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Abstract

Reasoning about tabular information presents
unique challenges to modern NLP approaches
which largely rely on pre-trained contextual-
ized embeddings of text. In this paper, we
study these challenges through the problem of
tabular natural language inference. We pro-
pose easy and effective modifications to how
information is presented to a model for this
task. We show via systematic experiments that
these strategies substantially improve tabular
inference performance.

1 Introduction

Natural Language Inference (NLI) is the task of de-
termining if a hypothesis sentence can be inferred
as true, false, or undetermined given a premise sen-
tence (Dagan et al., 2013). Contextual sentence
embeddings such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), applied to large
datasets such as SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018), have led to near-
human performance of NLI systems.

In this paper, we study the harder problem of
reasoning about tabular premises, as instantiated
in datasets such as TabFact (Chen et al., 2019) and
InfoTabS (Gupta et al., 2020). This problem is simi-
lar to standard NLI, but the premises are Wikipedia
tables rather than sentences. Models similar to the
best ones for the standard NLI datasets struggle
with tabular inference. Using the InfoTabS dataset
as an example, we present a focused study that
investigates (a) the poor performance of existing
models, (b) connections to information deficiency
in the tabular premises, and, (c) simple yet effective
mitigations for these problems.

We use the table and hypotheses in Figure 1
as a running example through this paper, and re-
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The first author was a remote intern at University of Utah
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New York Stock Exchange

Type Stock exchange
Location New York City, New York, U.S.
Founded May 17, 1792; 226 years ago
Currency United States dollar
No. of listings 2,400
Volume US$20.161 trillion (2011)

H1: NYSE has fewer than 3,000 stocks listed.
H2: Over 2,500 stocks are listed in the NYSE.
H3: S&P 500 stock trading volume is over $10 trillion.

Figure 1: A tabular premise example. The hypotheses
H1 is entailed by it, H2 is a contradiction and H3 is
neutral i.e. neither entailed nor contradictory.

fer to the left column as its keys.1 Tabular infer-
ence is challenging for several reasons: (a) Poor
table representation: The table does not explicitly
state the relationship between the keys and values.
(b) Missing implicit lexical knowledge due to lim-
ited training data: This affects interpreting words
like ‘fewer’, and ‘over’ in H1 and H2 respectively.
(c) Presence of distracting information: All keys
except No. of listings are unrelated to the hypothe-
ses H1 and H2. (d) Missing domain knowledge
about keys: We need to interpret the key Volume
in the financial context for this table.

In the absence of large labeled corpora, any
modeling strategy needs to explicitly address these
problems. In this paper, we propose effective ap-
proaches for addressing them, and show that they
lead to substantial improvements in prediction qual-
ity, especially on adversarial test sets. This focused
study makes the following contributions:

1. We analyse why the existing state-of-the-art
BERT class models struggle on the challeng-
ing task of NLI over tabular data.

2. We propose solutions to overcome these chal-
lenges via simple modifications to inputs us-
ing existing language resources.

1Keys in the InfoTabS tables are similar to column headers
in the TabFact database-style tables.
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3. Through extensive experiments, we show sig-
nificant improvements to model performance,
especially on challenging adversarial test sets.

The updated dataset, along with associated
scripts, are available at https://github.com/

utahnlp/knowledge_infotabs.

2 Challenges and Proposed Solutions

We examine the issues highlighted in §1 and pro-
pose simple solutions to mitigate them below.

Better Paragraph Representation (BPR): One
way to represent the premise table is to use a univer-
sal template to convert each row of the table into
sentence which serves as input to a BERT-style
model. Gupta et al. (2020) suggest that in a table
titled t, a row with key k and value v should be
converted to a sentence using the template: “The
k of t are v.” Despite the advantage of simplicity,
the approach produces ungrammatical sentences.
In our example, the template converts the Founded
row to the sentence “The Founded of New York
Stock Exchange are May 17, 1792; 226 years ago.”.

We note that keys are associated with values of
specific entity types such as MONEY, DATE, CAR-
DINAL, and BOOL, and the entire table itself has
a category. Therefore, we propose type-specific
templates, instead of using the universal one.2 In
our example, the table category is Organization
and the key Founded has the type DATE. A better
template for this key is “t was k on v”, which pro-
duces the more grammatical sentence "New York
Stock Exchange was Founded on May 17, 1792;
226 years ago.". Furthermore, we observe that in-
cluding the table category information i.e. “New
York Stock Exchange is an Organization.” helps in
better premise context understanding.3 Appendix A
provides more such templates.

