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Abstract

Recent work on entity coreference resolution
(CR) follows current trends in Deep Learning
applied to embeddings and relatively simple
task-related features. SOTA models do not
make use of hierarchical representations of dis-
course structure. In this work, we leverage au-
tomatically constructed discourse parse trees
within a neural approach and demonstrate a
significant improvement on two benchmark en-
tity coreference-resolution datasets. We ex-
plore how the impact varies depending upon
the type of mention.

1 Introduction

Historically, theories of discourse coher-
ence (Chafe, 1976; Hobbs, 1979; Grosz and
Sidner, 1986; Clark and Brennan, 1991) have of-
fered elaborate expositions on how the patterns of
anaphoric references in discourse are constrained
by limitations in human capacity to manage
attention and resolve ambiguity. Hobbs (1979)
acknowledges that these human limitations have
meant that coreference resolution in natural text
can be achieved with relatively high accuracy using
a combination of recency and simple semantic
constraints. State-of-the-art neural approaches for
coreference resolution (Lee et al., 2017; Joshi et al.,
2019, 2020) have therefore not surprisingly shown
strong performance relying on surface-level fea-
tures and local-context (i.e., extracted from a small
text window around the mention). Traditional
approaches, on the other hand, make an attempt to
formally model the process of managing attention,
for example, the stack in Grosz and Sidner (1986)’s
model. Their stack-based model suggests specific
places where recency might fail while a more
explicit model of discourse structure might make a
correct prediction, for example, where an anaphor
and a nearby potential (but incorrect) antecedent
are in adjacent but separate discourse segments.
Because of the potential existence of such cases,

we hypothesize that formally incorporating a
representation of discourse structure would have a
small but non-random positive impact on the ability
to correctly resolve anaphoric references. This
effect might vary depending upon the semantic
informativeness of alternative types of anaphoric
expressions, since they impose different constraints
on where their antecedent can be located within
a hierarchical discourse structure. There is also a
danger that the level of accuracy with which the
hierarchical structure of discourse can be obtained
in practice might reduce the positive impact still
further.

The contribution of this paper is an empirical in-
vestigation of the impact of including a representa-
tion of the hierarchical structure of discourse within
a neural entity coreference approach. To this end,
we leverage a state-of-the-art RST discourse-parser
to convert a flat document into a tree-like structure
from which we can derive features that model the
structural constraints. We embed this representa-
tion within an architecture that is enabled to learn to
use this information deferentially depending upon
the type of mention. The results demonstrate that
this level of nuance enables a small but significant
improvement in coreference accuracy, even with
automatically constructed RST trees.

2 Related Work

Though recency is the strongest predictor for coref-
erence resolution (CR), prior work in CR has bene-
fited from the inclusion of semantic features such as
type-information on top of the surface and syntax-
level features. Soon et al. (2001); Bengtson and
Roth (2008) used dictionaries like WordNet to
extract the semantic class for a noun. More re-
cently, Khosla and Rose (2020) showed that adding
NER style type-information to Lee et al. (2017)
substantially improves performance across multi-
ple datasets.

Discourse-level features have been successfully
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Figure 1: Schematic diagram of our discourse-informed neural architecture. Discourse (yellow) and mention-type features
(green) are concatenated with baseline features (blue) to obtain the mention-pair representation for scoring.

employed in multiple downstream NLP tasks like
summarization (Louis et al., 2010), sentiment anal-
ysis (Somasundaran et al., 2009), and student writ-
ing evaluation (Burstein et al., 2013). For corefer-
ence resolution, Cristea et al. (1999) showed that
the potential of natural language systems to cor-
rectly determine co-referential links, can be in-
creased by exploiting the hierarchical structure of
texts. Their discourse model was informed by Vein
Theory (Fox, 1987), which identifies chains of ele-
mentary discourse units, over discourse structure
trees that are built according to the RST (Mann
and Thompson, 1987) requirements. Haghighi and
Klein (2010) proposed an entity-centered model
that leveraged discourse features like dependency-
parse tree distance, sentence distance, and the syn-
tactic positions (subject, object, and oblique) of the
mention and antecedent to perform coreference.

In this work, we use Yu et al. (2018)’s RST
parser to convert documents into RST discourse-
structure trees (Mann and Thompson, 1987;
Taboada and Mann, 2006). From these trees, we de-
rive distance and coverage-based features to model
the discourse-level structural constraints, which are
passed as input to a neural-network based corefer-
ence resolver. To our knowledge, ours is the first
work that tries to explicitly incorporate discourse-
level constraints for coreference resolution in a
neural setting.

