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Abstract

Video Question Answering (VidQA) evalua-
tion metrics have been limited to a single-word
answer or selecting a phrase from a fixed set
of phrases. These metrics limit the VidQA
models’ application scenario. In this work, we
leverage semantic roles derived from video de-
scriptions to mask out certain phrases, to in-
troduce VidQAP which poses VidQA as a fill-
in-the-phrase task. To enable evaluation of
answer phrases, we compute the relative im-
provement of the predicted answer compared
to an empty string. To reduce the influence
of language-bias in VidQA datasets, we re-
trieve a video having a different answer for
the same question. To facilitate research, we
construct ActivityNet-SRL-QA and Charades-
SRL-QA and benchmark them by extending
three vision-language models. We perform ex-
tensive analysis and ablative studies to guide
future work. Code and data are public.

1 Introduction

Given a video, Video Question Answering (VidQA)
requires a model to provide an answer to a video
related question. However, existing works treat
VidQA as an N-way (N∼1k) classification task
across a fixed set of phrases. Models trained un-
der such formulations are strictly restricted in their
recall rate, generalize poorly, and have severe limi-
tations for end-user applications.

In this work, we introduce Video Question
Answering with Phrases (VidQAP) which treats
VidQA as a fill-in-the-phrase task. Instead of a
question, the input to VidQAP consists of a query
expression with a query-token. Then, given a video,
VidQAP requires replacing query-token with a se-
quence of generated words. To generate a query,
we leverage video descriptions and assign semantic
roles to each phrase in these descriptions. Replac-
ing a particular semantic-role with a query token
produces a query-answer pair. We illustrate this in
Figure 1 (details in Section 3.1).

Video description: A man on top of a building throws a bowling ball towards the pins

Q4: <Q-ARG0> throws a bowling ball 
towards the pins.
Model’s generated answer: A man 
standing on a house 
Correct answer: A man on top of a 
building

Q5: A man on top of a building <Q-V> a 
bowling ball towards the pins.
Model’s generated answer: throws 
Correct answer: throws

Q6: A man on top of a building throws 
<Q-ARG1> towards the pins.
Model’s generated answer: a ball
Correct answer: a bowling ball

Q7: A man on top of a building throws a 
bowling ball <Q-ARG2>
Model’s generated answer: towards some 
bottles
Correct answer: towards the pins

(b) Free-form Answer Generation

ARG0 V ARG1 ARG2Semantic Roles:

Q1: Who throws a bowling ball towards 
the pins?
Model’s Top Predictions: 
A: A man B: A man under the tree
C: A person D: This boy

Correct Answer: A man on top of a 
building

Q2: Does a man on top of a building 
throw a bowling ball towards to pins?
Model’s Top Predictions:
A: Yes          B: No            C: Maybe

Correct Answer: Yes

Q3: A man on top of a building throws a 
bowling ball towards the ___.
Model’s Top Predictions:
A: field      B: pins   C: basket  D: man

Correct Answer: pins

(a) N-way Classification of Phrases

Figure 1: Previous methods formulate VidQA as a N-way
classification task. The questions are converted via question
generation tool (Q1, Q2) or masking-out strategy (Q3). How-
ever, such QA has a theoretical recall upper bound when the
correct answer is not among the choice list. In comparison, we
propose a free-form text generation task which do not suffer
such limitation (Q4-Q7)

While free-form answer generation is highly de-
sirable, evaluating them is non-trivial due to two
main challenges. First, existing language gener-
ation metrics like BLEU (Papineni et al., 2002)
or BERTScore (Zhang* et al., 2020) operate on
sentences rather than phrases. When applied to
short phrases, in the absence of context, even close
matches like “A person” and “The man” would be
falsely rejected due to no n-gram overlap or poor
contextual embeddings. Second, natural language
questions often have strong language priors mak-
ing it difficult to ascertain if the model retrieved
information from the video.

To propose a reasonable evaluation metric, we



2461

Dataset Source #Clips Clip Duration(s) #QA-Pairs # QA / Clip Task Type Scripts Box QA Pair Creation

Movie-QA Movies 6771 202.7 6462 0.95 MC 3 7 Human
Movie-FIB Movies 128,085 4.8 348,998 2.72 OE 7 7 Automatic
VideoQA* Internet videos 18100 45 174,775 9.66 OE 7 7 Automatic
MSVD-QA Internet videos 1,970 9.7 50,505 25.64 OE 7 7 Automatic

MSR-VTT-QA Internet videos 10,000 14.8 243,680 24.37 OE 7 7 Automatic
TGIF-QA Tumblr GIFs 62,846 3.1 139,414 2.22 OE+MC 7 7 Human+Automatic

TVQA TV Show 21,793 76 152,545 7 MC 3 7 Human
TVQA+ TV Show 4200 61.5 29,383 7 MC 3 3 Human

ActivityNet-QA* Internet videos 5800 180 58000 10 OE 7 7 Human

ASRL-QA Internet videos 35805 36.2 162091 5.54 OE + Phrase 7 3 Automatic
Charades-SRL-QA Crowd-Sourced 9513 29.85 71735 7.54 OE + Phrase 7 7 Automatic

Table 1: Comparison of Existing datasets for VidQA with our proposed ASRL-QA and Charades-SRL-QA. Here, OE =
Open-Ended, MC = Multiple Choice. “Scripts”: if answering questions requires access to scripts or subtitles. “Box”: if dataset
provides bounding box annotations. *: Includes Yes/No questions

revisit our fill-in-the-phrase formulation. Since we
know where exactly the generated answer fits in the
original query, we can create a complete sentence.
With this key insight, we propose relative scoring:
using the description as reference sentence, we
compute the metrics once by replacing the query-
token once with the predicted answer phrase and
once with an empty-string. The model’s perfor-
mance is measured by the relative improvement
from the predicted answer compared to the empty
string. In particular, substituting the answer phrase
in the query expression allows the computing the
contextual embeddings required by BERTScore.

To mitigate the language-bias issue, we emu-
late the procedure proposed by (Goyal et al., 2017)
where for a given question, another image (or
video in our case) is retrieved which has a differ-
ent answer for the same question. To retrieve such
a video, we use a contrastive sampling method
(Sadhu et al., 2020) over the dataset by comparing
only the lemmatized nouns and verbs within the se-
mantic roles (SRLs). We then propose contrastive
scoring to combine the scores of the two answer
phrases obtained from the contrastive samples (de-
tails on evaluation in Section 3.2).

To investigate VidQAP, we extend three vision-
language models namely, Bottom-Up-Top-Down
(Anderson et al., 2018), VOGNet (Sadhu et al.,
2020) and a Multi-Modal Transformer by replac-
ing their classification heads with a Transformer
(Vaswani et al., 2017) based language decoder. To
facilitate research on VidQAP we construct two
datasets ActivityNet-SRL-QA (ASRL-QA) and
Charades-SRL-QA and provide a thorough anal-
ysis of extended models to serve as a benchmark
for future research (details on model framework in
Section 3.3 and dataset creation in Section 4.1).