Implicit Knowledge Addition (KG implicit):
Tables represent information implicitly; they do
not employ connectives to link their cells. As a
result, a model trained only on tables struggles to
make lexical inferences about the hypothesis, such
as the difference between the meanings of ‘before’
and ‘after’, and the function of negations. This is
surprising, because the models have the benefit of
being pre-trained on large textual corpora.

2The construction of the template sentences based on entity
type is a one-time manual step.

3This category information is provided in the InfoTabS
and TabFact datasets. For other datasets, it can be inferred
easily by clustering over the keys of the training tables.

Recently, Andreas (2020) and Pruksachatkun
et al. (2020) showed that we can pre-train models
on specific tasks to incorporate such implicit knowl-
edge. Eisenschlos et al. (2020) use pre-training on
synthetic data to improve the performance on the
TabFact dataset. Inspired by these, we first train
our model on the large, diverse and human-written
MultiNLI dataset. Then, we fine tune it to the
InfoTabS task. Pre-training with MultiNLI data
exposes the model to diverse lexical constructions.
Furthermore, it increases the training data size by
433K (MultiNLI) example pairs. This makes the
representation better tuned to the NLI task, thereby
leading to better generalization.

Distracting Rows Removal (DRR) Not all
premise table rows are necessary to reason about
a given hypothesis. In our example, for the hy-
potheses H1 and H2, the row corresponding to the
key No. of listings is sufficient to decide the label
for the hypothesis. The other rows are an irrele-
vant distraction. Further, as a practical concern,
when longer tables are encoded into sentences as
described above, the resulting number of tokens
is more than the input size restrictions of existing
models, leading to useful rows potentially being
cropped. Appendix F shows one such example on
the InfoTabS. Therefore, it becomes important to
prune irrelevant rows.

To identify relevant rows, we employ a simpli-
fied version of the alignment algorithm used by
Yadav et al. (2019, 2020) for retrieval in reading
comprehension.

First, every word in the hypothesis sentence is
aligned with the most similar word in the table
sentences using cosine similarity. We use fast-
Text (Joulin et al., 2016; Mikolov et al., 2018)
embeddings for this purpose, which preliminary
experiments revealed to be better than other embed-
dings. Then, we rank rows by their similarity to the
hypothesis, by aggregating similarity over content
words in the hypothesis. Yadav et al. (2019) used
inverse document frequency for weighting words,
but we found that simple stop word pruning was
sufficient. We took the top k rows by similarity
as the pruned representative of the table for this
hypothesis. The hyper-parameter k is selected by
tuning on a development set. Appendix B gives
more details about these design choices.

Explicit Knowledge Addition (KG explicit):
We found that adding explicit information to enrich

https://github.com/utahnlp/knowledge_infotabs
https://github.com/utahnlp/knowledge_infotabs
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keys improves a model’s ability to disambiguate
and understand them. We expand the pruned ta-
ble premises with contextually relevant key infor-
mation from existing resources such as WordNet
(definitions) or Wikipedia (first sentence, usually a
definition).4

To find the best expansion of a key, we use
the sentential form of a row to obtain the BERT
embedding (on-the-fly) for its key. We also ob-
tain the BERT embeddings of the same key from
WordNet examples (or Wikipedia sentences).5 Fi-
nally, we concatenate the WordNet definition (or
the Wikipedia sentence) corresponding to the high-
est key embedding similarity to the table. As we
want the contextually relevant definition of the key,
we use the BERT embeddings rather than non-
contextual ones (e.g., fastText). For example, the
key volume can have different meanings in vari-
ous contexts. For our example, the contextually
best definition is “In capital markets, volume, is
the total number of a security that was traded dur-
ing a given period of time.” rather than the other
definition “In thermodynamics, the volume of a
system is an extensive parameter for describing its
thermodynamic state.”.

3 Experiment and Analysis

Our experiments are designed to study the research
question: Can today’s large pre-trained models
exploit the information sources described in §2 to
better reason about tabular information?

3.1 Experimental setup

Datasets Our experiments uses InfoTabS, a tab-
ular inference dataset from Gupta et al. (2020).
The dataset is heterogeneous in the types of tables
and keys, and relies on background knowledge and
common sense. Unlike the TabFact dataset (Chen
et al., 2019), it has all three inference labels, namely
entailment, contradiction and neutral. Importantly,
for the purpose of our evaluation, it has three test
sets. In addition to the usual development set and
the test set (called α1), the dataset has two adversar-
ial test sets: a contrast set α2 that is lexically similar
to α1, but with minimal changes in the hypotheses

4Usually multi-word keys are absent in WordNet, in this
case we use Wikipedia. The WordNet definition of each word
in the key is used if the multi-word key is absent in Wikipedia.

