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Abstract
Automated metaphor detection is a challeng-
ing task to identify the metaphorical expres-
sion of words in a sentence. To tackle this
problem, we adopt pre-trained contextualized
models, e.g., BERT and RoBERTa. To this
end, we propose a novel metaphor detection
model, namely metaphor-aware late interac-
tion over BERT (MelBERT). Our model not
only leverages contextualized word representa-
tion but also benefits from linguistic metaphor
identification theories to detect whether the tar-
get word is metaphorical. Our empirical re-
sults demonstrate that MelBERT outperforms
several strong baselines on four benchmark
datasets, i.e., VUA-18, VUA-20, MOH-X, and
TroFi.

1 Introduction

As the conceptual and cognitive mapping of words,
a metaphor is a common language expression rep-
resenting other concepts rather than taking literal
meanings of words in context (Lakoff and Johnson,
1980; Lagerwerf and Meijers, 2008). For instance,
in the sentence “hope is on the horizon,” the word
“horizon” does not literally mean the line at the
earth’s surface. It is a metaphorical expression to
describe a positive situation. Therefore, the mean-
ing of “horizon” is context-specific and different
from its literal definition.

As the metaphor plays a key role in cognitive
and communicative functions, it is essential to un-
derstand contextualized and unusual meanings of
words (e.g., metaphor, metonymy, and personifica-
tion) in various natural language processing (NLP)
tasks, e.g., machine translation (Shi et al., 2014),
sentiment analysis (Cambria et al., 2017), and dia-
logue systems (Dybala and Sayama, 2012). A lot
of existing studies have developed various compu-
tational models to recognize metaphorical words
in a sentence.

Automated metaphor detection aims at identify-
ing metaphorical expressions using computational

models. Existing studies can be categorized into
three pillars. First, feature-based models employ
various hand-crafted features (Shutova et al., 2010;
Turney et al., 2011; Shutova and Sun, 2013; Broad-
well et al., 2013; Tsvetkov et al., 2014; Bulat et al.,
2017). Although simple and intuitive, they are
highly sensitive to the quality of a corpus. Second,
some studies (Wu et al., 2018; Gao et al., 2018;
Mao et al., 2019) utilize recurrent neural networks
(RNNs), which are suitable for analyzing the se-
quential structure of words. However, they are
limited to understanding the diverse meanings of
words in context. Lastly, the pre-trained contex-
tualized models, e.g., BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), have been used
for detecting metaphors (Chen et al., 2020; Gong
et al., 2020; Su et al., 2020). Owing to the power-
ful representation capacity, such models have been
successful for addressing various NLP tasks (Wang
et al., 2019) and document ranking in IR (Mitra
and Craswell, 2018).

Based on such an advancement, we utilize a
contextualized model using two metaphor iden-
tification theories, i.e., Metaphor Identification
Procedure (MIP) (Pragglejaz Group, 2007; Steen
et al., 2010) and Selectional Preference Violation
(SPV) (Wilks, 1975, 1978). For MIP, a metaphor-
ical word is recognized if the literal meaning
of a word is different from its contextual mean-
ing (Haagsma and Bjerva, 2016). For instance, in
the sentence “Don’t twist my words”, the contex-
tual meaning of “twist” is “to distort the intended
meaning”, different from its literal meaning, “to
form into a bent, curling, or distorted shape.” For
SPV, a metaphorical word is identified if the target
word is unusual in the context of its surrounding
words. That is, “twist” is metaphorical because
it is unusual in the context of “words.” Although
the key ideas of the two strategies are similar, they
have different procedures for detecting metaphori-
cal words and their contexts in the sentence.
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To this end, we propose a novel metaphor
detection model using metaphorical identifica-
tion theories over the pre-trained contextualized
model, namely metaphor-aware late interaction
over BERT (MelBERT). MelBERT deals with a
classification task to identify whether a target word
in a sentence is metaphorical or not. As depicted
in Figure 2, MelBERT is based on a siamese ar-
chitecture that takes two sentences as input. The
first sentence is a sentence S with a target word
wt and the second sentence is a target word wt it-
self. MelBERT independently encodes S and wt

into each embedding vector, which avoids unnec-
essary interactions between S and wt. Inspired by
MIP, MelBERT then employs the contextualized
and isolated representations of wt to distinguish be-
tween the contextual and literal meaning of wt. To
utilize SPV, MelBERT employs the sentence em-
bedding vector and the contextualized target word
embedding vector. MelBERT identifies how much
the surrounding words mismatch from the target
word. Lastly, MelBERT combines two metaphor
identification strategies to predict if a target word
is metaphorical or not. Each metaphor identifica-
tion theory is non-trivial for capturing complicated
and vague metaphorical words. To overcome these
limitations, we incorporate two linguistic theories
into a pre-trained contextualized model and utilize
several linguistic features such as POS features.