Our experiments validate the merits of mov-

ing away from N-way classification, and further
show even among sequence generation models
there exists a large disparity in performance across
semantic-roles (i.e. queries for some roles can
be answered very easily compared to other roles).
Moreover, certain roles hardly benefit from vision-
language models suggesting room for improvement.
Finally, we investigate the effects of relative scor-
ing and contrastive scoring for VidQAP with re-
spect to BertScore.

Our contributions in this work are two-fold: (i)
we introduce VidQAP and propose a systematic
evaluation protocol to leverage state-of-art lan-
guage generation metrics and reduce language bias
(ii) we provide extensive analysis and contribute a
benchmark on two datasets evaluated using three
vision-language models. Our code and dataset are
publicly available. 1

2 Related Works

Question Answering in Images has received ex-
tensive attention in part due to its end-user appli-
cability. Key to its success has been the availabil-
ity of large-scale curated datasets like VQA v2.0
(Goyal et al., 2017) for visual question answering
and GQA (Hudson and Manning, 2019) for rela-
tional reasoning. To address the strong language
priors, the datasets are balanced by retrieving im-
ages which given the same question lead to a dif-
ferent answer. However, these procedures cannot
be extended for VidQA since crowd-sourcing to
retrieve videos is expensive and there exists no
scene-graph annotations for videos. In this work,
we perform the retrieval using lemmatized nouns
and verbs of the semantic roles labels obtained
from video descriptions to balance the dataset.

1https://github.com/TheShadow29/Video-QAP

https://github.com/TheShadow29/Video-QAP
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Question Answering in Videos: has garnered
less attention compared to ImageQA. A major bot-
tleneck is that there is no principled approach to
curating a VidQA dataset which reflects the di-
versity observed in ImageQA datasets. For in-
stance, naively crowd-sourcing video datasets leads
to questions about color, number which is same as
ImageQA datasets and doesn’t reflect any spatial-
temporal structure. To address this issue, TGIF-QA
(Jang et al., 2017) and ActivityNet-QA (Yu et al.,
2019) use a question-template to enforce questions
requiring spatio-temporal reasoning but forgo the
question diversity. An orthogonal approach is to
combine VidQA with movie scripts (Tapaswi et al.,
2016) or subtitles (Lei et al., 2018). However,
this severely restricts the domain of videos. More-
over, recent works have noted that language-only
baselines often outperform vision-language base-
lines (Jasani et al., 2019; Yang et al., 2020; Zellers
et al., 2019). A separate line of related research has
focused on scene-aware dialogue (Alamri et al.,
2019). Instead of a single annotator providing
both questions and answers, the annotation pro-
cedure follows a two-player game setup with one
player asking a question and the other player an-
swering with the roles switching after each turn.
However, the evaluation method utilizes recall met-
rics which require the set of phrases to be known
apriori. As a result, it doesn’t strictly measure
the performance of free-form generation but rather
how well the ground-truth answer is ranked given
a competing set of phrases which is analogous to
multiple-choice questions.

Automatic Question Generation: Due to the
above limitations, the dominant approach to cre-
ate large-scale VidQA dataset has been automatic
question generation from existing video descrip-
tions which can be easily crowd-sourced. Our pro-
posed formulation of using SRLs to generate query-
expressions falls in this category. Prior works in-
clude VideoQA (Zeng et al., 2017), MSR-VTT-
QA and MSVD-QA (Xu et al., 2017) which use a
rule based question generator (Heilman and Smith,
2009) to convert descriptions to questions and
Movie-Fill-in-the-Blanks (Maharaj et al., 2017)
which mask outs at most one word which could be
a noun, adjective or verb in a sentence. In compar-
ison, our method poses VidQAP as fill-in-blanks
but with phrases, explicitly asks questions about
actions, and the answer phrases are not constrained
to a fixed set. As a result of this increased space

of phrases, methods on existing datasets cannot be
directly applied to VidQAP. To enable further re-
search, we contribute two datasets ASRL-QA and
Charades-SRL-QA. In Table 1 we compare these
with existing VidQA datasets.

SRL in Vision: has been explored in the context
of human object interaction (Gupta and Malik,
2015), situation recognition (Yatskar et al., 2016),
and multi-media extraction (Li et al., 2020). Most
related to ours is the usage of SRLs for grounding
(Silberer and Pinkal, 2018) in images and videos
(Sadhu et al., 2020). Our work builds on (Sadhu
et al., 2020) in using SRLs on video descriptions,
however, our focus is not on grounding. Instead,
we use SRLs primarily as a query generation tool
and use the argument as a question directive.

3 Design Considerations for VidQAP

The VidQAP task is conceptually simple: given a
video and a query expression with a query-token,
a model should output an answer phrase that best
replaces the query-token. This leads to three main
design considerations: (i) How to generate a query-
expression from existing resources (Section 3.1) (ii)
How to evaluate the answer phrases returned by a
model (Section 3.2) (iii) What modeling framework
choices enable VidQAP (Section 3.3).

3.1 Using SRLs to Generate Queries for
VidQAP

We first briefly describe semantic-role labels
(SRLs)2. Then we detail how SRLs are used to
create VidQAP queries.

Query Generation Using SRLs: Semantic
Role Labels (SRLs) provide a high-level label to en-
tities extracted from a sentence in the form of who
(ARG0), did what (V) to whom (ARG1) (Strubell
et al., 2018). Other roles such as to whom / using
what (ARG2) and where (LOC) are also common.
As a pre-processing step, we assign SRLs to video
descriptions using a state-of-art SRL labeler (Shi
and Lin, 2019). A particular description could con-
sist of multiple verbs, in which case, we consider
each verb and its associated SRLs independently.
For a particular semantic-role, we substitute the
corresponding phrase with a query token to gener-
ate the query expression. The replaced phrase is
the corresponding answer. Using this method we

2Detailed discussion is provided in supplementary. A
demo is available here: https://demo.allennlp.org/semantic-
role-labeling
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A person moves exercise equipment around in the office
ARG0 V ARG1 DIR LOC

Query-Expressions Answers
<Q-ARG0> moves exercise equipment in the office A person

A person <Q-V> exercise equipment in the office moves

A person moves <Q-ARG1> in the office exercise equipment 

A person moves exercise equipment <Q-LOC> in the office

A person climbs down with his hands folded
ARG0 V MNRDIR

(a) Following SRLs are considered: ARG0,ARG1,ARG2,V,LOC to generate 

query-expressions and answers. Here, the phrase corresponding to the semantic-

role DIR is removed from both query-expressions and answers.