5We prefer using WordNet examples over definition for
BERT embedding because (a) an example captures the context
in which key is used, and (b) the definition may not always
contain the key tokens.

and flip entail-contradict label, and a zero-shot set
α3 which has long tables from different domains
with little key overlap with the training set.

Models For a fair comparison with earlier base-
lines, we use RoBERTa-large (RoBERTaL) for all
our experiments. We represent the premise table
by converting each table row into a sentence, and
then appending them into a paragraph, i.e. the Para
representation of Gupta et al. (2020).

Hyperparameters Settings6 For the distracting
row removal (+DRR) step, we have a hyper-
parameter k. We experimented with k ∈
{2, 3, 4, 5, 6}, by predicting on +DRR develop-
ment premise on model trained on orignal training
set (i.e. BPR), as shown in Table 1. The devel-
opment accuracy increases significantly as k in-
creases from 2 to 4 and then from 4 to 6, increases
marginally ( 1.5% improvement). Since our goal is
to remove distracting rows, we use the lowest hy-
perparameter with good performance i.e. k = 4.7.

Train Dev k = 2 k = 3 k = 4 k = 5 k = 6

BPR DRR 71.72 74.83 77.50 78.50 79.00

Table 1: Dev accuracy on increasing hyperparameter k.

3.2 Results and Analysis

Table 2 shows the results of our experiments.

Premise Dev α1 α2 α3

Human 79.78 84.04 83.88 79.33
Para 75.55 74.88 65.55 64.94

BPR 76.42 75.29 66.50 64.26
+KG implicit 79.57 78.27 71.87 66.77
+DRR 78.77 78.13 70.90 68.98
+KG explicit 79.44 78.42 71.97 70.03

Table 2: Accuracy with the proposed modifications on
the Dev and test sets. Here, + represents the change
with respect to the previous row. Reported numbers are
the average over three random seed runs with standard
deviation of 0.33 (+KG explicit), 0.46 (+DRR), 0.61
(+KG implicit), 0.86 (BPR), over all sets. All improve-
ments are statistically significant with p < 0.05, except
α1 for BPR representation w.r.t to Para (Original). Here
the Human and Para results are taken from Gupta et al.
(2020).

6Appendix C has more details about hyperparameters.
7Indeed, the original InfoTabs work points out that no more

than four rows in a table are needed for any hypothesis.
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BPR As shown in Table 2, with BPR, we observe
that the RoBERTaL model improves performance
on all dev and test sets except α3. There are two
main reasons behind this poor performance on α3.

First, the zero-shot α3 data includes unseen keys.
The number of keys common to α3 and the training
set is 94, whereas for, dev, α1 and α2 it is 334, 312,
and 273 respectively (i.e., 3-5 times more). Second,
despite being represented by better sentences, due
to the input size restriction of RoBERTaL some
relevant rows are still ignored.

KG implicit We observe that implicit knowledge
addition via MNLI pre-training helps the model
reason and generalize better. From Table 2, we
can see significant performance improvement in
the dev and all three test sets.

DRR This leads to significant improvement in
the α3 set. We attribute this to two primary reasons:
First, α3 tables are longer (13.1 keys per table on
average, vs. 8.8 keys on average in the others),
and DRR is important to avoid automatically re-
moving keys from the bottom of a table due to
the limitations in RoBERTaL model’s input size.
Without these relevant rows, the model incorrectly
predicts the neutral label. Second, α3 is a zero-shot
dataset and has significant proportion of unseen
keys which could end up being noise for the model.
The slight decrease in performance on the dev, α1

and α2 sets can be attributed to model utilising
spurious patterns over irrelevant keys for predic-
tion.8 We validated this experimentally by testing
the original premise trained model on the DRR test
tables. Table 5 in the Appendix C shows that with-
out pruning, the model focuses on irrelevant rows
for prediction.

KG explicit With explicit contextualized knowl-
edge about the table keys, we observe a marginal
improvement in dev, α1 test sets and a significant
performance gain on the α2 and α3 test sets. Im-
provement in the α3 set shows that adding external
knowledge helps in the zero-shot setting. With α2,
the model can not utilize spurious lexical correla-
tions9 due to its adversarial nature, and is forced
to use the relevant keys in the premise tables, thus

8Performance drop of dev and α2 is also marginal i.e. (dev:
79.57 to 78.77, α1: 78.27 to 78.13, α2: 71.87 to 70.90), as
compared to InfoTabS WMD-top3 i.e (dev: 75.5 to 72.55,α1:
74.88 to 70.38, α2: 65.44 to 62.55), here WMD-top3 perfor-
mance numbers are taken from Gupta et al. (2020).

