shows such an example, the model trained with complementary supervision selectively attends
the relevant entity mentions when generating the three object variables (M1 M2 M3) for the relation
film.film.directed_by, while the model with vanilla span-level supervision, using a more flattened
attention distribution, failed to predict the complete list of objects (only M1 is predicted). However, we
note that is not always the case, as we observe that when the number of conjunctive entities grows larger,
models trained with the complementary objective could still correctly predict the entire variables in an
entity list without attending to their individual mentions separately in the utterance (Fig. 5). We leave
investigating this as interesting future work.

Next, we attempt to understand the relative advantage of the standard span-level supervised attention
v.s. the complementary objective. We sampled 50 failure cases for the model with the complementary
objective on MCD3. Interestingly, we find that more than half of the errors are due to the model got
confused about the syntactic role of entities mentions in complex questions with chained relations. Fig. 6
gives such an example, where the the model incorrectly identifies M1 as the subject of the relation
people.person.employment_history. . . when interpreting the utterance span a employee of M1, a
pattern that we usually observed for models without using supervised attention. One possible explanation
is that models trained with complementary objective use a sparser attention distribution, which might
not consider the full utterance span when making predictions, while a model trained with the standard
span-level objective learns to parse an utterance span using information from all its tokens.

2821

Token-level Supervision

Complementary Span-level Supervision

Span-level Supervision

u: Schedule a meeting with Monica’s boss tomorrow at 8 am.

Figure 3: Example attention visualizations for BERT2SEQ trained with token-level, complementary, and standard span-level
supervised attention on SMCALFLOW-CS.

2822

Span-level Supervision

Complementary Span-level Supervision

u: Which film was directed, written, executive produced, and produced by M1, M2, and M3?

Figure 4: Example attention visualizations for T5-BASE trained with complementary and standard span-level supervised attention
for a CFQ question. Attention distributions are taken from the last decoder layer and maxed over all the attention heads.

2823

Complementary Span-level Supervision

u: What screen writer was a canadian writer of M1, M2, M3, M4, M5, M6, and M7?

Figure 5: Example attention visualization for T5-BASE with complementary span-level supervision. The model correctly
generates the 7 object variables without attending to their individual mentions in u.

Span-level Supervision

Complementary Span-level Supervision

u: Was a(n) employee of M1 an actor?

Figure 6: Example attention visualization for a question in the recursive evaluation split of CFQ.

