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Abstract

We propose a simple method to align mul-
tilingual contextual embeddings as a post-
pretraining step for improved cross-lingual
transferability of the pretrained language mod-
els. Using parallel data, our method aligns
embeddings on the word level through the re-
cently proposed Translation Language Mod-
eling objective as well as on the sentence
level via contrastive learning and random in-
put shuffling. We also perform sentence-level
code-switching with English when finetuning
on downstream tasks. On XNLI, our best
model (initialized from mBERT) improves
over mBERT by 4.7% in the zero-shot setting
and achieves comparable result to XLM for
translate-train while using less than 18% of the
same parallel data and 31% fewer model pa-
rameters. On MLQA, our model outperforms
XLM-RBase, which has 57% more parameters
than ours.

1 Introduction

Building on the success of monolingual pretrained
language models (LM) such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), their multi-
lingual counterparts mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020) are trained
using the same objectives—Masked Language
Modeling (MLM) and in the case of mBERT, Next
Sentence Prediction (NSP). MLM is applied to
monolingual text that covers over 100 languages.
Despite the absence of parallel data and explicit
alignment signals, these models transfer surpris-
ingly well from high resource languages, such as
English, to other languages. On the Natural Lan-
guage Inference (NLI) task XNLI (Conneau et al.,
2018), a text classification model trained on En-
glish training data can be directly applied to the
other 14 languages and achieve respectable perfor-
mance. Having a single model that can serve over
100 languages also has important business applica-
tions.

Recent work improves upon these pretrained
models by adding cross-lingual tasks leveraging
parallel data that always involve English. Conneau
and Lample (2019) pretrain a new Transformer-
based (Vaswani et al., 2017) model from scratch
with an MLM objective on monolingual data, and
a Translation Language Modeling (TLM) objective
on parallel data. Cao et al. (2020) align mBERT
embeddings in a post-hoc manner: They first apply
a statistical toolkit, FastAlign (Dyer et al., 2013),
to create word alignments on parallel sentences.
Then, mBERT is tuned via minimizing the mean
squared error between the embeddings of English
words and those of the corresponding words in
other languages. Such post-hoc approach suffers
from the limitations of word-alignment toolkits: (1)
the noises from FastAlign can lead to error propaga-
tion to the rest of the pipeline; (2) FastAlign mainly
creates the alignments with word-level translation
and usually overlooks the contextual semantic com-
positions. As a result, the tuned mBERT is biased
to shallow cross-lingual correspondence. Impor-
tantly, both approaches only involve word-level
alignment tasks.

In this work, we focus on self-supervised,
alignment-oriented training tasks using minimum
parallel data to improve mBERT’s cross-lingual
transferability. We propose a Post-Pretraining
Alignment (PPA) method consisting of both word-
level and sentence-level alignment, as well as a
finetuning technique on downstream tasks that take
pairs of text as input, such as NLI and Question
Answering (QA). Specifically, we use a slightly dif-
ferent version of TLM as our word-level alignment
task and contrastive learning (Hadsell et al., 2006)
on mBERT’s [CLS] tokens to align sentence-level
representations. Both tasks are self-supervised
and do not require pre-alignment tools such as
FastAlign. Our sentence-level alignment is imple-
mented using MoCo (He et al., 2020), an instance
discrimination-based method of contrastive learn-
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Figure 1: Model structure for our Post-Pretraining
Alignment method using parallel data. We use MoCo
to implement our sentence-level objective and TLM for
our word-level objective. The model is trained in a
multi-task manner with both objectives.

ing that was recently proposed for self-supervised
representation learning in computer vision. Lastly,
when finetuning on NLI and QA tasks for non-
English languages, we perform sentence-level code-
switching with English as a form of both alignment
and data augmentation. We conduct controlled
experiments on XNLI and MLQA (Lewis et al.,
2020), leveraging varying amounts of parallel data
during alignment. We then conduct an ablation
study that shows the effectiveness of our method.
On XNLI, our aligned mBERT improves over the
original mBERT by 4.7% for zero-shot transfer,
and outperforms Cao et al. (2020) while using the
same amount of parallel data from the same source.
For translate-train, where translation of English
training data is available in the target language, our
model achieves comparable performance to XLM
while using far fewer resources. On MLQA, we get
2.3% improvement over mBERT and outperform
XLM-RBase for zero-shot transfer.