(b) Query-expressions would have less than 3 semantic-roles and hence ignored.

Figure 2: Illustration of our query generation process. In
(a) DIR is ignored from both Query and Answers. In (b) the
question is removed from validation set since at most two
arguments from considered set are present.

are able to generate multiple queries from a single
description. An added merit of using SRLs is that
query phrases are centered around “verb-phrases”
which are highly relevant to the video content.

Generating queries using every SRL is not ben-
eficial as some SRLs are more concerned with
phrasing of the language rather than the video.
For instance, in the phrase “Players are running
around on the field”, if we mask out the word
“around” (DIR), it can be answered without look-
ing at the video. To address the above issue,
we confine our description phrases to a fixed set
of semantic-roles namely: ARG0, ARG1, V,
ARG2, ARGM-LOC. Only those phrases which
belong to the above set of SRLs may appear in
the query-expression or as an answer phrase. We
further remove phrases which have only two argu-
ments as these are too ambiguous to fill. Figure 2
illustrates these steps.

While using a slot for each slot could potentially
limit the vocabulary used in each slot (for instance,
the vocabulary set for <Q−ARG1> could be lim-
ited to a small number of objects), empirically we
don’t find this to be the case (see Appendix A.3
for detailed statistics). As a result, VidQAP is no
simpler than VidQA task.

We also remark that generating queries need not
be strictly limited to masking out a single SRL
and one could easily mask multiple SRLs in the
same description. However, we find two problems:
first, for many cases, the output of masking mul-
tiple SRLs becomes exceedingly similar to video
description task; second, using contrastive scoring
(described in Section 3.2) for multiple SRLs be-

Query Expression: A person <Q-V> exercise equipment.

Reference (Ground Truth): A person moves exercise equipment.
Hypothesis (Prediction): A person lifts exercise equipment.
Baseline (Empty String): A person exercise equipment.

! = B(Ref, Base),   β = B(Ref, Hyp),   " = B(Ref, Ref)

Br(Ref, Hyp) = β !!
" !!Relative Metric Score

Figure 3: Illustration of the Relative Metric Computation.
“moves” is the ground-truth answer and “lifts” is a model’s pre-
diction. Relative Metric compares the relative improvement
from using the model’s prediction as compared to an empty
string.

A person holding <Q-ARG1> in their hands

Answer: a dog Answer: a hair dryer

Figure 4: Illustration of Contrastive Sampling Process. For
the same query-expression, we retrieve two videos with differ-
ent answers. The model is required to correctly answer both
the original and contrastive sample query.

comes considerably more involved. As a result, in
this work, we focus on using a single SRL and keep
the generalization to include multiple SRL queries
for future work.

3.2 Evaluating Answer Phrases

A key challenge in VidQAP is the lack of any
standard protocol to evaluate free-form generated
phrases. A simple way is to adopt metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
METEOR (Banerjee and Lavie, 2005), and CIDER
(Vedantam et al., 2015) which are already used
for captioning in images and videos. However,
these metrics suffer from limited generalization:
BLEU, ROUGE, and CIDER require exact n-gram
matches. While this is fine for captioning where
longer phrases average out errors, answers phrases
are typically much smaller than a complete sen-
tence. This leads to many near-correct answers
receiving very low scores.

This issue is resolved to a certain extent for
captioning by learned metrics like BERTScore
(Zhang* et al., 2020) which utilize contextual em-
beddings obtained from large pretrained models
like BERT (Devlin et al., 2019) and RoBerta (Liu
et al., 2019). However, answer phrases are usually
short and don’t provide meaningful contextual em-
beddings. In the extreme case when the answer is a
single word, for instance when the query is about a
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Verb, these embeddings turn out to be very noisy
leading to large number of false-positives.

Relative Scoring: To enable usage of contex-
tual embeddings, we propose evaluating the relative
improvement of the generated answer phrase com-
pared to the ground-truth phrase. We denote the
input query expression as Q, the ground-truth an-
swer is Agt ,and the predicted answer is Apred. Let
Q(X) denote Q with the question tokens replaced
by X . Then for a given metric B, we compute the
relative metric Br as (see Figure 3 for illustration)
Ref=Q(Agt), Hyp=Q(Apred), Base=Q(“”)

Br(Agt, Apred) =
B(Ref,Hyp)−B(Ref,Base)
B(Ref,Ref)−B(Ref,Base) (1)

Note that B(Ref,Ref)=1 for BLEU, METEOR,
ROUGE, BERTScore but not for CIDEr.

The empty-string baseline in Eqn 1 could be
replaced with predictions from any model trained
for this task. In this work, we restrict to only empty-
string baseline due to two desirable properties: its
computational simplicity and it being agnostic to
models and datasets.

We further observe that Eqn 1 is very similar to
the re-scaling proposed in BERTScore. However,
in BertScore re-scaling aims at making the score
more readable and doesn’t change the relative rank-
ing of the hypothesis. In our case, Eqn 1 plays two
roles: first, it allows computing the contextual em-
beddings because the answers are now embedded
inside a complete phrase, second while the rank-
ing is not affected for a particular query, the score
would be different across queries and hence affect
the overall relative metric.

Contrastive Scoring: Visual Question Answer-
ing suffers from heavy language priors, and as a
result, it is often difficult to attribute whether the
image or video played a role in the success. For
images, (Goyal et al., 2017) resolved this by balanc-
ing the dataset where they crowd-sourced the task
of collecting an image that has a different answer
for the same question. However, such a crowd-
sourcing method is difficult to extend to videos
since searching for videos requires a much longer
time. This is further complicated by accepting an-
swer phrases compared to single word.

We simulate the balancing process using the con-
trastive sampling method used in (Sadhu et al.,
2020). Specifically, for a given video-query-answer
(V1, Q1, A1) tuple we retrieve another video-query-
answer (V2, Q2, A2) tuple which share the same

semantic role structure as well as lemmatized noun
and verbs for the question, but a different lemma-
tized noun for the answer. At test time, the model
evaluates the question separately, but the evalua-
tion function requires both answers to be correct.
Since our answers comprise of phrases, the notion
of correctness is not absolute (unlike say accuracy
metric). Thus, we put a threshold t below which
the answer is deemed incorrect.

Mathematically, let Si=Br(Agti , Apredi) be the
relative score for sample i, and we are given sample
j is a contrastive example for sample i. Then the
contrastive score (CSi) for sample i at a threshold
TCS would be

CSi = max(Si1[Sj > TCS ∗B(Refj , Refj)], 0)
(2)

Here 1[] is the indicator variable which is 1 if
the expression within brackets is True, otherwise 0.
The max operator ensures the scores don’t become
negative. For our experiments, we use TCS=0
which requires that the answer for the contrastive
sample should be better than an empty string.