To summarize, MelBERT has two key advan-
tages. First, MelBERT effectively employs the con-
textualized representation to understand various
aspects of words in context. Because MelBERT is
particularly based on a late interaction over contex-
tualized models, it can prevent unnecessary inter-
actions between two inputs and effectively distin-
guish the contextualized meaning and the isolated
meaning of a word. Second, MelBERT utilizes two
metaphor identification theories to detect whether
the target word is metaphorical. Experimental re-
sults show that MelBERT consistently outperforms
state-of-the-art metaphor detection models in terms
of F1-score on several benchmark datasets, such as
VUA-18, VUA-20, and VUA-Verb datasets.

2 Related Work

2.1 Metaphor Detection

Feature-based approach. Various linguistic fea-
tures are used to understand metaphorical expres-
sions. Representative hand-engineered features
include word abstractness and concreteness (Tur-

ney et al., 2011), word imageability (Broadwell
et al., 2013), semantic supersenses (Tsvetkov et al.,
2014), and property norms (Bulat et al., 2017).
However, they have difficulties handling rare us-
ages of metaphors because the features rely on
manually annotated resources. To address this prob-
lem, sparse distributional features (Shutova et al.,
2010; Shutova and Sun, 2013) and dense word em-
beddings (Shutova et al., 2016; Rei et al., 2017),
i.e., Word2Vec (Mikolov et al., 2013), are used as
better linguistic features. For details, refer to the
survey (Veale et al., 2016).

RNN-based approach. Several studies proposed
neural metaphor detection models using recur-
rent neural networks (RNNs). (Wu et al., 2018)
adopts a bidirectional-LSTM (BiLSTM) (Graves
and Schmidhuber, 2005) and a convolutional neural
network (CNN) using Word2Vec (Mikolov et al.,
2013) as text features in addition to part-of-speech
(POS) and word clustering information as linguistic
features. (Gao et al., 2018) employs BiLSTM as
an encoder using GloVe (Pennington et al., 2014)
and ELMo (Peters et al., 2018) as text input rep-
resentation. (Mao et al., 2019) makes use of the
metaphor identification theory on top of the archi-
tecture of (Gao et al., 2018). Despite their success,
the shallow neural networks (e.g., BiLSTM and
CNN) have limitations on representing various as-
pects of words in context.

Contextualization-based approach. Recent stud-
ies utilize pre-trained contextualized language
models, e.g., BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), for metaphor detec-
tion. Because the pre-trained model can encode
rich semantic and contextual information, it is use-
ful for detecting metaphors with fine-tuning train-
ing. DeepMet (Su et al., 2020) utilizes RoBERTa
with various linguistic features, i.e., global text
context, local text context, and POS features.
IlliniMet (Gong et al., 2020) combines RoBERTa
with linguistic information obtained from external
resources. (Chen et al., 2020) formulates the multi-
task learning problem for both metaphor detection,
and (Leong et al., 2020) reports the results of these
models in the VUA 2020 shared task.

2.2 Semantic Matching over BERT

The key idea of neural semantic matching is that
neural models encode a query-document pair into
two embedding vectors and compute a relevance
score between the query and the document (Mi-
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tra and Craswell, 2018). The simple approach
is to feed a query-document pair to BERT (De-
vlin et al., 2019) and compute a relevance score,
where the query and the document are fully inter-
acted (Nogueira et al., 2019; Dai and Callan, 2020).
In contrast, SBERT (Reimers and Gurevych, 2019),
TwinBERT (Lu et al., 2020), and ColBERT (Khat-
tab and Zaharia, 2020) adopt late interaction ar-
chitectures using siamese BERT, where the query
and the document are encoded independently. Our
work is based on the late interaction architecture.
In other words, the sentence with the target word
and the target word is encoded separately to repre-
sent contextualized and isolated meanings of the
target word.

3 MelBERT

In this section, we propose a novel metaphor detec-
tion model over a pre-trained contextualized model.
To design our model, we consider two metaphor de-
tection tasks. Given a sentence S = {w1, . . . , wn}
with n words and a target word wt ∈ S, the classi-
fication task predicts the metaphoricity (i.e., mat-
aphorical or literal) of wt. Given a sentence S,
the sequence labeling predicts the metaphoricity of
each word wt (1 ≤ t ≤ n) in S.