2 Method

This section introduces our proposed Post-
Pretraining Alignment (PPA) method. We first de-
scribe the MoCo contrastive learning framework
and how we use it for sentence-level alignment.
Next, we describe the finer-grained word-level
alignment with TLM. Finally, when training data
in the target language is available, we incorporate
sentence-level code-switching as a form of both
alignment and data augmentation to complement

PPA. Figure 1 shows our overall model structure.

Background: Contrastive Learning Instance
discrimination-based contrastive learning aims to
bring two views of the same source image closer
to each other in the representation space while en-
couraging views of different source images to be
dissimilar through a contrastive loss. Recent ad-
vances in this area, such as SimCLR (Chen et al.,
2020) and MoCo (He et al., 2020) have bridged
the gap in performance between self-supervised
representation learning and fully-supervised meth-
ods on the ImageNet (Deng et al., 2009) dataset.
As a key feature for both methods, a large number
of negative examples per instance are necessary
for the models to learn such good representations.
SimCLR uses in-batch negative example sampling,
thus requiring a large batch size, whereas MoCo
stores negative examples in a queue and casts the
contrastive learning task as dictionary (query-key)
lookup. In what follows, we first describe MoCo
and then how we use it for sentence-level align-
ment.

Concretely, MoCo employs a dual-encoder ar-
chitecture. Given two views v1 and v2 of the same
image, v1 is encoded by the query encoder fq and
v2 by the momentum encoder fk. v1 and v2 form a
positive pair. Negative examples are views of differ-
ent source images, and are stored in a queue ∈ K,
which is randomly initialized. K is usually a large
number (e.g., K = 65, 536 for ImageNet). Nega-
tive pairs are formed by comparing v1 with each
item in the queue. Similarity between pairs is mea-
sured by dot product. MoCo uses the InfoNCE loss
(van den Oord et al., 2019) to bring positive pairs
closer to each other and push negative pairs apart.
After a batch of view pairs are processed, those en-
coded by the momentum encoder are added to the
queue as negative examples for future queries. Dur-
ing training, the query encoder is updated by the
optimizer while the momentum encoder is updated
by the exponential moving average of the query en-
coder’s parameters to maintain queue consistency:

θk = mθk + (1−m)θq (1)

where θq and θk are model parameters of fq and
fk, respectively. m is the momentum coefficient.

2.1 Sentence-Level Alignment Objective
Our sentence-level alignment falls under the gen-
eral problem of bringing two views of inputs
from the same source closer in the representation
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space while keeping those from different sources
dissimilar through a contrastive loss. From a cross-
lingual alignment perspective, we treat an English
sequence Sen

i and its translation Str
i in another lan-

guage tr ∈ L as two manifestations of the same
semantics. At the same time, sentences that are
not translations of each other should be further
apart in the representation space. Given parallel
corpora consisting of {(Sen

1 , Str
1 ), . . . , (Sen

N , Str
N )},

we align sentence representations in all the differ-
ent languages together using MoCo.

We use the pretrained mBERT model to initialize
both the query and momentum encoders. mBERT
is made of 12 Transformer blocks, 12 attention
heads, and hidden size dh = 768. For input, in-
stead of feeding the query encoder with English ex-
amples and the momentum encoder with translation
examples or vice versa, we propose a random in-
put shuffling approach. Specifically, we randomly
shuffle the order of Sen

i and Str
i when feeding the

two encoders, so that the query encoder sees both
English and translation examples. We observe that
this is a crucial step towards learning good mul-
tilingual representations using our method. The
final hidden state h ∈ R1×dh of the [CLS] token,
normalized with L2 norm, is treated as the sentence
representation 1. Following Chen et al. (2020), we
add a non-linear projection layer on top of h:

z =W2ReLU(W1h), (2)

where W1 ∈ Rdh×dh , W2 ∈ Rdk×dh , and dk is set
to 300. The model is trained using the InfoNCE
loss:

LMoCo = − log
exp(zq · zk+/τ)∑K
k=1 exp(zq · zk/τ)

, (3)

where τ is a temperature parameter. In our im-
plementation, we use a relatively small batch size
of 128, resulting in more frequent parameter up-
dates than if a large batch size were used. Items
enqueued early on can thus become outdated with
a large queue, so we scale down the queue size to
K = 32, 000 to prevent the queue from becoming
stale.