3 Model

In this section, we explain how we introduce
discourse-level features into a neural CR system.

3.1 Baseline

We leverage Lee et al. (2017) as our baseline. We
replace the word-embeddings with a BERT encoder.
A preprocessing step for CR is to identify the men-
tions within the text that need to be resolved. Fol-
lowing Bamman et al. (2020) and Khosla and Rose
(2020), we remove this possible source of error
from our evaluation of entity coreference accuracy
by using gold-standard mentions.

The baseline model’s prediction of coreference
for a pair of mentions, S (m;, m;), is computed as
follows. The representations of the two mentions
m; and m; along with their element-wise product
(m; ®m;) and other features like distance between
the mentions (d,,), and distance between the sen-
tences that contain the mentions (d;), are joined
together and passed through a fully-connected layer
F (blue boxes in Figure 1).

mmgj = [my;mj;mi © my; dp; ds; ...

S (mi, mj) = F (mm”)

3.2 Incorporating Discourse-level Features

By incorporating a representation of the hierarchi-
cal discourse structure into the representation that
is input to the neural model, we seek to add the
capability for reasoning that is not possible in the
baseline for each mention-pair (mm;;). None of
the features included in the baseline distinguish
between pairs that occur within the same or differ-
ent discourse segments, for example. The closest
feature in the baseline that approximates document-
level relationships is dg, since it can be assumed
that mentions are less likely to occur within the
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same segment the further apart they are in the dis-
course. But this is not universally true.

RST (Mann and Thompson, 1987) offers a the-
oretical framework in which documents can be
parsed into trees that capture the hierarchical dis-
course structure of the text. In this work, we in-
corporate structural features from such discourse
trees, obtained automatically from Yu et al. (2018).
‘We concatenate three structural features, extracted
from the discourse-tree of the document, with
mm;; to model these constraints (as shown in Fig-
ure 1). We use binarized RST-trees to represent the
discourse hierarchy and relationships within each
document. Discourse-units identified by the parser
occur at the leaves () of the output tree.

Consider the document under consideration doc
and its RST-tree 4. For the current mention m;
and candidate mention m;, and the position of the
smallest discourse-unit they belong to in the tree
(lumj and [y, respectively):

DistLCA (djica) encodes the distance between

lu,,; and LCA(ly,, b, ). This feature provides
information about the amount of generality re-
quired to have the two mentions in the same dis-
course subtree. The smaller the DistL.CA, the closer
the two mentions are assumed to be in the dis-
course.

LeafCoverageLLCA (Ic)c,) encodes the number
of sentences that are covered by the discourse sub-
tree with LC'A(ly,,,, , lumj) as its root. This feature
captures the coverage of the level of discourse that
encloses both mentions. The larger the LeafCover-
ageLCA, the more the document area that needs to
be covered to include both mentions.

WordCoverageLCA (wcc,) encodes the num-
ber of words that are covered by the discourse sub-
tree with LC A(ly,,, lum].) as its root. This feature
is analogous to LeafCoveragelL.CA but operates on
word-level rather than the discourse-unit-level.

3.3 Mention Types and Cognitive Load

Across different types of anaphoric mentions, de-
pending upon how much information about the
antecedent is made apparent, there are differences
with respect to the cognitive load imposed on the
reader. Because this places differential constraints
on the interpretation process, we hypothesize that
enabling the model to learn different strategies de-
pending upon the mention-type will be advanta-
geous. We divide mentions into three types (type)
motivated by the above-mentioned intuition: (i)

pronouns (low lexical information, high cogni-
tive load on the reader), (ii) named-entities (al-
ready grounded mentions), and (iii) all other noun
phrases. A mention is put in the second category
if it contains at least one named-entity as predicted
by an off-the-shelf NER system.! To identify pro-
nouns, we compare the mention against a manu-
ally curated list of English pronouns. Ultimately,
the discourse and mention-type features are con-
catenated with mm;; and passed through a fully-
connected layer for scoring (Figure 1).

S(mia mj) = F([mmljv d{ca; leica; WCieqs typej])

4 Experimental Setup

In this section, we describe the datasets and evalua-
tion metrics we use in our experiments.