9The hypothesis-only baseline for α2 is 48.5% vs. α1:
60.5 % and dev: 60.5 % (Gupta et al., 2020)

adding explicit information about the key improves
performance more for α2 than α1 or dev. Appendix
F shows some qualitative examples.

3.3 Ablation Study
We perform an ablation study as shown in table 3,
where instead of doing all modification sequentially
one after another (+), we do only one modification
at a time to analyze its effects.

Through our ablation study we observe that:
(a) DRR improves performance on the dev, α1, and
α2 sets, but slightly degrades it on the α3 set. The
drop in performance on α3 is due to spurious arti-
fact deletion as explained in details in Appendix E.
(b) KG explicit gives performance improvement
in all sets. Furthermore, there is significant boost
in performance of the adversarial α2 and α3 sets.10

(c) Similarly, KG implicit shows significant im-
provement in all test sets. The large improvements
on the adversarial sets α2 and α3 sets, suggest that
the model can now reason better. Although, im-
plicit knowledge provides most performance gain,
all modifications are needed to obtain the best per-
formance for all sets (especially on the α3 set).11

Premise Dev α1 α2 α3

Para 75.55 74.88 65.55 64.94

DRR 76.39 75.78 67.22 64.88
KG explicit 77.16 75.38 67.88 65.50
KG implicit 79.06 78.44 71.66 67.55

Table 3: Ablation results with individual modifications.

4 Comparison with Related Work

Recently, there have been many papers which study
several NLP tasks on semi-structured tabular data.
These include tabular NLI and fact verification
tasks such as TabFact (Chen et al., 2019), and In-
foTabS (Gupta et al., 2020), various question an-
swering and semantic parsing tasks (Pasupat and
Liang, 2015; Krishnamurthy et al., 2017; Abbas
et al., 2016; Sun et al., 2016; Chen et al., 2020;
Lin et al., 2020, inter alia), and table-to-text gen-
eration and its evaluation (e.g., Parikh et al., 2020;
Radev et al., 2020). Several, models for better
representation of tables such as TAPAS (Herzig

10The KG explicit step is performed only for relevant keys
(after DRR).

11We show in Appendix D, Table 6, that implicit knowledge
addition to a non-sentential table representation i.e. Struc
(Chen et al., 2019; Gupta et al., 2020) leads to performance
improvement as well.
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et al., 2020), TaBERT (Yin et al., 2020), and Tab-
Struc (Zhang et al., 2020) were recently proposed.
Yu et al. (2018, 2021) and Eisenschlos et al. (2020)
study pre-training for improving tabular inference,
similar to our MutliNLI pre-training.

The proposed modifications in this work are sim-
ple and intuitive. Yet, existing table reasoning pa-
pers have not studied the impact of such input mod-
ifications. Furthermore, much of the recent work
focuses on building sophisticated neural models,
without explicit focus on how these models (de-
signed for raw text) adapt to the tabular data. In
this work, we argue that instead of relying on the
neural network to “magically” work for tabular
structures, we should carefully think about the rep-
resentation of semi-structured data, and the incor-
poration of both implicit and explicit knowledge
into neural models. Our work highlights that sim-
ple pre-processing steps are important, especially
for better generalization, as evident from the signif-
icant improvement in performance on adversarial
test sets with the same RoBERTa models. We rec-
ommend that these pre-processing steps should be
standardized across table reasoning tasks.

5 Conclusion & Future Work

We introduced simple and effective modifications
that rely on introducing additional knowledge to
improve tabular NLI. These modifications gov-
erns what information is provided to a tabular NLI
and how the given information is presented to the
model. We presented a case study with the recently
published InfoTabS dataset and showed that our
proposed changes lead to significant improvements.
Furthermore, we also carefully studied the effect of
these modifications on the multiple test-sets, and
why a certain modification seems to help a particu-
lar adversarial set.

We believe that our study and proposed solutions
will be valuable to researchers working on question
answering and generation problems involving both
tabular and textual inputs, such as tabular/hybrid
question answering and table-to-text generation,
especially with difficult or adversarial evaluation.
Looking ahead, our work can be extended to in-
clude explicit knowledge for hypothesis tokens as
well. To increase robustness, we can also inte-
grate structural constraints via data augmentation
through NLI training. Moreover, we expect that
structural information such as position encoding
could also help better represent tables.
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A BPR Templates

Here, we are listing down some of the diverse ex-
ample templates we have framed.

• For the table category Bus/Train Lines and
key Disabled access with BOOL value YES,
follow template: "t has k."