2.2 Word-Level Alignment Objective
We use TLM for word-level alignment. TLM is an
extension of MLM that operates on bilingual data—

1Alternatively, we also experimented with mean-pooling
of the last layer’s embeddings as the sentence representation,
but it performed slightly worse than using the [CLS] token.

parallel sentences are concatenated and MLM is ap-
plied to the combined bilingual sequence. Different
from Conneau and Lample (2019), we do not reset
positional embeddings when forming the bilingual
sequence, and we also do not use language embed-
dings. In addition, the order of Sen

i and Str
i during

concatenation is determined by the random input
shuffling from the sentence-level alignment step
and we add a [SEP] token between Sen

i and Str
i .

We randomly mask 15% of the WordPiece to-
kens in each combined sequence. Masking is done
by using a special [MASK] token 80% of the times,
a random token in the vocabulary 10% of the times,
and unchanged for the remaining 10%. TLM is
performed using the query encoder of MoCo. Our
final PPA model is trained in a multi-task manner
with both sentence-level objective and TLM:

L = LMoCo + LTLM, (4)

2.3 Finetuning on Downstream Tasks
After an alignment model is trained with PPA, we
extract the query encoder from MoCo and fine-
tune it on downstream tasks for evaluation. We
follow the standard way of finetuning BERT-like
models for sequence classification and QA tasks:
(1) on XNLI, we concatenate the premise with the
hypothesis, and add a [SEP] token in between.
A softmax classifier is added on top of the final
hidden state of the [CLS] token; (2) on MLQA,
we concatenate the question with the context, and
add a [SEP] token in between. We add two linear
layers on top of mBERT followed by softmax over
the context tokens to predict answer start and end
positions, respectively.

We conduct experiments in two settings: 1. Zero-
shot cross-lingual transfer, where training data is
available in English but not in target languages. 2.
Translate-train, where the English training set is
(machine) translated to all the target languages. For
the latter setting, we perform data augmentation
with code-switched inputs, when training on lan-
guages other than English. For example, a Spanish
question qes and context ces pair can be augmented
to two question-context pairs (qes, cen) and (qen,
ces) with code-switching, resulting in 2x training
data 2. The same goes for XNLI with premises and
hypotheses. The code-switching is always between
English, and a target language. During training, we

2The original question-context pair (qes, ces) is not used
for training as it did not help improve model performance in
our experiments.
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ensure the two augmented pairs appear in the same
batch.

3 Experimental Settings

3.1 Parallel Data for Post-Pretraining

Parallel Data All parallel data we use involve
English as the source language. Specifically,
we collect en-fr, en-es, en-de parallel pairs from
Europarl, en-ar, en-zh from MultiUN (Ziemski
et al., 2016), en-hi from IITB (Kunchukuttan
et al., 2018), and en-bg from both Europarl and
EUbookshop. All datasets were downloaded from
the OPUS3 website (Tiedemann, 2012). In our ex-
periments, we vary the number of parallel sentence
pairs for PPA. For each language, we take the first
250k, 600k, and 2M English-translation parallel
sentence pairs except for those too short (where
either sentence has less than 10 WordPiece tokens),
or too long (where both sentences concatenated
together have more than 128 WordPiece tokens).
Table 1 shows the actual number of parallel pairs
in each of our 250k, 600k, and 2M settings.

3.2 Evaluation Benchmarks

XNLI is an evaluation dataset for cross-lingual
NLI that covers 15 languages. The dataset is
human-translated from the development and test
sets of the English MultiNLI dataset (Williams
et al., 2018). Given a sentence pair of premise
and hypothesis, the task is to classify their rela-
tionship as entailment, contradiction, and neutral.
For zero-shot cross-lingual transfer, we train on the
English MultiNLI training set, and apply the model
to the test sets of the other languages. For translate-
train, we train on translation data that come with
the dataset 4.