We aim at developing a metaphor detection
model for the classification task. Our model re-
turns a binary output, i.e., 1 if the target word wt in
S is metaphorical or 0 otherwise. By sequentially
changing the target word wt, our model can be gen-
eralized to classify the metaphoricity of each word
in a sentence, as in sequence labeling.

3.1 Motivation

The pre-trained language models, e.g., BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
usually take two sentences as input and return out-
put to predict the relevance between two input sen-
tences. We adopt RoBERTa as the contextualized
backbone model because RoBERTa is known to
outperform BERT (Liu et al., 2019). To design
a metaphor detection model, we treat one input
sentence as a single word (or a phrase).

As depicted in Figure 1, there are two paradigms
for representing the interaction between two input
sentences: all-to-all interaction and late interac-
tion, as discussed in the document ranking prob-
lem (Khattab and Zaharia, 2020). While all-to-all
interaction takes two input sentences together as
an input, late interaction encodes two sentences

(a) All-to-all interaction (b) Late interaction

Figure 1: Two interaction paradigms over a contextual-
ized model.

separately over a siamese architecture. Given a
sentence S and a target word wt, all-to-all interac-
tion can capture all possible interactions within and
across wt and S, which incurs high computational
cost. Moreover, when some interactions across wt

and S are useless, it may learn noisy information.
In contrast, because late interaction encodes wt

and S independently, it naturally avoids unneces-
sary intervention across wt and S. The sentence
embedding vector also can be easily reused in com-
puting the interaction with the target word. In other
words, the cost of encoding the sentence vector can
be amortized for that of encoding different target
words.

Because our goal is to identify whether the con-
textualized meaning of the target word wt is dif-
ferent from its isolated meaning, we adopt the late
interaction paradigm for metaphor detection. Our
model encodes a sentence S with a target word
and a target word wt into embedding vectors, re-
spectively, and computes the metaphoricity score
of the target word. (In Section 4, it is found that our
model using late interaction outperforms a baseline
model using all-to-all interaction.)

3.2 Model Architecture
We propose a novel metaphor detection model,
namely, metaphor-aware late interaction over
BERT (MelBERT) using metaphor identification
theories, i.e., Metaphor Identification Procedure
(MIP) (Pragglejaz Group, 2007; Steen et al., 2010)
and Selectional Preference Violation (SPV) (Wilks,
1975, 1978). Figure 2 illustrates the overall ar-
chitecture of MelBERT, which consists of three
components: a sentence encoder Enc(S), a tar-
get word encoder Enc(wt), and a late interaction
mechanism to compute a score.

We first explain the input layer for two encoders
Enc(S) and Enc(wt). Each word in the sentence
is converted to tokens using an improved imple-
mentation of byte-pair encoding (BPE) (Radford
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Figure 2: Model architecture of MelBERT. When a target word wt is split into multiple tokens by BPE, the average
pooling is used for the target word.

et al., 2019). As shown in the original BERT, the
position embedding is used to represent the posi-
tion of tokens. The segment embedding is used to
distinguish target tokens (denoted as [TAR]) and
their local context (denoted as [LOC]). When the
sentence is represented as a composite sentence,
the local context indicates a clause including target
tokens. For simplicity, we represent the local con-
text using comma separator (,) in the sentence. Be-
sides, we add a special classification token [CLS]
before the first token and a segment separation to-
ken [SEP] after the last token. To make use of the
POS feature of the target word, we append the POS
tag for the target word after [SEP], as used in (Su
et al., 2020). The input representation is finally
computed by the element-wise addition of token,
position embedding, and segment embedding. For
Enc(wt), the target word is converted to the tokens
using BPE, but position and segment embedding
are not used.

Given a sentence S = {w1, . . . , wn}, Enc(S)
encodes each word into a set of contextualized
embedding vectors, {vS ,vS,1, . . . ,vS,n} using the
transformer encoder (Vaswani et al., 2017), where
vS is the embedding vector corresponding to the
[CLS] token and vS,i is the i-th embedding vector
for wi in S. Similarly, Enc(wt) encodes a target
word wt into vt without context.

vS ,vS,1, . . . ,vS,n =

Enc(“[CLS], w1, . . . , wn, [SEP ]”)
(1)

vt = Enc(“[CLS], wt, [SEP ]”) (2)

While vS reflects the interaction across all words
in S, vS,t considers the interaction between wt and

other words in S. Therefore, vS,t and vt can be
interpreted as different meanings for wt, i.e., vS,t

is contextualized representation of wt and vt is
isolated representation of wt.