We further use the contrastive samples to com-
pute a consistency metric. For sample i, the consis-
tency Consi for a threshold Tcons is given by

Consi = 1[(Si−Tcons) ∗ (Sj −Tcons) > 0] (3)

As such, Consistency requires the model to be
either correct or incorrect for both the original and
the contrastive sample.

Combined Metric at a Glance: Given metric
B, for a given sample i and contrastive sample j

1. Compute relative metric (Eqn 1) for i, j

2. Compute contrastive score (Eqn 2)

3. Optionally compute Consistency (Eqn 3)

We use the prefix “R-” such as in R-B to de-
note both relative scoring and contrastive scoring
is being computed. We report Consistency for
BertScore with Tcons=0.1

We note that, by construction, the relative scor-
ing (Eqn 1) is positively correlated with human
judgment, as the closer, the hypothesis is to the
reference, the higher would the score be. The
contrastive scoring is a metric used to prevent the
model from guessing the correct answer by exploit-
ing language biases and instead use the video to
give a suitable prediction. Since humans don’t have
the ability to exploit such biases, it is difficult to
relate to human evaluation.
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Figure 5: Schematic of the various models used to benchmark VidQAP. Input Query: “A person picks up <Q-ARG1>”.
Ground-Truth Answer: “a pair of shoes”. (a) Lang-QAP is a language-only model which encodes the query input and passes to a
decoder. (b) BUTD-QAP uses the pooled feature representation from language encoder and attends over the visual features. (c)
VOG-QAP uses an additional phrase encoder and applies a Transformer over the multi-modal features (d) MTX-QAP consumes
both the language and visual features with a multi-modal transformer.

3.3 Model Framework

Models for VidQAP require a language encoder
to encode the question, a visual encoder to extract
video features, a multi-modal module to jointly
learn over vision-language space and a decoder to
generate a sequence of words.

Inputs include query expression {w}Li=1 (L is
number of words), video segment features for F1

frames and optionally k RCNN features for F2

frames. In either case, frames are sampled uni-
formly from the video segment time-span. While
the models differ in their encoding scheme, our
language decoder model (Transformer based) used
to generate the output answer phrase is kept same
across all models with QAP suffix.

Lang-QAP: is a language-only (video-blind)
model using only the query input. It uses Trans-
former based encoder to encode the query into
q̂ ∈ RL×d. The decoder subsequently uses the
last layer output of the encoder (Figure5-(a)).

BUTD-QAP: Bottom-up-Top-Down (Anderson
et al., 2018) is a popular approach for image ques-
tion answering as well as captioning. It first com-
putes attention between the question and the RCNN
visual features to generate an attended visual fea-
ture, which is then used with the question to pro-
duce an output answer. Here, we replace the RCNN
features with the segment features (v̂ ∈ RF1×d).
We can also include RCNN features by project-
ing them to same dimension as segment features
and then concatenate them along the frame-axis
(v̂ ∈ R(F1+F2∗k)×d). For language features, we
use the [CLS] token representation from the last
layer of the language encoder used in Lang-QAP.

The output using the language and visual features
is (m̂ ∈ Rd) passed to the decoder (Figure 5(b)).

VOG-QAP: VOGNet (Sadhu et al., 2020) has
been proposed for grounding objects in videos
given a natural language query. Following the ar-
chitecture, we first derive phrase encoding which
corresponds to a single SRL i.e. q̂ ∈ RS×d (S is
number of semantic roles). These phrase features
are concatenated with the visual features (same as
those used in BUTD-QAP (i.e. v̂)) to get multi-
modal features m[l, i]=[v̂i||q̂l] and then reshaped
to get m ∈ RS∗F×d. These multi-modal features
are subsequently passed to decoder to generate the
output sequence (Figure 5 (c)).

MTX-QAP: Recently, transformer models pre-
trained on large-scale paired image-text data have
become popular. Even in the absence of pre-
training, such architectures can achieve compet-
itive performance (Lu et al., 2019). In the con-
text of videos, ActBert (Zhu and Yang, 2020) has
been proposed. We create a similar architecture
to ActBert but we replace their proposed Tangled-
Transformer with a vanilla Transformer 3. Specif-
ically, we jointly encode the language and visual
features in a single transformer and feed the output
to the decoder (Figure 5 (d)).

LangCL and MTxCL: Apart from QAP mod-
els, we also consider their phrase classification
counterparts where the decoder is replaced with
a N-way classifier (two-layered MLP in our case)
across a fixed set of phrases. For our experi-
ments, we used N=1k phrases for LangCL and
N∈{1k, 10k} for MTxCL.

3The code for ActBert is not publicly available.
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4 Experiments

We briefly discuss the dataset creation process (Sec-
tion 4.1), followed by experimental setup (Section
4.2). We then summarize our results (Section 4.3)
and discuss key-findings. We provide implementa-
tion details, qualitative visualizations of our dataset,
metrics and trained models in the appendix.

4.1 Dataset Creation
We create two datasets ASRL-QA and Charades-
SRL-QA derived from ActivityNet-Captions (Kr-
ishna et al., 2017) and Charades (Sigurdsson et al.,
2016) respectively.

There are three key steps to create QA datasets
from descriptions: (i) assign semantic-roles to the
descriptions (ii) perform co-reference resolution
so that the questions are self-contained (iii) obtain
lemmatized nouns and verbs to perform contrastive
sampling. For semantic-role labeling, we use (Shi
and Lin, 2019). For co-reference resolution, we
use the co-reference resolution model provided by
allennlp library (Gardner et al., 2017) which uses
the model by (Lee et al., 2017) but replaces the
GloVe (Pennington et al., 2014) embeddings with
SpanBERT embeddings (Joshi et al., 2019) 4.

Since Charades primarily involves videos with
a single person, we discard questions involving
ARG0. We limit to using a single description per
video to avoid repetitive questions. We re-use the
same train split for both datasets. For ASRL-QA,
test set of ActivityNet is not public and Charades
only has a test set but no official validation set.
Thus, we split the existing validation set by video
names and create the validation and test sets. For
both validation and test splits, we remove those
questions for which no contrastive sample was
found as it indicates data-biases.

4.2 Experimental Setup
Dataset Statistics: ASRL-QA has 35.7k videos
and 162k queries split into train, validation and test
sets with 30.3k, 2.7k, 2.7k videos and 147k, 7.5k,
7.5k queries. We observe that the size of validation
and test sets are proportionately smaller compared
to their respective train sets. This is because only
queries with corresponding contrastive sample are
included while no such filtering is done for the train
set (∼95k queries in train set have a contrastive
pair). Charades-SRL-QA contains 9.4k videos and
71.7k queries split across train, validation and test

4https://demo.allennlp.org/coreference-resolution

sets with 7.7k, 0.8k, 0.8k videos and 59.3k, 6.1k,
6.2k queries. Despite its smaller size, the size of
validation, test sets of Charades-SRL-QA is com-
parable to ASRL-QA as Charades is curated with
the goal of diversifying subject, verb, object tuples.
Supplementary material provides further details on
the dataset statistics and visualizations.