MLQA is an evaluation dataset for QA that cov-
ers seven languages. The dataset is derived from
a three step process. (1) Parallel sentence mining
from Wikipedia of the languages. (2) English ques-
tion annotation and answer span annotation on En-
glish context. (3) Professional translation of En-
glish questions to the other languages as well as
answer span annotation. MLQA has two evaluation
tasks: (a) Cross-lingual transfer (XLT), where the
question and context are in the same language. (b)
Generalized cross-lingual transfer (G-XLT), where
the question and context are in different languages.

3http://opus.nlpl.eu/
4https://cims.nyu.edu/~sbowman/xnli/

We focus on XLT in this work. For zero-shot cross-
lingual transfer, we train on the English SQuAD
v1.1 (Rajpurkar et al., 2016) training set. For
translate-train, we train on translation data provided
in Hu et al. (2020) 5

3.3 Training Details

For both PPA and finetuning on downstream tasks,
we use the AdamW optimizer with 0.01 weight
decay and a linear learning rate scheduler. For
PPA, we use a batch size of 128, mBERT max se-
quence length 128 and learning rate warmup for the
first 10% of the total iterations, peaking at 0.00003.
The MoCo momentum is set to 0.999, queue size
32000 and temperature 0.05. Our PPA models are
trained for 10 epochs, except for the 2M setting
where 5 epochs are trained. On XNLI, we use a
batch size of 32, mBERT max sequence length 128
and finetune the PPA model for 2 epochs. Learn-
ing rate peaks at 0.00005 and warmup is done to
the first 1000 iterations. On MLQA, mBERT max
sequence length is set to 386 and peak learning
rate 0.00003. The other parameters are the same as
XNLI. Our experiments are run on a single 32 GB
V100 GPU, except for PPA training that involves
either MLM or TLM, where two such GPUs are
used. We also use mixed-precision training to save
on GPU memory and speed up experiments.

4 Results

We report results on the test set of XNLI and
MLQA and we do hyperparameter searching on the
development set. All the experiments for translate-
train were done using the code-switching technique
introduced in Section 2.

XNLI Table 2 shows results on XNLI measured
by accuracy. Devlin et al. (2019) only provide re-
sults on a few languages6, so we use the mBERT re-
sults from Hu et al. (2020) as our baseline for zero-
shot cross-lingual transfer, and Wu and Dredze
(2019) for translate-train. Our best model, trained
with 2M parallel sentences per language improves
over mBERT baseline by 4.7% for zero-shot trans-
fer, and 3.2% for translate-train.

Compared to Cao et al. (2020), which use 250k
parallel sentences per language from the same
sources as we do for post-pretraining alignment,

5https://github.com/google-research/
xtreme

6https://github.com/google-research/
bert/blob/master/multilingual.md

http://opus.nlpl.eu/
https://cims.nyu.edu/~sbowman/xnli/
https://github.com/google-research/xtreme
https://github.com/google-research/xtreme
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Resource fr es de bg ar zh hi total

Original data

MultiUN 14.2M 12.2M - - 10.6M 10.5M -
Europarl 2.1M 2.0M 2.0M 0.4M - - -
EUbookshop - - 9.6M 0.2M - - -
IITB - - - - - - 1.6M

Considered in this paper

MultiUN - - - - 10.6M 10.5M -
Europarl 2.1M 2.0M 2.0M 0.4M - - -
EUbookshop - - - 0.2M - - -
IITB - - - - - - 1.6M
Total 2.1M 2.0M 2.0M 0.6M 10.6M 10.5M 1.6M

Used for our post-pretraining alignment (PPA)

Ours (250k) 250k 250k 250k 250k 250k 250k 250k 1.8M
Ours (600k) 600k 600k 600k 467k 600k 600k 600k 4.1M
Ours (2M) 1.8M 1.7M 1.7M 467k 2.0M 2.0M 0.8M 10.5M

Used by other approaches

Cao et al. (2020)a 250k 250k 250k 250k 250k 250k 250k 1.8M
Artetxe and Schwenk (2019)b - - - - - - - 223M
XLM (Conneau and Lample, 2019)c 14.2M 12.2M 9.6M 0.2M 10.6M 10.5M 1.6M 58.9M

Table 1: Parallel data statistics. All parallel data involve English as source language. We use Europarl for en-fr, en-
es, and en-de, both Europarl and EUbookshop for en-bg, MultiUN for en-ar, en-zh, and IITB for en-hi. Our 250k
setting uses an equal amount of data from the same source as Cao et al. (2020). Our 2M setting uses approximately
63% and 17.8% of the parallel data Artetxe and Schwenk (2019) and Conneau and Lample (2019) use, respectively.