Orignal Premise Sentence “The Disabled

access of Tukwila International Boulevard Station

are Yes.”

BPR Sentence “Tukwila International Boule-

vard Station has Disabled access.”

• For the table category Movie and key Box of-
fice with MONEY type, follow template: "In
the k, t made v."

Orignal Premise Sentence “The Box office

of Brokeback Mountain are $178.1 million.”

BPR Sentence “In the Box office, Brokeback

Mountain made $178.1 million.”

• For the table category City and key Total with
CARDINAL type, follow template: "The k area
of t is v."

Orignal Premise Sentence “The Total of

Cusco are 435,114.”

BPR Sentence “The Total area of Cusco is

435,114.”

• For the table category Painting and key Also
known as, follow template: "The k area of t is
v."

Orignal Premise Sentence “The Also

known as of Et in Arcadia ego are Les Bergers

d’Arcadie.”

BPR Sentence “Et in Arcadia ego is Also

known as Les Bergers d’Arcadie.”

• For the table category Person and key Died
with DATE type , follow template: "t k on v."

Orignal Premise Sentence “The Died of

Jesse Ramsden are November 1800 (1800-11-05)

(aged 65) Brighton, Sussex.”

BPR Sentence “Jesse Ramsden Died on 5

November 1800 (1800-11-05) (aged 65) Brighton,

Sussex.”

B DRR: fastText and Binary weighting

fastText: For word representation, (Yadav et al.,
2019) have used BERT and Glove embeddings. In
our case, we prefer to use fastText word embed-
dings over Glove because fastText embedding uses
sub-word information which helps in capturing dif-
ferent variations of the context words. Furthermore,
fastText embeddings is also as better choice than
BERT for our task because 1. Firstly, we are embed-
ding single sentential form of diverse rows instead
of longer context similar paragraphs, 2. Secondly,
all words (especially keys) of the rows across all
the tables are used only in one context, whereas
BERT is useful when same word is used with dif-
ferent contexts across paragraphs, 3. Thirdly, in
all tables, the number sentences to select from is
bounded by maximum rows in the table, which is a
small number (8.8 in train, dev, α1, α2 and 13.1 in
α3), and 4. Lastly, using fastText is much faster to
compute than BERT for obtaining embeddings.

Binary weighting: Since, we are embedding sin-
gle sentential form of diverse rowsinstead of longer
context related paragraphs, we found that using bi-
nary weighting 0 for stop words and 1 for others is
more effective than the idf weighting, which is use-
ful only for longer paragraph context with several
lexical terms.

C Hyperparameters k vs test-sets
accuracy

We also trained a model both train and tested on
the DRR table premise for increasing values of the
hyper parameter k, as shown in Table 1. We also
test the model trained on the entire para on pruned
para with increasing value of hyperparameters k ∈
{2, 3, 4, 5, 6} for the test sets α1, α2, and α3. In
all cases, except α3, the performance with larger k
is better. The increase in performance, even with
k > 4, shows that the model is using more then
required keys for prediction. Thus, the model is
utlising the spurious pattern in irrelevant rows for
the prediction.

Train Dev k=2 k=3 k=4 k=5 k=6

+DRR +DRR 77.61 77.94 78.16 78.38 79.00
BPR +DRR 71.72 74.83 77.50 78.50 79.00

Table 4: Dev accuracy with increasing hyper parameter
k trained with both BPR and +DRR table.
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k α1 α2 α3

2 71.44 67.33 64.83
3 75.05 69.33 67.33
4 77.72 69.83 68.22
5 77.77 70.28 69.28
6 77.77 70.77 69.22

Table 5: Accuracy of model trained with orignal table
but tested with DRR table with increasing hyper param-
eter k on all test sets.

D TabFact Representation Experiment

Table 6 implicit knowledge addition effect on non-
para Struc representation i.e. a key value linearize
representation as “key k : value v”, rows separated
by semicolon “;" (Gupta et al., 2020; Chen et al.,
2019). Here too the implicit knowledge addition
leads to improvement in performance on all the
sets.

Premise Dev α1 α2 α3

Struc 77.61 75.06 69.02 64.61
+ KG implicit 79.55 78.66 72.33 70.44

Table 6: Accuracy on InfoTabS data for Struc represen-
tation of Tables. Here, + represents the change with
respect to the previous row.

E Artifacts and Model Predictions

In Table 7 we show percentage of example which
were corrected after modification and vice versa.
Surprisingly, there is a small percentage of exam-
ples which are predicted correctly earlier with orig-
inal premise (Para) but predicted wrongly after all
the modifications (Mod), although such examples
are much lesser than opposite case. We suspect that
earlier model was also relying on spurious pattern
(artifacts) for correct prediction on these examples
earlier, which are now corrupted after the proposed
modifications. Hence, the new model struggle to
predict correctly on such examples.