Evaluation Metrics: As discussed in Section
3.2, we report the combined metric (i.e. metrics
prefixed with “R-”) for the commonly used genera-
tion metrics: BLEU, METEOR, ROUGE, CIDEr
and BertScore (implementations from (Chen et al.,
2015; Zhang* et al., 2020)). For BLEU, we report
the sentence level BLEU-2. All reported results
are test set results using the model which performs
best on validation set.

4.3 Results and Discussions

Table 2 compares performance of the proposed
VidQAP models with N-way classification base-
lines (denoted with suffix “CL”) on ASRL-QA and
Charades-SRL-QA.

Comparing Metrics: It is evident that com-
pared to other metrics, R-BertScore shows a higher
relative improvement. This is because BertScore
allows soft-matches by utilizing contextual embed-
dings obtained from a pre-trained BERT (Devlin
et al., 2019) or Roberta (Liu et al., 2019) model.

Comparison Across Datasets: We find that
performance on both datasets follow very simi-
lar trends across all metrics. Charades-SRL-QA
has slightly higher scores compared to ASRL-QA
likely because it has lesser data variations (Cha-
rades is mostly confined indoor videos) suggesting
findings on either dataset would transfer.

Comparison within N-way Classification: We
notice that when 1k fixed set of phrases are used
classification models show very limited perfor-
mance. Allowing 10k phrases gives a significant
improvement in performance on Charades-SRL-
QA (12 points on R-BS) however this doesn’t trans-
late to ASRL-QA. This is because ASRL-QA con-
tains many more probable phrases (29K compared
to 8K) in their respective training sets. We also
notice that increasing the number of phrases vocab-
ulary coincides with decreasing consistency.

Comparing Free-from Answer Generation
(QAP) with N-way Classification (CL): We in-
vestigate the advantages of using a decoder net-
work to generate phrases compared to an N-way
classification over a fixed set of phrases (denoted
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ASRL-QA Charades-SRL-QA
R-BS Cons R-B@2 R-R R-M R-C R-BS Cons R-B@2 R-R R-M R-C

LangCL (1k) 0.253 0.889 0.120 0.098 0.071 0.044 0.293 0.697 0.224 0.209 0.114 0.077
MTxCL (1k) 0.255 0.869 0.130 0.114 0.080 0.050 0.288 0.707 0.215 0.208 0.116 0.075

MTxCL (10k) 0.286 0.788 0.157 0.133 0.100 0.061 0.408 0.695 0.286 0.261 0.142 0.108

Lang-QAP 0.402 0.728 0.228 0.182 0.125 0.095 0.406 0.719 0.277 0.253 0.147 0.121
BUTD-QAP 0.413 0.716 0.237 0.203 0.147 0.105 0.399 0.714 0.271 0.231 0.115 0.105
VOG-QAP 0.414 0.717 0.239 0.204 0.142 0.108 0.442 0.739 0.297 0.274 0.165 0.136
MTX-QAP 0.414 0.715 0.247 0.206 0.149 0.113 0.439 0.757 0.294 0.267 0.157 0.139

Table 2: Comparison of our extended models for VidQAP and Classification based (CL) models across two datasets on our
proposed Metric. Here, “R-" prefix implies it is the final metric computed after relative scoring and contrastive scoring with
threshold 0. “BS": BertScore, “Cons”: Consistency on BertScore, B@2: Sentence BLEU-2, R: ROUGE, M: METEOR, C:
CIDEr. Reported numbers are on the test set. For classification models, the number within the parenthesis denotes the size of
fixed vocabulary of phrases. Best result, Second Best result.

ASRL-QA Charades-SRL-QA
ARG0 V ARG1 ARG2 LOC V ARG1 ARG2 LOC

LangCL (1k) 0.598 0.423 0.102 0.125 0.018 0.564 0.291 0.146 0.173
MTxCL (1k) 0.607 0.399 0.106 0.142 0.019 0.549 0.346 0.152 0.106
MTxCL (10k) 0.697 0.379 0.161 0.144 0.049 0.601 0.445 0.315 0.272

Lang-QAP 0.697 0.519 0.325 0.322 0.145 0.631 0.458 0.33 0.206
BUTD-QAP 0.681 0.515 0.372 0.334 0.162 0.568 0.413 0.316 0.299
VOG-QAP 0.671 0.513 0.366 0.332 0.188 0.63 0.467 0.365 0.305
MTX-QAP 0.702 0.478 0.374 0.344 0.17 0.633 0.455 0.364 0.304

Table 3: Comparison of our extended models per SRL. All
reported scores are R-BS: BertScore computed after relative
scoring and contrastive scoring with threshold 0.

ARG0 V ARG1 ARG2 LOC

L
an

g-
Q

A
P

Direct 0.552 0.9268 0.234 0.302 0.216
Rel Score 0.7 0.534 0.332 0.237 0.1

CS@0 0.697 0.519 0.325 0.322 0.145
CS@0.1 0.69 0.492 0.295 0.28 0.132
CS@0.2 0.68 0.459 0.262 0.212 0.106
CS@0.3 0.657 0.423 0.219 0.149 0.085

M
T

X
-Q

A
P

Direct 0.566 0.929 0.269 0.321 0.258
Rel Score 0.706 0.488 0.366 0.25 0.14

CS@0 0.702 0.478 0.374 0.344 0.17
CS@0.1 0.693 0.45 0.343 0.305 0.145
CS@0.2 0.681 0.413 0.306 0.239 0.117
CS@0.3 0.659 0.376 0.27 0.17 0.08

Table 4: BertScore Metrics computed Directly on answer
phrases. Rel Score: After Relative Scoring. CS@T: Con-
trastive scoring with threshold T.

with the suffix “CL” and number of phrases used
in parenthesis). Table 2 shows that both Lang-
QAP and MTX-QAP outperform their classifica-
tion counterparts, namely Lang-CL and MTX-CL
on both datasets. This implies the free-form gen-
eration are not limited to simply generating the
most frequently appearing phrases in the training
set, thereby showing its effectiveness.