aCao et al. (2020) uses the same 250k parallel corpora as our 250k setting, thus giving an apple-to-apple comparison.
bArtetxe and Schwenk (2019)’s number includes a total of 93 languages.
cWe only list the number of parallel sentences XLM uses for the languages we consider.

our 250k model does better for all languages con-
sidered and we do not rely on the word-to-word
pre-alignment step using FastAlign, which is prone
to error propagation to the rest of the pipeline.

Compared to XLM, our 250k, 600k and 2M set-
tings represent 3.1%, 7% and 17.8% of the parallel
data used by XLM, respectively (see Table 1). The
XLM model also has 45% more parameters than
ours as Table 3 shows. Furthermore, XLM trained
with MLM only is already significantly better than
mBERT even though the source of its training data
is the same as mBERT from Wikipedia. One rea-
son could be that XLM contains 45% more model
parameters than mBERT as model depth and ca-
pacity are shown to be key to cross-lingual success
(K et al., 2020). Additionally, Wu and Dredze
(2019) hypothesize that limiting pretraining to the
languages used by downstream tasks may be bene-
ficial since XLM models are pretrained on the 15
XNLI languages only. Our 2M model bridges the
gap between mBERT and XLM from 7.5% to 2.8%
for zero-shot transfer. Note that, for bg, our total
processed pool of en-bg data consists of 456k paral-
lel sentences, so there is no difference in en-bg data
between our 600k and 2M settings. For translate-
train, our model achieves comparable performance

to XLM with the further help of code-switching
during finetuning.

Our alignment-oriented method is, to a large de-
gree, upper-bounded by the English performance,
since all our parallel data involve English and all
the other languages are implicitly aligning with En-
glish through our PPA objectives. Our 2M model
is able to improve the English performance to 82.4
from the mBERT baseline, but it is still lower
than XLM (MLM), and much lower than XLM
(MLM+TLM). We hypothesize that more high-
quality monolingual data and model capacity are
needed to further improve our English performance,
thereby helping other languages better align with
it.

MLQA Table 4 shows results on MLQA mea-
sured by F1 score. We notice the mBERT base-
line from the original MLQA paper is significantly
lower than that from Hu et al. (2020), so we use
the latter as our baseline. Our 2M model outper-
forms the baseline by 2.3% for zero-shot and is
also 0.2% better than XLM-RBase, which uses 57%
more model parameters than mBERT as Table 3
shows. For translate-train, our 250k model is 1.3%
better than the baseline.

Comparing our model performance using vary-
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Model en fr es de bg ar zh hi avg

Zero-shot cross-lingual transfer

mBERT (Devlin et al., 2019) 81.4 - 74.3 70.5 - 62.1 63.8 - -
mBERT from (Hu et al., 2020) 80.8 73.4 73.5 70.0 68.0 64.3 67.8 58.9 69.6
Cao et al. (2020) 80.1 74.5 75.5 73.1 73.4 - - - -
Artetxe and Schwenk (2019) 73.9 71.9 72.9 72.6 74.2 71.4 71.4 65.5 71.7
Ours (250k) 82.4 75.5 76.2 73.3 74.6 68.2 71.7 62.8 73.1
Ours (600k) 82.4 76.7 76.4 74.0 74.1 69.1 72.3 66.9 74.0
Ours (2M) 82.8 76.6 76.7 74.2 73.8 70.3 72.8 66.9 74.3
XLM (MLM) 83.2 76.5 76.3 74.2 74.0 68.5 71.9 65.7 73.8
XLM (MLM + TLM) 85.0 78.7 78.9 77.8 77.4 73.1 76.5 69.6 77.1

Translate-train

mBERT (Devlin et al., 2019) 81.9 - 77.8 75.9 - 70.7 76.6 - -
mBERT from (Wu and Dredze, 2019) 82.1 76.9 78.5 74.8 75.4 70.8 76.2 65.3 75.0
Ours (250k) 82.4 78.8 79.0 78.7 78.4 74.0 77.9 69.6 77.4
Ours (600k) 82.4 79.7 79.7 77.9 79.0 75.2 77.8 71.5 77.9
Ours (2M) 82.8 79.7 80.6 78.6 78.8 75.2 78.0 72.0 78.2
XLM (Conneau and Lample, 2019) 85.0 80.2 80.8 80.3 79.3 76.5 78.6 72.3 79.1