Then, we utilize two metaphor identification the-
ories using contextualized embedding vectors.

MelBERT using MIP. The basic idea of MIP is
that a metaphorical word is identified by the gap be-
tween the contextual and literal meaning of a word.
To incorporate MIP into MelBERT, we employ
two embedding vectors vS,t and vt, representing a
contextualized embedding vector and an isolated
embedding vector for wt, respectively. Using these
vectors, we identify the semantic gap for the target
word in context and isolation.

MelBERT using SPV. The idea of SPV is that a
metaphorical word is identified by the semantic dif-
ference from its surrounding words. Unlike MIP,
we only utilize the sentence encoder. Given a tar-
get word wt in S, our key assumption is that vS

and vS,t show a semantic gap if wt is metaphori-
cal. Although vS and vS,t are contextualized, the
meanings of the two vectors are different; vS rep-
resents the interaction across all pair-wise words
in S, but vS,t represents the interaction between
wt and other words in S. In this sense, when wt is
metaphorical, vS,t can be different from vS by the
surrounding words of wt.

Late interaction over MelBERT. Using the two
strategies, MelBERT predicts whether a target
word wt ∈ S is metaphorical or not. We can com-
pute a hidden vector hMIP by concatenating vS,t

and vt for MIP.

hMIP = f([vS,t;vt]), (3)
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where hMIP ∈ Rh×1 and f(·) is a function for the
MLP layer to learn the gap between two vectors
vS,t and vt.

We can also compute a hidden vector hSPV us-
ing vS and vS,t for SPV.

hSPV = g([vS ;vS,t]), (4)

where hSPV ∈ Rh×1 and g(·) is a function for the
MLP layer to learn the semantic difference between
vS and vS,t.

We combine two hidden vectors hMIP and
hSPV to compute a prediction score:

ŷ = σ(W>[hMIP ;hSPV ] + b), (5)

where σ(·) is the sigmoid function, W ∈ R2h×1 is
the parameter, and b is a bias. To learn MelBERT,
finally, we use the cross-entropy loss function for
binary classification as follows:

L =

N∑
i=1

yi log ŷi + (1− yi) log(1− ŷi), (6)

where N is the number of samples in the training
set. yi and ŷi are the true and predicted labels for
the i-th sample in the training set.

4 Evaluation

In this section, we first present the experimental
setup, then report empirical results by comparing
our model against strong baselines.

4.1 Experimental Setup
Datasets. We use four well-known public English
datasets. First, the VU Amsterdam Metaphor Cor-
pus (VUA) has been released in metaphor detec-
tion shared tasks in 2018 and 2020. We use two
versions of VUA datasets, called VUA-18 (Leong
et al., 2018) and VUA-20 (Leong et al., 2020),
where VUA-20 is the extension of VUA-18. Let
VUA-18tr, VUA-18dev, VUA-18te denote the train-
ing, validation, and test datasets, split from VUA-
18. VUA-20tr includes VUA-18tr and VUA-18dev.
VUA-20te also includes VUA-18te, and VUA-
Verbte is a subset of VUA-18te and VUA-20te.

Because most of the tokens in a sentence are
literal words in VUA-18, VUA-20 selectively
chooses the tokens in the training and testing
datasets. VUA-18te consists of four genres, in-
cluding news, academic, fiction, and conversation.
It can also be categorized into different POS tags,
such as verb, noun, adjective, and adverb. Addition-
ally, we employ MOH-X (Mohammad et al., 2016)

Dataset #tokens %M #Sent Sent len

VUA-18tr 116,622 11.2 6,323 18.4
VUA-18dev 38,628 11.6 1,550 24.9
VUA-18te 50,175 12.4 2,694 18.6

VUA-20tr 160,154 12.0 12,109 15
VUA-20te 22,196 17.9 3,698 15.5

VUA-Verbte 5,873 30 2,694 18.6

MOH-X 647 48.7 647 8

TroFi 3,737 43.5 3,737 28.3

Table 1: Detailed statistics on benchmark datasets. #to-
kens is the number of tokens, %M is the percentage of
metaphorical words, #Sent is the number of sentences,
and Sent len is the average length of sentences.