4.1 Datasets

We gauge the benefits of using RST-tree features
on two state-of-the-art entity CR datasets discussed
below. Since, our off-the-shelf RST parser (Yu
et al., 2018) is trained on news articles, the choice
of datasets is motivated by the attempt at reducing
the distribution shift between training and inference
while ensuring that the parser was trained on differ-
ent data than we are using for testing. We use the
English subset of OntoNotes (Pradhan et al., 2012).
The corpus contains multiple sub-genres ranging
from news articles to telephone conversations. We
also evaluate our approach on a subset of the RST
sub-genre of the ARRAU corpus (Poesio et al.,
2018) (A-RST(gt)), which contains RST ground-
truth parse-tree annotations in the RST Discourse-
Treebank (Carlson et al., 2003). Following Yu et al.
(2018), we keep 347 A-RST(gt) articles for train-
ing (out of which we set aside 22 articles for de-
velopment), and 38 articles for testing. Although
ARRAU also annotates bridging (Clark, 1975) and
abstract anaphora (Webber, 1991), in this work, we
only focus on entity anaphora.

4.2 Evaluation Metrics

Both OntoNotes and A-RST(gt) are input to the
system in the CoNLL 2012 format. We evalu-
ate the systems on the Fl-score for MUC, B3,
and CEAF metrics using the CoNLL-2012 offi-
cial scripts. However, we only show the average
F1-score of the above-mentioned metrics in this

"https://demo.allennlp.org/named-entity-recognition
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Model OntoNotes A-RST(gt)
Lee et al. (2017) 83.36 85.80
+ type 83.70 85.95
+ disc 83.63 86.19
+ disc + type 83.89 86.51
+ disc(gt) - 86.41
+ disc(gt) + type - 86.70
+ disc(gt) + type —ds - 86.66

Table 1: Performance (Avg. F1) of discourse-informed
model variants (gold-mentions) on OntoNotes and A-RST(gt).
Underlined numbers represent scores that are significantly
different from the baseline (p < 0.01).2

paper for brevity. We report the mean score of 5
independent runs with different seeds.’

5 Results

Ground-truth RST-Trees: To establish an upper-
bound for the improvement through introduction
of the discourse-tree features, we use features ex-
tracted from ground-truth trees. We evaluate the
upper-bound performance on A-RST(gt) as it con-
tains documents with annotations for coreference
as well as RST-structures. Our results show that
incorporating ground-truth tree features along with
the mention’s type (+ disc(gt) + type) gives a boost
of 0.90 Avg. F1 (p < 0.01) over the baseline (Ta-
ble 1), suggesting that discourse-level features are
beneficial on A-RST(gt). Furthermore, we also
find that removing d from this discourse-informed
model does not cause a statistically-significant drop
in performance. We believe that this happens
because when discourse-structure features are in-
cluded in the model, the signal from ds becomes
redundant and sub-optimal.

Predicted RST-Trees: In our second set of exper-
iments we use discourse-trees extracted using Yu
et al. (2018)’s RST-parser. As shown in Table 1,
adding predicted discourse-tree features improves
over the baseline on both datasets, with A-RST(gt)
corpus witnessing the highest absolute gain of 0.71
Avg. F1 points. Please note that the results are
statistically significant with p < 0.01.* The rel-
ative improvement on OntoNotes is smaller than
A-RST(gt) (0.53 absolute Avg. F1 points). This
could partially be explained by the fact that the

>We leave the evaluation of the impact of including RST
structural features in the end-to-end CR setting as future work.

3Refer to Appendix A for hyperparameter values and Ap-
pendix B for detailed results.

*We performed a one-tailed t-test to evaluate significance.
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[ NER-N
[ NP-N
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dic;: Distance between m; and LCA(m;, m;)

Figure 2: Distribution of d;., for the three different categories
of anaphoric mention-pairs.

RST-parser is trained on news articles, and there-
fore, might not generalize well on conversational
sub-genres of OntoNotes like tc or bc.

Ablation Study: To evaluate the contribution of
each feature separately, we also perform an abla-
tion study (Table 1). On A-RST(gt), we find that
the type feature by itself does not provide a con-
siderable boost over the baseline. Use of RST-tree
based structural features, on the other hand, shows
statistically significant improvements (p < 0.01),
however, the jump is small (from 85.80 to 86.19).
Our final model which includes both RT-tree fea-
tures and type gives the best results. + disc + type
performs much better than + disc on both datasets
(improvement of 0.32 Avg. F1 points on A-RST(gt)
and 0.26 points on Onto) suggesting that the use
of type as a feature enhances the discriminative
power of discourse-tree features.