Table 2: XNLI accuracy scores for each language. After alignment, our best model improves over mBERT by 4.7%
for zero-shot transfer, and achieves comparable performance to XLM for translate-train. Artetxe and Schwenk
(2019) use 223M parallel sentences covering 93 languages. XLM uses 58.9M parallel sentences (for the seven
languages we consider) with 40% more parameters. Our approach (250k, 600k, and 2M per language) uses a total
of 1.8M, 4.1M, and 10.5M parallel sentences, respectively.

Model # langs L Hm Hff A V # params

mBERT 104 12 768 3072 12 110k 172M
XLM 15 12 1024 4096 8 95k 250M
XLM-RBase 100 12 768 3072 12 250k 270M
Ours 104 12 768 3072 12 110k 172M

Table 3: Model architecture and sizes from Conneau
et al. (2020). L is the number of Transformer layers,
Hm is the hidden size, Hff is the dimension of the
feed-forward layer, A is the number of attention heads,
and V is the vocabulary size.

ing amounts of parallel data, we observe that 600k
per language is our sweet spot considering the
trade-off between resource and performance. Go-
ing up to 2M helps on XNLI, but less significantly
compared to the gain going from 250k to 600k. On
MLQA, surprisingly, 250k slightly outperforms the
other two for translate-train.

Ablation Table 5 shows the contribution of each
component of our method on XNLI. Removing
TLM (-TLM) consistently leads to about 1% accu-
racy drop across the board, showing positive effects
of the word-alignment objective. To better under-
stand TLM’s consistent improvement, we replace
TLM with MLM (repl TLM w/ MLM), where we
treat Sen

i and Str
i from the parallel corpora as sep-

arate monolingual sequences and perform MLM
on each of them. The masking scheme is the same

as TLM described in Section 2. We observe that
MLM does not bring significant improvement. This
confirms that the improvement of TLM is not from
the encoders being trained with more data and iter-
ations. Instead, the word-alignment nature of TLM
does help the multilingual training.

Comparing our model without word-level align-
ment, i.e., -TLM, to the baseline mBERT in Table 2,
we get 2–4% improvement in the zero-shot setting
and 1–2% improvement in translate-train as the
amount of parallel data is increased. These are rela-
tively large improvements considering the fact that
only sentence-level alignment is used. This also
conforms to our intuition that sentence-level align-
ment is a good fit here since XNLI is a sentence-
level task.

In the zero-shot setting, removing MoCo
(-MoCo) performs similarly to -TLM, where we
observe an accuracy drop of about 1% compared
to our full system. In translate-train, -MoCo out-
performs -TLM and even matches the full system
performance for 250k.

Finally, we show ablation result for our code-
switching in translate-train. On average, code-
switching provides an additional gain of 1%.

5 Related Work

Training Multilingual LMs with Shared Vocab-
ulary mBERT (Devlin et al., 2019) is trained us-
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Model en ar de es hi zh avg

Zero-shot cross-lingual transfer

mBERT from (Lewis et al., 2020) 77.7 45.7 57.9 64.3 43.8 57.5 57.8
mBERT from (Hu et al., 2020) 80.2 52.3 59.0 67.4 50.2 59.6 61.5
Ours (250k) 80.0 52.6 63.2 67.7 54.1 60.5 63.0
Ours (600k) 79.7 52.4 62.8 67.6 58.3 60.4 63.5
Ours (2M) 79.8 53.8 62.3 67.7 57.9 61.5 63.8
XLM from (Lewis et al., 2020) 74.9 54.8 62.2 68.0 48.8 61.1 61.6
XLM-RBase (Conneau et al., 2020) 77.1 54.9 60.9 67.4 59.4 61.8 63.6