Comparison Across Models: We find that
multi-modal models outperform language-only
baseline. However, the improvement over language
baseline is small. The reason for the small gap is
elucidate in Table 3 where we report R-BertScore

ARG0 V ARG1 ARG2 LOC Overall

BUTD-QAP 0.706 0.506 0.388 0.36 0.196 0.431
VOG-QAP 0.704 0.516 0.366 0.352 0.202 0.429
MTX-QAP 0.685 0.465 0.378 0.355 0.19 0.416

Table 5: Effect of Adding Region Proposals. All reported
scores are R-BS. Best result, Second Best result.

for every considered SRL.
We find a large disparity in performance depend-

ing on the SRL. Most strikingly, multi-modal mod-
els perform worse than language-only model on
ARG0 and V. For ARG0, the strong performance
of the Lang-QAP arises because most of the time
the agent who causes an action is a human. There-
fore answer phrases having simply “A man” or “A
woman” or “A person” leads to reasonable perfor-
mance. This additionally suggests that grounding
“who” is performing the action remains non-trivial.

The more surprising result is the strong per-
formance of Lang-QAP on V which is consistent
across both datasets despite using contrastive sam-
pling. There are two likely causes. First, the dis-
tinction between verbs is not as strict as object
nouns, i.e. even similar verbs are classified as a
separate verb diminishing the returns of contrastive
sampling. For instance, “jumping” and “hoping”
have different lemma and thus considered distinct
verbs but R-BS would treat them as similar even
if the specific action would be classified “jumping”
rather than ”hoping”. Second, SRLs such as ARG1
confines the set of possible verbs. For instance, if
the object is “glass”, only limited verbs such as
“drink”, “hold” are probable.

On the remaining arguments namely ARG1,
ARG2, and LOC, multi-modal models show a
steady improvement over language-only baseline
ranging from 1−10%. However, the performance
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in absolute terms remains very low. As such, our
proposed task VidQAP remains extremely challeng-
ing for current multi-modal models.

Evaluation Metric Scores: In Table 4 we
record the BertScore computation in three parts:
directly computing over the answer phrases, per-
forming relative scoring, finally performing con-
trastive scoring with different thresholds.

We observe that for V, naive computation leads
to absurdly high scores. This is because verbs con-
sist of a single word which means the embeddings
are not contextual. This is remedied by relative
scoring and is further controlled by combining with
contrastive sampling.

Further note that relative scoring operates differ-
ently based on the SRLs. For instance, it increases
the score for ARG0 and ARG1 where the answers
more often paraphrased the ground-truth questions
while for ARG2 and LOC, it decreases the score due
to incorrect matches. While contrastive scoring is
aimed at reducing language-only bias and as such
should always reduce the relative score, we observe
increased score in ARG2 for both Lang-QAP and
MTX-QAP. This is caused by the max function
which restricts the lower-limit to be 0.

Effect of Region Boxes: As noted earlier, the
visual features can also include region features ex-
tracted from an object detector like FasterRCNN
(Ren et al., 2015). In Table 5 we record the effect
of including regional features. In particular, we
use the GT5 setting used in (Sadhu et al., 2020)
where 5 region proposals are used from 10 frames
uniformly sampled from the video segment. In-
terestingly, MTX-QAP under-performs than both
BUTD-QAP and VOG-QAP on ARG0. A possible
reason is that the transformer is unable to effec-
tively reason over both language and vision over
such a large range of inputs.

5 Conclusion

In this work, we introduce Video Question An-
swering with Phrases (VidQAP) where we pose
VidQA as a fill-in-the-phrase task. Given a video
and query expression, a model needs to compose a
sequence of words to answer. We then propose a
method to leverage semantic roles from video de-
scriptions to generate query expressions and outline
a robust evaluation protocol. This involves com-
puting the relative improvement of the prediction
answer compared to an empty string followed by a
contrastive sampling stage which reduces language-

only biases. We then contribute two datasets ASRL-
QA and Charades-SRL-QA to facilitate further on
VidQAP and benchmark them with three vision-
language models extended for our proposed task.
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In this work, we propose an extension to the ex-
isting video question answering framework to in-
clude free-form answers and suggest how to evalu-
ate such a task.

Direct Application (Positive): A direct applica-
tion of our task would be to enrich existing descrip-
tions obtained from video captioning models which
could lead to better video retrieval results. For in-
stance, one could query about what tool to use in
order to cut a piece of cardboard by querying “A
person cutting a piece of cardboard <Q-ARG2>".

Direct Application (Negative): Caution must
be taken in directly applying models trained on
descriptions without properly balancing the data-
distributions as it is possible that hidden data-biases
are amplified. As an example, ASRL-QA has many
videos involving men throwing shot puts. As a
result, a model could learn this biased correlation
and whenever queried “who” (<Q-ARG0> throws
a shot put) it would always produce the answer
“man” even if the video clearly shows a “woman”.

Broader Societal Impacts (Positive): Question
answering is an excellent tool for diagnosing a
model’s understanding due to its high interactiv-
ity. Our proposed formulation takes this a step
forward with answer phrases and can in-turn facil-
itate human-computer interactions. Our proposed
model can be extended to down-stream tasks such
as retrieving a video or retrieving a part of the video
given a question or query.

Broader Societal Impacts (Negative): Since
our method is agnostic to the end user case, it can
be re-purposed to extract out sensitive information
and be a threat to privacy.
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Appendix
This is the appendix for the paper “Video Ques-

tion Answering with Phrases via Semantic Roles”.
The appendix provides details on

1. Dataset construction and Dataset statistics
(Section A)

2. Implementation Details for both the Metrics
as well as the Models (Section B).

3. Visualization of Model Outputs (Section C)

4. Code and Data are publicly available 5.

A Dataset Construction

We first discuss semantic-role labeling used in nat-
ural language processing. Then, we detail the
dataset construction process used for ASRL-QA
and Charades-SRL-QA (Section A.2) and then pro-
vide the dataset statistics (Section A.3).

A.1 Semantic Role Labeling
Semantic-Role Labels extract out high-level mean-
ings from a natural language description. Two
widely used SRL annotations are PropBank (Kings-
bury and Palmer, 2002) and FrameNet (Baker et al.,
1998). Here we use SRLs which follow PropBank
annotation guidelines (see (Bonial et al., 2012) for
complete guideline).

Most commonly used argument roles are

• V: the verb. All remaining roles are dependent
on this verb. While the numbered arguments
differ slightly based on the verb used, they
share common themes across verbs as listed
below (see (Bonial et al., 2012) for full de-
tails). For instance, “cut” is a Verb.

• ARG0: the agent, or the one causing the verb.
For most action verbs, this is usually a human
or an animal. For instance, “A person cuts a
vegetable”, “A person” is ARG0.

• ARG1: the object, on which the action is being
performed. In “A person cuts a vegetable”, “a
vegetable” is ARG1.

• ARG2: the tool being used for the verb, or
someone who benefits from the verb. For in-
stance, in “A person is cutting a vegetable
with a knife”, “with a knife” denotes the tool
and is ARG2. In “A person throws a basket-
ball to the basket”, “to the basket” denotes the
benefactor and is ARG2.