and TroFi (Birke and Sarkar, 2006) for testing pur-
poses only. MOH-X is a verb metaphor detection
dataset with the sentences from WordNet and TroFi
is also a verb metaphor detection dataset, includ-
ing sentences from the 1987-89 Wall Street Jour-
nal Corpus Release 1. The sizes of these datasets
are relatively smaller than those of VUA datasets,
and they have metaphorical words of more than
40%, while VUA-18 and VUA-20 datasets have
about 10% of metaphorical words. While MOH-
X and TroFi only annotate verbs as metaphorical
words, the VUA dataset annotates all POS tags as
metaphorical words. In this sense, we believe that
the VUA dataset is more appropriate for training
and testing models. Table 1 summarizes detailed
statistics on the benchmark datasets.
Baselines. We compare our models with sev-
eral strong baselines, including RNN-based and
contextualization-based models.

• RNN_ELMo and RNN_BERT (Gao et al.,
2018): They employ the concatenation of the
pre-trained ELMo/BERT and the GloVe (Pen-
nington et al., 2014) embedding vectors as an
input, and use BiLSTM as a backbone model.
Note that they use contextualized models only
for input vector representation.

• RNN_HG and RNN_MHCA (Mao et al.,
2019): They incorporate MIP and SPV into
RNN_ELMo (Gao et al., 2018). RNN_HG
compares an input embedding vector (literal)
with its hidden state (contextual) through BiL-
STM. RNN_MHCA utilizes multi-head atten-
tion to capture the contextual feature within
the window size.

• RoBERTa_BASE: It is a simple adoption of
RoBERTa for metaphor detection. It takes a
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target word and a sentence as two input sen-
tences and computes a prediction score. It can
be viewed as a metaphor detection model over
an all-to-all interaction architecture.

• RoBERTa_SEQ (Leong et al., 2020): It takes
one single sentence as an input, and a target
word is marked as the input embedding token
and predicts the metaphoricity of the target
word using the embedding vector of the target
word. This architecture is used as the BERT-
based baseline in the VUA 2020 shared task.

• DeepMet (Su et al., 2020): It is the winning
model in the VUA 2020 shared task. It also
utilizes RoBERTa as a backbone model and
incorporates it with various linguistic features,
such as global context, local context, POS
tags, and fine-grained POS tags.

Evaluation protocol. Because the ratio of
metaphorical words is relatively small, we adopt
three metrics, e.g., precision, recall, and F1-score,
denoted by Prec, Rec, and F1. MOH-X and TroFi
datasets are too smaller than VUA datasets. Thus,
we only used them as the test datasets; metaphor
detection models are only trained in VUA datasets,
and zero-shot transfer is conducted to evaluate the
effectiveness of model generalization.

Implementation details. For four baselines, we
used the same hyperparameter settings1 in (Gao
et al., 2018; Mao et al., 2019; Su et al., 2020). For
DeepMet2, we evaluated it with/without bagging
technique. While DeepMet (Su et al., 2020) ex-
ploits two optimization techniques, bagging and
ensemble, we only used a bagging technique for
MelBERT and DeepMet. It is because we want to
evaluate the effectiveness of model designs. The
performance difference for DeepMet between the
original paper and ours thus comes from the us-
age of the ensemble method. For contextualized
models, we used a pre-trained RoBERTa3 with 12
layers, 12 attention heads in each layer, and 768
dimensions of the hidden state. For contextualized
baselines, we set the same hyperparameters with
MelBERT, which were tuned on VUA-18dev based
on F1-score. The batch size and max sequence
length were set as 32 and 150. For training, the
number of epochs was three with Adam optimizer.

1https://github.com/RuiMao1988/Sequential-Metaphor-
Identification

2https://github.com/YU-NLPLab/DeepMet
3https://huggingface.co/roberta-base

Dataset Model Prec Rec F1

VUA-18

RNN_ELMo 71.6 73.6 72.6
RNN_BERT 71.5 71.9 71.7

RNN_HG 71.8 76.3 74.0
RNN_MHCA 73.0 75.7 74.3

RoBERTa_BASE 79.4 75.0 77.1
RoBERTa_SEQ 80.4 74.9 77.5

DeepMet 82.0 71.3 76.3
MelBERT 80.1 76.9 78.5∗

DeepMet-CV 77.5 80.2 78.8
MelBERT-CV 78.9 80.7 79.8∗

VUA-Verb

RNN_ELMo 68.2 71.3 69.7
RNN_BERT 66.7 71.5 69.0

RNN_HG 69.3 72.3 70.8
RNN_MHCA 66.3 75.2 70.5

RoBERTa_BASE 76.9 72.8 74.7
RoBERTa_SEQ 79.2 69.8 74.2

DeepMet 79.5 70.8 74.9
MelBERT 78.7 72.9 75.7

DeepMet-CV 76.2 78.3 77.2
MelBERT-CV 75.5 78.7 77.1

Table 2: Performance comparison of MelBERT with
baselines on VUA-18 and VUA-Verb (best is in bold
and second best is in italic underlined). Let -CV de-
note the bagging technique for its base model (best is
in bold-italic). ∗ denotes p < 0.05 for a two-tailed
t-test with the best competing model.