Para Mod Dev α1 α2 α3

X × 6.77 7.83 9.27 10.01
× X 10.94 12.55 14.33 16.05

Table 7: Correct vs Incorrect Predictions for Para
model (Gupta et al., 2020) and the model after the mod-
ifcations (Mod).

In the next section F, we also shows qualitative
examples, where modification helps model predict

correctly. We also provide some examples via dis-
tracting row removal modification, where model
fails after modification.

F Qualitative Examples

In this section, we provide examples where model
is able to predict well after the proposed modifi-
cations. We also provide some examples, where
model struggles to make the correct prediction after
distracting row removal (DRR) modification.

F.1 BPR

Original Premise The Birth name of Eva Mendes

are Eva de la Caridad Méndez. Eva Mendes was Born

on March 5, 1974 (1974-03-05) (age 44) Miami, Florida,

U.S.. The Occupation of Eva Mendes are Actress, model,

businesswoman. The Years active of Eva Mendes are 1998

- present. The Partner(s) of Eva Mendes are Ryan Gosling

(2011 - present). The Children of Eva Mendes are 2.

Better Paragraph Premise Eva Mendes is a per-

son. The birth name of Eva Mendes is Eva de la Caridad

Méndez. Eva Mendes was born on March 5, 1974 (1974-

03-05) (age 44) Miami, Florida, U.S.. The occupation of

Eva Mendes is Actress, model, businesswoman. The years

active of Eva Mendes was on 1998 - present. The partner(s)

of Eva Mendes is Ryan Gosling (2011 - present). The

number of children of Eva Mendes are 2.

Hypothesis Eva Mendes has two children.

Premise Label

Human Label (Gold) Entailed
Orignal Premise Neutral

+BPR Entailed

Table 8: Prediction after BPR. Here, + represents the
change with respect to the previous row.

Result and Explanation In this example from
α2, the model predicts Neutral for this hypothe-
sis with orignal premise. However, forming better
sentences by adding the "number of children are
2" (highlighted as green) in case of CARDINAL
type for the category PERSON helps the model
understand the relation and reasoning behind the
children and the number two and arrive at the cor-
rect prediction of entailment.
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F.2 KG implicit

Original Premise Janet Leigh is a person. Janet

Leigh was born as Jeanette Helen Morrison (1927-07-06)

July 6, 1927 Merced, California, U.S. Janet Leigh died

on October 3, 2004 (2004-10-03) (aged 77) Los Angeles,

California, U.S.. The resting place of Janet Leigh is West-

wood Village Memorial Park Cemetery. The alma mater of

Janet Leigh is University of the Pacific. The occupation of

Janet Leigh are Actress, singer, dancer, author. The years

active of Janet Leigh was on 1947-2004. The political

party of Janet Leigh is Democratic. The spouse(s) of Janet

Leigh are John Carlisle (m. 1942; annulled 1942), Stanley

Reames (m. 1945; div. 1949), Tony Curtis (m. 1951; div.

1962), Robert Brandt (m. 1962). The children of Janet

Leigh are Kelly Curtis, Jamie Lee Curtis.

Hypothesis A Janet Leigh’s career spanned over 55

years long.

Hypothesis B Janet Leigh’s career spanned under 55

years long.

Premise Label

Human Label (Gold) Entailed
Orignal Premise Entailed
+ KG implicit Entailed

Table 9: Prediction on Hypothesis A. Here, + repre-
sents the change with respect to the previous row

Premise Label

Human Label (Gold) Contradiction
Orignal Premise Entailed
+ KG implicit Contradiction

Table 10: Prediction on Hypothesis B (from α2). Here,
+ represents the change with respect to the previous row

Result and Explanation In this example from
α2, the model without implicit knowledge and the
model with implicit knowledge addition predict the
correct label on the Hypothesis A. However for
Hypothesis B which is an example from α2, and
originally generated by replacing the word "over"
to word "under" in the Hypothesis A and flipping
gold label from entail to contradiction, the ealier
model which is using artifacts over lexical patterns
arrive to predict the original wrong label entail
instead of contradiction. On adding implicit knowl-
edge while training, the model is now able to reason
rather than relying on artifacts and correctly pre-
dicts contradiction. Note, that both hypothesis A

and hypothesis B require exactly same reasoning
for inference i.e. they are equally hard.