5https://github.com/TheShadow29/Video-QAP

• ARGM-LOC or simply LOC denotes the place
or location where the verb takes place. For
instance, in “A person is cutting a vegetable
on a plate”, “on a plate” is the LOC.

To assign SRLs to language descriptions we use
allennlp library (Gardner et al., 2017) which pro-
vides an implementation of a BERT (Devlin et al.,
2019) based semantic-role labeler (Shi and Lin,
2019). The system achieves 86.49 F1 score on
OntoNotes (Pradhan et al., 2013) 5.0 dataset.

A.2 Construction Process
Both ASRL-QA and Charades-SRL-QA follow the
same process with few subtle differences:

1. Pre-Process Data:

• Assign semantic role labels (SRLs) to
video descriptions using SRL labeller
(Shi and Lin, 2019).

• Remove stopword verbs with lemmas:
“be”, “start”, “end”, “begin”, “stop”,
“lead”, “demonstrate”, “do”.

• For the original descriptions spread
across multiple video segments, combine
the sentences into a document. Use a co-
reference resolution model on this model
(we use (Lee et al., 2017) with Span-
BERT embeddings (Joshi et al., 2019)
provided in allennlp library (Gardner
et al., 2017)).

• Replace the following pronouns: “they”,
“he”, “she”, “his”, “her”, “it” with the
relevant noun-phrase obtained from the
co-reference resolution output.

2. Query-Generation:

• For each verb-role set within a descrip-
tion (each description can have multi-
ple verbs), consider the role set ARG0,
ARG1, V, ARG2, LOC for ASRL-
QA and ARG1, V, ARG2, LOC for
Charades-SRL-QA.

• If there are at least 3 verb-roles for the
given verb, for each SRL replace it with a
query token (with <Q−{R}> where R is
the role). This forms one query. Repeat
for all SRLs in the considered set.

• The minimum of 3 verb-roles is present
to avoid ambiguity in the query. Limit-
ing the argument role-set helps in gener-
ating queries less likely to have strong

https://github.com/TheShadow29/Video-QAP
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language-priors (though as seen in qual-
itative examples, some priors are still
present).

• After the queries are generated, create
lemmatized verbs, and nouns set for each
query, and store the video segment ids
in a dictionary. This is similar to the
process used in (Sadhu et al., 2020), with
the difference that we additionally have
query-tokens.

• For each query, use the dictionary to sam-
ple set of video segment ids which share
the same semantic role structure, but for
the query-token have a different answer.
These are used for matching when com-
puting the scores for the validation and
testing set using the contrastive score.

3. Creating Train/Test Splits:

• Keep the training set for each dataset the
same.

• For validation and testing, we split the
dataset based on the video ids (half video
ids are set as validation, and half as test-
ing). The queries are then split based on
the video ids.

• Note that while contrastive sampling is
done before validation test split. So val-
idation and test ids are used for com-
puting the other’s score for contrastive
sampling. This is similar to the setting
used in (Sadhu et al., 2020) as the total
number of videos available for validation,
and testing are insufficient for contrastive
sampling.

A.3 Dataset Statistics

Dataset statistics can be found in Table 1. Lemma
distributions are visualized in Figure 1 Overall, we
find slightly skewed distribution of Argument roles
across the datasets. For instance, ARG0, ARG1
are much more frequent than ARG2 and LOC. Also,
since every SRL needs to have a verb (V), the dis-
tribution of the videos is the same as the overall.

As shown in Table 1, vocabularies in both the
train and validation/test sets for each argument role
(slot) are reasonably large compared (eg. 60% for
ARG1) to the total vocabulary and not too lim-
ited. This results is further consistent across both
datasets.
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(b) Top-5 lemmatized nouns or verbs for the
considered semantic roles in Charades-SRL-QA

Figure 1: Lemma Distribution for both ASRL-QA and
Charades-SRL-QA. The number of instances across the
whole dataset are given in the parenthesis of each lem-
matized noun or verb.

B Implementation Details

We first report the implementation details for the
metrics (Section B.1). Then, we detail the model
implementation details (Section B.2).

B.1 Metric Implementation

For Bleu (Papineni et al., 2002), Rouge (Lin, 2004),
Meteor (Banerjee and Lavie, 2005), and CIDEr
(Vedantam et al., 2015) we use the implementations
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ASRL-QA Charades-SRL-QA

Train Val Test Train Val Test
Overall Videos 30337 2729 2739 7733 860 876

Queries 147439 7414 7238 59329 4431 4520
Query Length 8.03 6.03 6 7.11 5.6 5.62

Answer Length 2.2 2.33 2.33 1.83 1.96 1.94
Vocabulary 4597 3261 3261 1479 884 884

ARG0 Videos 24483 1372 1419
Queries 37218 1603 1643

Query Length 7.31 5.73 5.65
Answer Length 2.51 2.37 2.48

Vocabulary 1763 840 840

V Videos 29922 1737 1733 7733 802 811
Queries 52447 2247 2187 27745 1824 1829

Query Length 9.2 7.26 7.18 7.7 6.37 6.44
Answer Length 1 1 1 1 1 1

Vocabulary 1860 1167 1167 678 377 377

ARG1 Videos 24863 1810 1793 7600 808 828
Queries 36787 2250 2179 21557 1857 1874

Query Length 7.4 5.4 5.43 6.43 5.07 5.04
Answer Length 2.8 2.82 2.83 2.31 2.39 2.39

Vocabulary 3560 2124 2124 935 527 527

ARG2 Videos 12048 850 805 5433 490 522
Queries 14321 941 886 8279 651 699

Query Length 7.49 5.45 5.36 6.94 5.13 5.13
Answer Length 3.55 3.69 3.62 3.11 3.22 3.04

Vocabulary 2607 1326 1326 556 365 365

LOC Videos 6025 340 319 1578 87 112
Queries 6666 373 343 1748 99 118

Query Length 7.57 5.17 5.35 6.93 4.75 5.06
Answer Length 3.61 3.87 3.63 3.22 3.19 3.08

Vocabulary 1390 669 669 265 138 138

Table 1: Detailed dataset statistics for both ASRL-QA and Charades-SRL-QA with respect to different argument
roles. Recall that ARG0 is not present in Charades-SRL-QA, and hence the corresponding rows are kept blank.

provided in coco-captions repository6 (Chen et al.,
2015).

For BERTScore we use the official implementa-
tion 7

BLEU-2: computes Bleu with n-gram with n=2.
We use sentence-bleu score instead of the more
commonly used corpus bleu score. This is further

6github url: https://github.com/tylin/coco-caption
7github url: https://github.com/Tiiiger/bert_score

used for contrastive sampling.