Dataset Model Prec Rec F1

VUA-20

RoBERTa_BASE 74.9 68.0 71.2
RoBERTa_SEQ 76.9 66.7 71.4

DeepMet 76.7 65.9 70.9
MelBERT 76.4 68.6 72.3∗

DeepMet-CV 73.8 73.2 73.5
MelBERT-CV 74.1 73.7 73.9

Table 3: Performance comparison of MelBERT with
baselines on VUA-20 (best is in bold and second best
is in italic underlined). Let -CV denote the bagging
technique for its base model (best is in bold-italic). ∗
denotes p < 0.05 for a two-tailed t-test with the best
competing model.

We increased the learning rate from 0 to 3e-5 dur-
ing the first two epochs and then linearly decreased
it during the last epoch. We set the dropout ratio as
0.2. All experimental results were averaged over
five runs with different random seeds. We con-
ducted all experiments on a desktop with 2 NVidia
TITAN RTX, 256 GB memory, and 2 Intel Xeon
Processor E5-2695 v4 (2.10 GHz, 45M cache). We
implemented our model using PyTorch. All the
source code is available at our website4.

4https://github.com/jin530/MelBERT
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Genre Model Prec Rec F1

Academic

RNN_ELMo 78.2 80.2 79.2
RNN_BERT 76.7 76.0 76.4

RNN_HG 76.5 83.0 79.6
RNN_MHCA 79.6 80.0 79.8

RoBERTa_BASE 88.1 79.5 83.6
RoBERTa_SEQ 86.0 77.3 81.4

DeepMet 88.4 74.7 81.0
MelBERT 85.3 82.5 83.9

Conversation

RNN_ELMo 64.9 63.1 64.0
RNN_BERT 64.7 64.2 64.4

RNN_HG 63.6 72.5 67.8
RNN_MHCA 64.0 71.1 67.4

RoBERTa_BASE 70.3 69.0 69.6
RoBERTa_SEQ 70.5 69.8 70.1

DeepMet 71.6 71.1 71.4
MelBERT 70.1 71.7 70.9

Fiction

RNN_ELMo 61.4 69.1 65.1
RNN_BERT 66.5 68.6 67.5

RNN_HG 61.8 74.5 67.5
RNN_MHCA 64.8 70.9 67.7

RoBERTa_BASE 74.3 72.1 73.2
RoBERTa_SEQ 73.9 72.7 73.3

DeepMet 76.1 70.1 73.0
MelBERT 74.0 76.8 75.4

News

RNN_ELMo 72.7 71.2 71.9
RNN_BERT 71.2 72.5 71.8

RNN_HG 71.6 76.8 74.1
RNN_MHCA 74.8 75.3 75.0

RoBERTa_BASE 83.5 71.8 77.2
RoBERTa_SEQ 82.2 74.1 77.9

DeepMet 84.1 67.6 75.0
MelBERT 81.0 73.7 77.2

Table 4: Model performance of different genres in
VUA-18 (best is in bold and second best is in
italic underlined).

4.2 Empirical Results

Overall results. Tables 2 and 3 report the compar-
ison results of MelBERT against other baselines
using RNNs and contextualized models on VUA-
18, VUA-20, and VUA-Verb. It is found that Mel-
BERT is consistently better than strong baselines
in terms of F1-score. MelBERT outperforms (F1
= 78.5, 75.7, and 72.3) DeepMet (Su et al., 2020)
with 2.8%, 1.0%, and 1.9% performance gains on
the three datasets. MelBERT also outperforms con-
textualized baseline models (i.e., RoBERTa_BASE
and RoBERTa_SEQ), up to 1.2-1.5% gains on the
three datasets, indicating that MelBERT effectively
utilizes metaphorical identification theories.