Translate-train

mBERT from (Lewis et al., 2020) 77.7 51.8 62.0 53.9 55.0 61.4 60.3
mBERT from (Hu et al., 2020) 80.2 55.0 64.6 70.0 60.1 63.9 65.6
Ours (250k) 80.0 58.0 65.7 71.0 62.0 64.4 66.9
Ours (600k) 79.7 58.1 65.2 70.5 63.4 64.1 66.8
Ours (2M) 79.8 58.2 64.7 70.6 63.1 64.4 66.8
XLM from (Lewis et al., 2020) 74.9 54.0 61.4 65.2 50.7 59.8 61.0

Table 4: MLQA F1 scores for each language. After alignment, our best model improves over mBERT baseline by
2.3% and outperforms XLM-RBase for zero-shot transfer. Our model trained with the smallest amount of parallel
data is 1.3% better than mBERT baseline for translate-train.

ing MLM and NSP objectives on Wikipedia data
in 104 languages with a shared vocabulary. Several
works study what makes this pretrained model mul-
tilingual, and why it works well for cross-lingual
transfer. Pires et al. (2020) hypothesize that having
a shared vocabulary for all languages helps map-
ping tokens to a shared space. However, K et al.
(2020) train several bilingual BERT models such
as en-es, and enfake-es, where data for enfake is
constructed by Unicode shifting of the English data
such that there is no character overlap with data
of the other language. Result shows that enfake-es
still transfers well to Spanish and the contribution
from shared vocabulary is very small. The authors
point out that model depth and capacity instead
are the key factors contributing to mBERT’s cross-
lingual transferability. XLM-R (Conneau et al.,
2020) improves over mBERT by training longer
with more data from CommonCrawl, and without
the NSP objective. In terms of model size, XLM-R
uses over 3x more parameters than mBERT. Its
base version, XLM-RBase, is more comparable to
mBERT with the same hidden size and number of
attention heads, but a larger shared vocabulary.

Training Multilingual LMs with Parallel Sen-
tences In addition to MLM on monolingual data,
XLM (Conneau and Lample, 2019) further im-
proves their cross-lingual LM pretraining by in-
troducing a new TLM objective on parallel data.
TLM concatenates source and target sentences to-
gether, and predicts randomly masked tokens. Our
work uses a slightly different version of TLM to-

gether with a contrastive objective to post-pretrain
mBERT. Unlike XLM, our TLM does not reset
positions of target sentences, and does not use
language embeddings. We also randomly shuffle
the order of source and target sentences. Another
difference between XLM and our work is XLM
has 45% more parameters and uses more training
data. Similar to XLM, Unicoder (Huang et al.,
2019) pretrains LMs on multilingual corpora. In
addition to MLM and TLM, they introduce three
additional cross-lingual pretraining tasks: word
recover, paraphrase classification, and mask lan-
guage model. Yang et al. (2020) propose Alter-
nating Language Modeling (ALM). On a pair of
bilingual sequences, instead of TLM, they per-
form phrase-level code-switching and MLM on
the code-switched sequence. ALM is pretrained on
both monolingual Wikipedia data and 1.5B code-
switched sentences.

Training mBERT with Word Alignments Cao
et al. (2020) post-align mBERT embeddings by
first generating word alignments on parallel sen-
tences that involve English. For each aligned word
pair, the L2 distance between their embeddings is
minimized to train the model. In order to main-
tain original transferability to downstream tasks,
a regularization term is added to prevent the tar-
get language embeddings from deviating too much
from their mBERT initialization. Our approach
post-aligns mBERT with two self-supervised sig-
nals from parallel data without using pre-alignment
tools. Wang et al. (2019) also align mBERT em-
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Model en fr es de bg ar zh hi avg

Zero-shot cross-lingual transfer

Our full system (250k) 82.4 75.5 76.2 73.3 74.6 68.2 71.7 62.8 73.1
- MoCo 82.2 75.3 75.8 73.0 71.3 67.1 71.3 61.8 72.2
- TLM 80.5 74.7 75.2 71.4 72.7 66.2 68.9 64.0 71.7
repl TLM w/ MLM 81.5 75.0 75.2 70.8 72.5 66.2 69.0 61.9 71.5

Our full system (600k) 82.4 76.7 76.4 74.0 74.1 69.1 72.3 66.9 74.0
- MoCo 82.0 75.5 75.9 72.8 72.1 68.5 72.1 64.5 72.9
- TLM 81.2 75.1 75.4 71.9 73.3 68.2 71.0 65.8 72.7
repl TLM w/ MLM 82.2 75.7 75.5 73.0 73.3 68.5 71.1 66.5 73.2