F.3 KG explicit

F.4 DRR

Original Premise The pronunciation of Fluorine are

(FLOOR-een, -in, -yn) and (FLOR-een, -in, -yn). The

allotropes of Fluorine is alpha, beta. The appearance of

Fluorine is gas: very pale yellow , liquid: bright yellow ,

solid: alpha is opaque, beta is transparent. The standard

atomic weight are, std(f) of Fluorine is 18.998403163(6).

The atomic number (z) of Fluorine is 9. The group of

Fluorine is group 17 (halogens). The period of Fluorine

is period 2. The block of Fluorine is p-block. The element

category of Fluorine is Reactive nonmetal. The electron

configuration of Fluorine is [He] 2s 2 2p 5. The electrons

per shell of Fluorine is 2, 7. The phase at stp of Fluorine

is gas. The melting point of Fluorine is (F-2) 53.48 K (-

219.67 °C, -363.41 °F). The boiling point of Fluorine is

(F 2 ) 85.03 K (-188.11 °C, -306.60 °F). The density (at

stp) of Fluorine is 1.696 g/L. The when liquid (at b.p.) of

Fluorine is 1.505 g/cm 3. The triple point of Fluorine is

53.48 K, 90 kPa. The critical point of Fluorine is 144.41

K, 5.1724 MPa. The heat of vaporization of Fluorine is

6.51 kJ/mol. The molar heat capacity of Fluorine is C p :

31 J/(mol·K) (at 21.1 °C) , C v : 23 J/(mol·K) (at 21.1 °C).

The oxidation states of Fluorine is -1 (oxidizes oxygen).

The electronegativity of Fluorine is Pauling scale: 3.98.

Fluorine was ionization energies on 1st: 1681 kJ/mol, 2nd:

3374 kJ/mol, 3rd: 6147 kJ/mol, (more). The covalent

radius of Fluorine is 64 pm. The van der waals radius of

Fluorine is 135 pm. The natural occurrence of Fluorine

is primordial. The thermal conductivity of Fluorine is

0.02591 W/(m·K). The magnetic ordering of Fluorine is

diamagnetic (-1.2×10 -4 ). The cas number of Fluorine is

7782-41-4. The naming of Fluorine is after the mineral

fluorite, itself named after Latin fluo (to flow, in smelting).

The discovery of Fluorine is André-Marie Ampère (1810).

The first isolation of Fluorine is Henri Moissan (June 26,

1886). The named by of Fluorine is Humphry Davy.

Distracting Row Removal (DRR) The first iso-

lation of Fluorine is Henri Moissan (June 26, 1886). The

group of Fluorine is group 17 (halogens). The discovery

of Fluorine is André-Marie Ampère (1810). Fluorine was

ionization energies on 1st: 1681 kJ/mol, 2nd: 3374 kJ/mol,

3rd: 6147 kJ/mol, (more).

Hypothesis Flourine was discovered in the 18th cen-

tury.
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Premise Label

Human Label (Gold) Contradiction
Orignal Premise Neutral

+DRR Contradiction

Table 11: Prediction after DRR. Here, + represents the
change with respect to the previous row.

Result and Explanation In this example from
the α3 set, removing distracting rows (sentence
except the one in green and blue) definitely helps
as there are irrelevant distracting noise and also
make premise paragraph long beyond BERT maxi-
mum tokenization limits. Before DRR is applied,
the model predicts neutral due to a) distracting
rows and b) required information i.e. relevant keys-
rows highlighted as green being removed due to
maximum tokenization limitation (it’s second last
sentence). However, after DRR, the prune informa-
tion retained is only the relevant keys highlighted
as green and thus the model is able to predict the
correct label.

Negative Example In some examples distract-
ing row removal for DRR remove an relevant rows
and hence the model failed to predict correctly on
the DRR premise, as shown below:

Original Premise Et in Arcadia ego is a painting. Et

in Arcadia ego is also known as Les Bergers d’Arcadie.

The artist of Et in Arcadia ego is Nicolas Poussin. The

year of Et in Arcadia ego is 1637 - 1638. The medium of

Et in Arcadia ego is oil on canvas. The dimensions of Et

in Arcadia ego is 87 cm 120 cm (34.25 in 47.24 in). The

location of Et in Arcadia ego is Musee du Louvre.

Distracting Row Removal (DRR) Et in Arcadia

ego is a painting. The artist of Et in Arcadia ego is Nicolas

Poussin. The medium of Et in Arcadia ego is oil on canvas.

The dimensions of Et in Arcadia ego is 87 cm 120 cm

(34.25 in 47.24 in).

Hypothesis The art piece Et in Arcadia ego is stored
in the United Kingdom

.