When combining MelBERT and DeepMet with
the bagging technique, both models (i.e., MelBERT-
CV and DeepMet-CV) show better performance
than their original models by aggregating multi-
ple models trained with 10-fold cross-validation
process as used in (Su et al., 2020). MelBERT-

POS Model Prec Rec F1

Verb

RNN_ELMo 68.1 71.9 69.9
RNN_BERT 67.1 72.1 69.5

RNN_HG 66.4 75.5 70.7
RNN_MHCA 66.0 76.0 70.7

RoBERTa_BASE 77.0 72.1 74.5
RoBERTa_SEQ 74.4 75.1 74.8

DeepMet 78.8 68.5 73.3
MelBERT 74.2 75.9 75.1

Adjective

RNN_ELMo 56.1 60.6 58.3
RNN_BERT 58.1 51.6 54.7

RNN_HG 59.2 65.6 62.2
RNN_MHCA 61.4 61.7 61.6

RoBERTa_BASE 71.7 59.0 64.7
RoBERTa_SEQ 72.0 57.1 63.7

DeepMet 79.0 52.9 63.3
MelBERT 69.4 60.1 64.4

Adverb

RNN_ELMo 67.2 53.7 59.7
RNN_BERT 64.8 61.1 62.9

RNN_HG 61.0 66.8 63.8
RNN_MHCA 66.1 60.7 63.2

RoBERTa_BASE 78.2 69.3 73.5
RoBERTa_SEQ 77.6 63.9 70.1

DeepMet 79.4 66.4 72.3
MelBERT 80.2 69.7 74.6

Noun

RNN_ELMo 59.9 60.8 60.4
RNN_BERT 63.3 56.8 59.9

RNN_HG 60.3 66.8 63.4
RNN_MHCA 69.1 58.2 63.2

RoBERTa_BASE 77.5 60.4 67.9
RoBERTa_SEQ 76.5 59.0 66.6

DeepMet 76.5 57.1 65.4
MelBERT 75.4 66.5 70.7

Table 5: Model performance of different POS tags
in VUA-18 (best is in bold and second best is in
italic underlined).

CV still shows better performance for all metrics
than DeepMet-CV in VUA-18 and VUA-20. Also,
MelBERT-CV (Recall = 73.7) significantly im-
proves the original MelBERT (Recall = 68.6) in
terms of recall. It implies that MelBERT-CV can
capture various metaphorical expressions by com-
bining multiple models.

Besides, it is found that contextualization-
based models show better performance than
RNN-based models in VUA-18 and VUA-Verb.
While RNN-based models show 71-74% F1-score,
contextualization-based models show 76-78% F1-
score on VUA-18. It is revealed that RNN-based
models are limited in capturing various aspects
of words in context. Compared to RNN_ELMo
and RNN_BERT, it also indicates that utilizing
contextualization-based models as backbone mod-
els can have a better effect than simply utilizing it
as an extra input embedding vector in (Gao et al.,
2018; Mao et al., 2019).
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Dataset Model Prec Rec F1

MOH-X

RoBERTa_BASE 77.4 80.1 78.4
RoBERTa_SEQ 80.6 77.7 78.7

DeepMet 79.9 76.5 77.9
MelBERT 79.3 79.7 79.2

TroFi

RoBERTa_BASE 54.6 74.3 62.9
RoBERTa_SEQ 53.6 70.1 60.7

DeepMet 53.7 72.9 61.7
MelBERT 53.4 74.1 62.0

Table 6: Performance comparison of MelBERT with
baselines over two datasets. Note that the models are
trained on VUA-20, and these datasets are only used as
the test datasets (best is in bold and second best is in
italic underlined).

VUA-18 breakdown analysis. Table 4 reports the
comparison results for four genres in the VUA-18
dataset. MelBERT still shows better than or compa-
rable to all competitive models in both breakdown
datasets. Compared to RNN-based models, Mel-
BERT achieves substantial improvements, as high
as 4.9% (Academic), 4.4% (Conversation), 10.2%
(Fiction), and 2.8% (News) in terms of F1-score.
Particularly, they show the lowest accuracy because
Conversation and Fiction have more complicated
or rare expressions than other genres. For exam-
ple, Conversation contains colloquial expressions
or fragmented sentences such as “ah”, “cos”, “yeah”
and Fiction often contains the names of fictional
characters such as “Tepilit”, “Laibon” which do
not appear in other genres. Nonetheless, MelBERT
shows comparable or the best performance in all
genres. For Academic and Fiction, MelBERT par-
ticularly outperforms all the models in terms of
F1-score.