ROUGE: we use ROUGE-L which computes
the longest common sub-sequence.

METEOR: we use Meteor 1.5 version
(Denkowski and Lavie, 2014).

CIDEr: we use CIDEr-D implementation which
includes idf-weighting.

BertScore: we use
BertScore with hash “roberta-
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large_L17_idf_version=0.3.5(hug_trans=3.0.2)-
rescaled”

We show examples of computing the metrics.

B.2 Model Implementation

We report all model implementation details.
General Settings: Our code is implemented us-

ing Pytorch (Paszke et al., 2019). For Transformer,
we use the implementation provided in FairSeq (Ott
et al., 2019). The vocabulary consists of 5k words
for ASRL-QA and 3k words for Charades-SRL-
QA. The segment features are of dimension 3072
and 512 for ASRL-QA and Charades-SRL-QA re-
spectively obtained from TSN (Wang et al., 2016)
and S3D (Xie et al., 2018) trained on HowTo100M
(Miech et al., 2019) using the loss function pre-
sented in (Miech et al., 2020) 8. The proposal
features are of dimension 1024 and only used for
ASRL-QA extracted using FasterRCNN (Ren et al.,
2015) trained on Visual Genome (Krishna et al.,
2016).

For all cases, we report the output dimension of
MLP. Unless otherwise stated, MLP is followed by
ReLU activation.

Decoder: The decoder uses an input of T × 512
(where T refers to the length of the input embed-
ding). Note that for Lang-QAP, T is same as se-
quence length of the query, for BUTD-QAP T=1,
for VOG-QAP, T is number of SRLs ∗ number of
segment features. For MTX-QAP, T is sequence
length of query + number of segment features. To
generate output sequences, we use the usual beam-
search with a beam-size of 2, with a temperature of
1.0.

Encoder: Encoder differs based on the specific
model. All encoders are transformer based using
8 attention heads and 3 layers unless otherwise
mentioned.

Lang-QAP: The language encoder uses 3 en-
coding layers, with 8 attention heads each. The
embedding layer uses a dimension of 512.

BUTD-QAP: We use the same language query,
with and pre-pend a [CLS] token. The embed-
ding of the [CLS] token serves as the language
embedding, and is passed through a MLP of di-
mension 512. The language encoder is the same
as Lang-QAP. The segment features are passed
through MLP of dimension 512. If proposal fea-
tures are used, they are passed through a separate
MLP of dimension 512. The language embedding

8https://github.com/antoine77340/S3D_HowTo100M

(also of dimension 512) is used to compute atten-
tion score with the visual features, and finally ob-
tain an attended visual feature. These attended
visual features are concatenated with the language
embedding along the last axis, and then passed to
the decoder.

VOG-QAP: We use the same language encoder,
but further use the SRL phrase start and end-
points for the phrase encoder. The phrase en-
coder uses these start and end points to gather
the language embeddings corresponding to these
start and end points, concatenate them (dimension
512+512=1024) and use MLP with dimension
512. This gives an output of the phrase encoder
of size number of SRLs ∗s512. The phrase en-
coded query is then concatenated with all the seg-
ment features and passed through a MLP. Finally
a multi-modal transformer encoder is applied over
the phrase encoded input, and is passed to the lan-
guage decoder.

MTX-QAP: We collate all the language tokens
(passed through embedding layer) as well as seg-
ment features passed through MLP, to get all fea-
tures of dimension 512. A transformer based en-
coder is applied on these features, and the output is
passed to the decoder.

Training: We train using standard cross-entropy
loss. The decoder is trained using teacher forcing.
All models are trained for 10 epochs with batch
size of 32. On a TitanX, for ASRL-QA each epoch
takes around 30− 40 mins. Our training infrastruc-
ture included a 8 GPU Titan X machine

C Visualization

We visualize the model outputs on ASRL-QA in
Figure 2 (a), (b), Figure 3 (a), (b) and Figure 4.
For each case, we show the considered input in the
first row, and the contrastive sample in the second
row. Each row contains 5 frames uniformly sam-
pled from the video segment to be representative
of the content observed by the model. For every
query, we show the ground-truth answer and the
outputs from Lang-QAP, BUTD-QAP, VOG-QAP
and MTX-QAP.

Overall, we often find Lang-QAP suggesting
very probable answers, but as expected they are
not grounded in the video. As a result, in either
of the original sample or the contrastive sample, it
performs poorly.
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Query: <Q-ARG0> play the song on the piano
Target Answer: A little girl
Lang-QAP: The man
BUTD-QAP: A young child
VOG-QAP: A woman
MTX-QAP: The woman

Query: <Q-ARG0> playing a song
Target Answer: A man wearing a hat
Lang-QAP: A woman
BUTD-QAP: A man
VOG-QAP: A man wearing a hat
MTX-QAP: A man

(a) Query of type ARG0

Query: A man <Q-V> a skateboard
Target Answer: holding
Lang-QAP: riding
BUTD-QAP: picks
VOG-QAP: holding
MTX-QAP: holding

Query: Men <Q-V> skateboards
Target Answer: riding
Lang-QAP: riding
BUTD-QAP: riding
VOG-QAP: riding
MTX-QAP: riding

(b) Query of type V

Figure 2: Queries of Type ARG0 and V on ASRL-QA
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Query: People hit <Q-ARG1>
Target Answer: a pinata
Lang-QAP: the ball
BUTD-QAP: the pinata
VOG-QAP: the pinata
MTX-QAP: the pinata

Query: The people hit <Q-ARG1>
Target Answer: the ball
Lang-QAP: the ball
BUTD-QAP: the ball
VOG-QAP: the ball
MTX-QAP: the ball

(a) Query of type ARG1

Query: A man sitting <Q-ARG2>
Target Answer: behind a drum kit
Lang-QAP: on a bed
BUTD-QAP: on a drum set
VOG-QAP: behind a drum set
MTX-QAP: in front of a drum set

Query: A man sits <Q-ARG2> next to a baby
Target Answer: on a playground swing
Lang-QAP: on a bed
BUTD-QAP: on the ground
VOG-QAP: on a swing
MTX-QAP: on a swing

(b) Query of type ARG2

Figure 3: Queries of Type ARG1 and ARG2 on ASRL-QA
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Query: A lady washing clothes <Q-ARGM-LOC>
Target Answer: in a bucket
Lang-QAP: in a sink
BUTD-QAP: in a bowl
VOG-QAP: in a bucket
MTX-QAP: in the water

Query: People washing their clothes <Q-ARGM-LOC>
Target Answer: in a river
Lang-QAP: in a sink
BUTD-QAP: in a lake
VOG-QAP: on a river
MTX-QAP: in the water

Figure 4: Queries of Type ARGM-LOC on ASRL-QA