Mention Type Analysis: To study the influence
of different mention-types on the discriminative
power of discourse features, we analyze the distri-
bution of dj., across different mention-pair cate-
gories in the A-RST(gt) training set.

Setup. To this end, we firstly extract relevant
coreferent mention-pairs from the ground-truth
clusters. To create a pair for each mention m,
we choose the mention m; that belongs to the same
cluster (C') as m, occurs before it in the document
(7 < 7), and is the closest instance of C' to m;. Pairs
created using this algorithm do not have other sup-
porting mentions from the same cluster in between
them. We then extract three types of mention-pairs
from these relevant pairs for our analysis: (i) m;
is a pronoun and m; is not a pronoun (PRP-N);
(ii) m; contains a named entity and m; is not a
pronoun (NE-N); and (iii) m; is neither a pronoun
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nor contains a named entity, m; is not a pronoun,
and m;, m; have no lexical overlap (NP-N).

Results. Figure 2 shows that there is indeed a
dependence between d;., and mention-pair type.
Most of the PRP-N pairs have a dj.,, < 5 even
though the the full RST-tree of a document can be
as deep as 24 levels. This corroborates our intuition
that anaphors with higher ambiguity occur closer
to their antecedents in the discourse. For NP-N, we
find that 90% of the pairs have d;., < 8, whereas,
djcq can go as large as 10 for NE-N. This trend ex-
plains, at least partially, the difference between the
performance of discourse-informed models with
and without the mention-type feature.

6 Conclusion

In this paper, we show that a representation of hier-
archical discourse structure is beneficial for entity
coreference resolution. Our proposed discourse-
informed model observes small but statistically sig-
nificant improvements over a state-of-the-art neu-
ral baseline on two coreference resolution datasets.
Our analysis shows that the impact of the represen-
tation on performance is related to the cognitive
load imposed by the type of anaphoric mention.
While the model proposed in this work could
serve as a useful baseline for the benefits of in-
cluding discourse structure-based features in neural
coreference resolution models, we realize that there
is potential for achieving additional improvements
by including more complex constraints (e.g. Right
Frontier Constraint (Asher et al., 2003)). We plan
to study the affect of such features in future work.
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Appendix

A Hyperparameters

Hyperparameter Value
BERT base-cased
BERT weights freeze
BiLSTM hidden dim 200
djcq embedding-size 20
lcjeq embedding-size 20
wcyeq embedding-size 20
type embedding-size 20
FC-layer 1 size 150
FC-layer 2 size 150
Dropout 0.2

Table 2: Hyperparameter values for our model. Reader
is referred to https://github.com/dbamman/
lrec2020-coref for the implementation of the baseline
model.

B Detailed Results

Model ‘ OntoNotes ‘ A-RST(gt)
| MUC B? CEAF |MUC B® CEAF
Lee et al. (2017) 90.8 823 771 | 790 89.0 893
+type 91.1 827 773 | 793 890 894
+disc 91.0 825 774 | 795 892 897
+disc + type 912 827 778 | 797 897 90.1
- ds - - - 794 885 893
- d, + disc(gt) + type | - - - 802 89.6 90.2
+ dise(gt) - - - 79.8  89.5 899
+dise(gt) + type - - - 802 89.8  90.1
Table 3: Detailed Performance (F1 score) of

discourse-informed model variants (gold-mentions) on
OntoNotes and A-RST(gt).

C Results on Validation Set

Model OntoNotes A-RST(gt)
Lee et al. (2017) 83.42 85.98
+ type 84.01 86.15
+ disc 8391 86.40
+ disc + type 84.38 86.74
+ disc(gt) - 86.68
+ disc(gt) + type - 87.02

Table 4: Performance (Avg. F1) of discourse-informed
model variants (gold-mentions) on OntoNotes and A-
RST(gt) validation set.

D Computational Infrastructure

All our experiments are performed on a single
Nvidia GeForce GTX 1080 Ti GPU. Training took
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20-22 hours on OntoNotes, and 5-7 hours on A-
RST(gt). We trained the models for 100 epochs
with an early-stopping criteria on the Avg. F1 per-
formance on the validation set.
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