Table 5 reports the comparison result for four
POS tags in the VUA-18 dataset. For all POS
tags, MelBERT consistently shows the best per-
formance in terms of the F1-score. Compared to
RNN-based models, MelBERT achieves as much
as 5.9% (Verb), 3.4% (Adjective), 14.5% (Adverb),
and 10.3% (Noun) gains in terms of F1-score. For
all POS tags, MelBERT also outperforms Deep-
Met. It means that MelBERT using metaphorical
identification theories can achieve consistent im-
provements regardless of POS tags of target words.

Zero-shot transfer on MOH-X and TroFi. We
evaluate a zero-shot learning transfer across differ-
ent datasets, where the models are trained with the
VUA-20 training dataset, and MOH-X and TroFi
are used as test datasets. Although it is a chal-
lenging task, it is useful for evaluating the gener-

Model VUA-18 VUA-20
Prec Rec F1 Prec Rec F1

MelBERT 80.1 76.9 78.5 76.4 68.6 72.3
(-) MIP 77.8 75.8 76.7 74.7 67.8 71.1
(-) SPV 79.5 76.3 77.9 74.9 68.6 71.7

Table 7: Effect of different metaphorical identification
theories on VUA-18 and VUA-20. (-) MIP and (-) SPV
indicate MelBERT without MIP and SPV, respectively
(best is in bold and second best is in italic underlined).

alization power of trained models. Table 6 reports
the comparison results of MelBERT against other
contextualization-based models. For the MOH-
X dataset, MelBERT (F1 = 79.2) shows the best
performance in terms of F1-score with 0.6–1.6%
performance gains. It indicates that MelBERT is
an effective generalization model. For the TroFi
dataset, the overall performance of all the models
is much lower than MOH-X. It is because the aver-
age length of the sentences in the TroFi dataset is
much longer and sentences are more complicated
than those in MOH-X. Also, note that we trained
DeepMet with the VUA-20 training dataset for eval-
uating a zero-shot transfer, while (Su et al., 2020)
reported the results for DeepMet trained and tested
with the MOH-X and TroFi datasets. While the
performance gap between models is much small in
terms of precision, MelBERT is better than Deep-
Met in terms of recall. It means that MelBERT can
capture complicated metaphorical expressions than
DeepMet.

Ablation study of MelBERT. Table 7 compares
the effectiveness of metaphor identification theo-
ries. It is found that MelBERT using both strate-
gies consistently shows the best performance. Also,
MelBERT without SPV shows better performance
than MelBERT without MIP, indicating that Mel-
BERT using late interaction is more effective for
capturing the difference between contextualized
and isolated meanings of target words. Nonethe-
less, MelBERT shows the best performance by syn-
ergizing both metaphor identification strategies.

Error analysis. Table 8 reports qualitative evalu-
ation results of MelBERT. Based on the original
annotation guideline5, we analyze several failure
cases of MelBERT. For MelBERT without MIP,
it is difficult to find common words with multiple
meanings, e.g., go and feel. Also, when a sentence
includes multiple metaphorical words, it mostly
fails to detect metaphorical words. In this case,

5http://www.vismet.org/metcor/documentation/home.html
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Sentence

X X Manchester is not alone.

X X That’s an old trick.

X X Oh you rotten old pig, you’ve been sick.

X X "Are the twins trash?"

X X I know, what is going on!

X X So who’s covering tomorrow?

X X Do you feel better now?

X X The day thrift turned into a nightmare.

Way of the World: Farming notes

So many places Barry are going down

Sensitivity, though, is not enough.

Table 8: Examples of incorrect samples for MelBERT
on VUA-20. The metaphorical words in the sentence
are in red italicized. Xmarks correct model prediction.

the surrounding words of a target word are not a
cue to detect metaphors using SPV. Meanwhile,
MelBERT without SPV has a failure case if target
words are metaphorical for personification. That is,
using MIP only, the target word can be closely inter-
preted by its literal meaning. As the most difficult
case, MelBERT often fails to identify metaphorical
words for borderline or implicit metaphors, e.g.,
Way of the World is poetic.

5 Conclusion

In this work, we proposed a novel metaphor detec-
tion model, namely, metaphor-aware late interac-
tion over BERT (MelBERT), marrying pre-trained
contextualized models with metaphor identifica-
tion theories. To our best knowledge, this is the
first work that takes full advantage of both contex-
tualized models and metaphor identification theo-
ries. Comprehensive experimental results demon-
strated that MelBERT achieves state-of-the-art per-
formance on several datasets.
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