Our full system (2M) 82.8 76.6 76.7 74.2 73.8 70.3 72.8 66.9 74.3
- MoCo 82.5 75.2 76.3 72.4 71.9 67.9 71.4 65.2 72.9
- TLM 81.3 76.2 76.4 73.2 72.9 69.0 71.5 66.1 73.3
repl TLM w/ MLM 82.0 75.8 75.8 73.2 73.5 68.7 70.6 65.8 73.2

Translate-train

Our full system (250k) 82.4 78.8 79.0 78.7 78.4 74.0 77.9 69.6 77.4
- MoCo 82.2 79.8 79.8 77.8 78.9 73.8 77.3 69.8 77.4
- TLM 80.5 78.3 77.8 77.5 77.4 72.4 77.2 69.5 76.3
repl TLM w/ MLM 81.5 78.4 79.4 78.3 78.2 73.4 76.9 69.9 77.0
- CS 82.4 77.8 79.5 76.2 76.2 73.2 77.5 67.9 76.3

Our full system (600k) 82.4 79.7 79.7 77.9 79.0 75.2 77.8 71.5 77.9
- MoCo 82.0 79.5 79.2 78.1 78.9 74.1 78.1 71.0 77.6
- TLM 81.2 78.5 78.6 78.1 77.7 73.7 76.6 70.8 76.9
repl TLM w/ MLM 82.2 78.4 78.4 77.1 78.0 73.9 76.9 70.8 77.0
- CS 82.4 79.2 78.3 77.5 77.0 73.6 77.3 69.9 76.9

Our full system (2M) 82.8 79.7 80.6 78.6 78.8 75.2 78.0 72.0 78.2
- MoCo 82.5 79.1 80.0 79.1 78.5 75.3 77.7 70.5 77.8
- TLM 81.3 78.9 79.4 78.0 77.8 74.4 77.2 70.0 77.1
repl TLM w/ MLM 82.0 79.1 79.0 78.2 77.8 74.3 77.7 70.4 77.3
- CS 82.8 79.1 79.0 78.0 77.5 73.6 77.1 69.5 77.1

Table 5: Ablation Study on XNLI. 250k, 600k, 2M refer to the maximum number of parallel sentence pairs per
language used in PPA. MoCo refers to our sentence-level alignment task using contrastive learning. TLM refers
to our word-level alignment task with translation language modeling. CS stands for code-switching. We conduct
an additional study repl TLM w/ MLM, which means instead of TLM training, we augment our sentence-level
alignment with regular MLM on monolingual text. This ablation confirms that the TLM objective helps because
of its word alignment capability, not because we train the encoders with more data and iterations.

beddings using parallel data. They learn a linear
transformation that maps a word embedding in a tar-
get language to the embedding of the aligned word
in the source language. They show that their trans-
formed embeddings are more effective on zero-shot
cross-lingual dependency parsing.

Besides the aforementioned three major direc-
tions, Artetxe and Schwenk (2019) train a multi-
lingual sentence encoder on 93 languages. Their
stacked BiLSTM encoder is trained by first gen-
erating embedding of a source sentence and then
decoding the embedding into the target sentence in
other languages.

Concurrent to our work, Chi et al. (2020), Feng
et al. (2020) and Wei et al. (2020) also leverage vari-
ants of contrastive learning for cross-lingual align-
ment. We focus on a smaller model and improve on
it using as little parallel data as possible. We also
explore code-switching during finetuning on down-
tream tasks to complement the post-pretraining

alignment objectives.

6 Conclusion

Post-pretraining embedding alignment is an effi-
cient means of improving cross-lingual transfer-
ability of pretrained multilingual LMs, especially
when pretraining from scratch is not feasible. We
showed that our self-supervised sentence-level and
word-level alignment tasks can greatly improve
mBERT’s performance on downstream tasks of
NLI and QA, and the method can potentially be
applied to improve other pretrained multilingual
LMs.

In addition to zero-shot cross-lingual transfer,
we also showed that code-switching with English
during finetuning provides additional alignment
signals, when training data is available for the target
language.
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