Premise Label

Human Label (Gold) Contradiction
Orignal Premise Contradiction

+DRR Neutral

Table 12: Prediction after DRR. Here, + represents the
change with respect to the previous row.

Result and Explanation In this example from
the Dev set, the DRR technique used removes the
required key "Location" (highlighted in red) from
the para representation. Hence, the model here
predicts neutral as the information regarding where
the painting is stored i.e. "Location" is removed
in the DRR, which the model require for making
the correct inference. While in original para, this
information is still present and the model is able
to arrive at the correct label. Another interesting
observation is RoBERTaL knows Musee du Louvre
is a museum in the United Kingdom, showing sign
of world-knowledge.

Negative Example In another negative examples
distracting row removal for DRR got the relevant
rows correct but still the model failed to predict
correct label due to spurious correlation, as shown
below:

Original Premise Idiocracy is a movie. Idiocracy

was directed by Mike Judge. Idiocracy was produced by

Mike Judge, Elysa Koplovitz, Michael Nelson. Idiocracy

was written by Etan Cohen, Mike Judge. Idiocracy was

starring Luke Wilson, Maya Rudolph, Dax Shepard. Idioc-

racy was music by Theodore Shapiro. The cinematography

of Idiocracy was by Tim Suhrstedt. Idiocracy was edited

by David Rennie. The production company of Idiocracy

is Ternion. Idiocracy was distributed by 20th Century Fox.

The release date of Idiocracy is September 1, 2006. The

running time of Idiocracy is 84 minutes. The country of

Idiocracy is United States. The language of Idiocracy is

English. The budget of Idiocracy is $2-4 million. In the

box office, Idiocracy made $495,303 (worldwide).

Distracting Row Removal (DRR) Idiocracy

was directed by Mike Judge. Idiocracy was produced by

Mike Judge, Elysa Koplovitz, Michael Nelson. Idiocracy

was written by Etan Cohen, Mike Judge. Idiocracy was

edited by David Rennie.

Hypothesis Idiocracy was directed and written by the

same person.

Premise Label

Human Label (Gold) Entailed
Orignal Premise Entailed

+DRR Neutral

Table 13: Prediction after DRR. Here, + represents the
change with respect to the previous row.
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Result and Explanation In this example from
the Dev set, the model before DRR predicts the
correct label but however on DRR, it predicts in-
correct label of neutral. Despite the fact that both
the relevant rows require for inference (highlighted
in green) is present after DRR. This shows, that
the model is looking at more keys than required
in the initial case, which are eliminated in the
DRR, which force the model to change it predic-
tion. Thus, model is utilising spurious correlation
from irrelevant rows to predict the label.

Orignal Premise Julius Caesar was born on 12 or 13

July 100 BC Rome. Julius Caesar died on 15 March 44

BC (aged 55) Rome. The resting place of Julius Caesar is

Temple of Caesar, Rome. The spouse(s) of Julius Caesar

are Cornelia (84-69 BC; her death), Pompeia (67-61 BC;

divorced), Calpurnia (59-44 BC; his death).

Orignal Premise + KG explicit Julius Caesar

died on 15 March 44 BC (aged 55) Rome. The rest-
ing place of Julius Caesar is Temple of Caesar, Rome.
Julius Caesar was born on 12 or 13 July 100 BC Rome.

The spouse(s) of Julius Caesar are Cornelia (84-69 BC; her

death), Pompeia (67-61 BC; divorced), Calpurnia (59-44

BC; his death). KEY: Died is defined as pass from physical

life and lose all bodily attributes and functions necessary to

sustain life . KEY: Resting place is defined as a cemetery

or graveyard is a place where the remains of dead people

are buried or otherwise interred . KEY: Born is defined as

british nuclear physicist (born in germany) honored for his

contributions to quantum mechanics (1882-1970) . KEY:

Spouse is defined as a spouse is a significant other in a

marriage, civil union, or common-law marriage .

Hypothesis Julius Caesar was buried in Rome.

Model Label

Human Label (Gold) Entailed
Original Premise Neutral

+ KG explicit Entailed

Table 14: Prediction after KG explicit addition. Here, +
represents the change with respect to the previous row.

Result and Explanation In this example from
α2, the model without explicit knowledge predicts
neutral for the hypothesis as it is not able to infer
that resting place is where people are buried, so it
predicts neutral as it implicitly lack buried key un-
derstanding. On explicit KG addition (highlighted
as blue+ green), we add the definition of resting
place to be the place where remains of the dead

are buried (highlighted as green). Now the model
uses this extra information (highlighted as green)
plus the original key related to death (highlighted
in bold) to correctly infer that the statement Caesar
is buried in Rome is entailed.


